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The primary pharmacological action of sodium-glucose co-transporter 2 (SGLT2)
inhibitors is to inhibit the reabsorption of glucose and sodium ions from the
proximal tubules of the kidney and to promote urinary glucose excretion.
Notably, several clinical trials have recently demonstrated potent protective
effects of SGLT2 inhibitors in patients with heart failure (HF) or chronic kidney
disease (CKD), regardless of the presence or absence of diabetes. However, the
impact of SGLT2 inhibitors on sudden cardiac death (SCD) or fatal ventricular
arrhythmias (VAs), the pathophysiology of which is partly similar to that of HF
and CKD, remains undetermined. The cardiorenal protective effects of SGLT2
inhibitors have been reported to include hemodynamic improvement, reverse
remodeling of the failing heart, amelioration of sympathetic hyperactivity,
correction of anemia and impaired iron metabolism, antioxidative effects,
correction of serum electrolyte abnormalities, and antifibrotic effects, which
may lead to prevent SCD and/or VAs. Recently, as possible direct cardiac effects
of SGLT2 inhibitors, not only inhibition of Na+/H+ exchanger (NHE) activity, but
also suppression of late Na+ current have been focused on. In addition to the
indirect cardioprotective mechanisms of SGLT2 inhibitors, suppression of
aberrantly increased late Na+ current may contribute to preventing SCD and/or
VAs via restoration of the prolonged repolarization phase in the failing heart.
This review summarizes the results of previous clinical trials of SGLT2 inhibitors
for prevention of SCD, their impact on the indices of electrocardiogram, and the
possible molecular mechanisms of their anti-arrhythmic effects.
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GRAPHICAL ABSTRACT
Introduction

Sodium-glucose co-transporter 2 (SGLT2) inhibitors are

increasingly gaining attention for their cardiorenal protective

effects and their clinical significance (1). However, compared to

the robust favorable effects of SGLT2 inhibitors on diabetes

mellitus, heart failure, and chronic kidney disease, results of

studies on their clinical impact on sudden cardiac death (SCD)

have been inconsistent. Therefore, it is worth evaluating whether

SGLT2 inhibitors can prevent the incidence of SCD in the

presence or absence of diabetes mellitus, heart failure, or chronic

kidney disease. This mini-review focuses on the results of recent

clinical trials of SGLT2 inhibitors for prevention of SCD, the

effects of SGLT2 inhibitors on ventricular indices of an

electrocardiogram, and the possible molecular mechanisms of the

anti-arrhythmic effects of SGLT2 inhibitors.
General background on SGLT2
inhibitors and their potential impact on
SCD

A major pharmacological action of SGLT2 inhibitors is to

inhibit the reabsorption of glucose and sodium ions and to

promote urinary glucose excretion by inhibiting SGLT2, which is

abundant at the brush border membrane in the early S1 segment

of the proximal tubules of the kidney (2). Thus, SGLT2

inhibitors were initially developed and introduced to the market

as oral hypoglycemic agents with insulin-independent

hypoglycemic effects. However, a number of large clinical trials
Frontiers in Cardiovascular Medicine 02
in recent years have demonstrated the potent cardiorenal

protective effects of SGLT2 inhibitors, and interestingly, their

protective effects have been observed in both patients with and

those without diabetes mellitus (3–8). Several SGLT2 inhibitors

are now also recommended for the treatment of chronic heart

failure or chronic kidney disease as well as diabetes mellitus (9–

11). Compared to SGLT1, which has been reported to be

expressed in multiple organs and cells (12), SGLT2 is expressed

almost exclusively in the proximal tubules (13), and it is

reasonable to assume that the cardiorenal protective effect of

SGLT2 inhibitors is exerted via the pathway through the

proximal tubule in the kidney. The cardiorenal protective

mechanisms of SGLT2 inhibitors are thought to be complex,

including diuretic effects that less activate the renin-

angiotensin-aldosterone system with little change in

intravascular volume (14, 15), suppression of sympathetic

hyperactivity (16), antioxidant effects (17, 18), correction of

impaired energy metabolism (19, 20), anti-inflammatory

effects (21), improvement of anemia via increased

erythropoietin production (22), improved iron metabolism

(23), preventing fibrotic changes (24, 25), and preventing

effects for the development of cardiorenal syndromes (26).

Nevertheless, direct effects of SGLT2 inhibitors on

cardiomyocytes, including inhibition of Na+/H+ exchanger

(NHE) activity (27, 28) and suppression of late Na+ current

(29–31), have also recently been reported, although it has been

reported that SGLT2 inhibitors do not have an inhibitory

effect on NHE activity in intact cardiomyocytes (32), and the

precise mechanisms how SGLT2 inhibitors directly bind to

cardiomyocytes that lack SGLT2 remain undetermined.
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FIGURE 1

Remaining question of whether SGLT2 inhibitors improve abnormal ventricular ECG indices or VAs that leads to SCD. Despite the possible existence of a
common molecular mechanism for SGLT2 inhibitors to ameliorate diabetes, heart failure, and chronic kidney disease, clinical evidence for a positive
effect on VAs that leads to SCD has not yet been determined. The figure was created by using licensed BioRender. SGLT2, sodium-glucose co-
transporter 2, ECG, electrocardiogram, VAs, fatal ventricular arrhythmias, SCD, sudden cardiac death.
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Although the absolute event rate of SCD is not as high as that

of heart failure or chronic kidney disease (33), the impact of SCD is

devasting because the people left behind have to deal with the

sudden loss of a dear one without any preparation caused by a

SCD event. It has been noted that fatal ventricular arrhythmias

(VAs), regardless of the presence or absence of ischemic heart

disease or heart failure, are involved in the majority of causes of

SCD, although age and gender differences in the causes of SCD

have been reported (34, 35). In addition, it has been known that

the incidence of SCD via VAs is higher in patients with pre-

existing heart diseases, including ischemic heart disease and

cardiomyopathy (36). Indeed, an implantable cardioverter

defibrillator (ICD) is recommended for the prevention of SCD in

patients with documented VAs and in patients with heart disease

(37). Even in individuals without cardiac disease, a recent

genome-wide association study (GWAS) has proposed that risk

factors for cardiac disease such as diabetes, obesity, hypertension,

and dyslipidemia are risks for SCD in addition to QT interval

prolongation (38), which is a well-established index of an

electrocardiogram (ECG) for a risk of SCD. Interestingly, many

of the pathophysiological mechanisms involved in the

cardioprotective effects of SGLT2 inhibitors appear to overlap

with those involved in the pathogenesis of SCD (39). However,

clinical evidence on the favorable effects of SGLT2 inhibitors in
Frontiers in Cardiovascular Medicine 03
preventing SCD or inhibiting VAs has been limited and remains

controversial (Figure 1).
Clinical studies of SGLT2 inhibitors
focusing on SCD

Investigations to determine whether SGLT2 inhibitors reduce

the incidence of SCD were examined in the EMPA-REG

OUTCOME trial, which demonstrated for the first time the

potential of SGLT2 inhibitors to reduce cardiovascular events in

patients with type 2 diabetes mellitus who have cardiovascular

disease (40). In that trial, SCD was clearly defined as the death

that occurred unexpectedly in a previously stable patient and

included the following conditions: (1) witnessed and

instantaneous without new or worsening symptoms, (2)

witnessed within 60 min of the onset of new or worsening

cardiac symptoms, (3) witnessed and attributed to an identified

arrhythmia, (4) individuals unsuccessfully resuscitated from

cardiac arrest or successfully resuscitated from cardiac arrest but

who died within 24 h without identification of a non-cardiac

etiology, and (5) unwitnessed death with no conclusive evidence

of another non-cardiovascular death. In a sub-analysis of this

study, the pooled empagliflozin group had a 31% lower risk of
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SCD compared to the placebo group, but did not reach statistical

superiority (event rate: 1.1% in the empagliflozin group vs. 1.6%

in the placebo group; hazard ratio: 0.69; 95% confidence interval:

0.45–1.04) (41). In a similar study with other SGLT2 inhibitors,

the DECLARE-TIMI 58 trial (42), treatment with dapagliflozin

significantly reduced by 17% the primary endpoint of heart

failure plus cardiovascular death in patients with type 2 diabetes

mellitus who had high risks for cardiovascular events, including

those with existing cardiovascular diseases, although such

cardioprotective effects were limited to the onset of heart failure.

Interestingly, the results of the DECLARE-TIMI 58 trial revealed

that SCD accounted for 58% of all deaths, raising the concern

that SCD in this study may include deaths from multiple causes

that are considered unassessable (43). Thus, that study also

highlights the difficulty of etiological interpretation using SCD as

an endpoint in such large randomized controlled clinical trials.

Nevertheless, a meta-analysis of multiple clinical trials may be

useful for evaluating whether SGLT2 inhibitors reduce the

incidence of SCD, which is not expected to be as common an

event as the development of heart failure or chronic kidney

disease. Interestingly, however, the results of two recent meta-

analyses were different. Fernandes et al. performed a meta-

analysis of a total of 34 randomized control trials including

63,166 patients with type 2 diabetes mellitus or heart failure for

evaluating the effect of SGLT2 inhibitors on SCD (44). They

showed that treatment with SGLT2 inhibitors was associated with

a significant reduction in the risk of SCD (odds ratio: 0.72; 95%

confidence interval: 0.54–0.97) compared with that in the control

group. On the other hand, Sfairopoulos et al. conducted a meta-

analysis of a total 19 randomized control trials that enrolled

55,590 patients with type 2 diabetes mellitus, heart failure, or

chronic kidney disease for evaluating the effect of SGLT2

inhibitors on SCD (45). They concluded that there was no

significant association between therapy with SGLT2 inhibitors

and SCD (risk ratio: 0.74; 95% confidence interval: 0.50–1.08)

and that treatment with SGLT inhibitors was not associated with

a lower risk of VAs (risk ratio: 0.84; 95% confidence interval:

0.66–1.06). In a recent cohort study other than those included in

the meta-analysis, Eroglu et al. analyzed data for 152,591 patients

with type 2 diabetes mellitus to examine whether the use of

SGLT2 inhibitors is more closely associated than the use of other

anti-diabetic agents with SCD (46). They showed that the use of

SGLT2 inhibitors was associated with a trend of lower event rates

for SCD compared to other antidiabetic drugs after adjustment

for common risk factors of SCD, but that this association did not

reach statistical significance (hazard ratio: 0.62; 95% confidence

interval: 0.38–1.01), while the hazard ratio for all-cause mortality

for the use of SGLT2 inhibitors vs. other anti-diabetic drugs was

significantly low (hazard ratio: 0.43; 95% confidence interval:

0.39–0.48). Of note, these different results may be related not

only to the kind of patients, but also to a lower event rate of

SCD because there were large confidence intervals for SCD

events among those studies.

On the other hand, regarding the preventive effect of SGLT2

inhibitors on SCD in a heart failure population with expected

higher SCD event rates, a recent combined analysis of DAPA-HF
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trial [in which the left ventricular ejection fraction (LVEF) of the

participants was ≤40%] and DELIVER trial (LVEF >40%)

demonstrated that treatment with the SGLT2 inhibitor

dapagliflozin resulted in lower rates of SCD in patients with

heart failure independent of the degree of LVEF (hazard ratio:

0.84; 95% confidence interval: 0.70–1.01), although the effect

marginally failed to reach the nominal threshold for statistical

significance (47). Indeed, a very recent meta-analysis exclusively

for patients with heart failure, including 11 randomized control

trials (10,796 patients received SGLT2 inhibitors and 10,796

patients received placebo), demonstrated that treatment with

SGLT2 inhibitor was associated with a significant reduction in

the risk of SCD (risk ratio: 0.68; 95% confidence interval: 0.48–

0.95) (48). It has also been reported that patients with both type

2 diabetes mellitus and post-myocardial infarction have a higher

incidence of SCD, even in the absence of residual ischemia (49).

Interestingly, a recent observational study reported that patients

with type 2 diabetes mellitus who were using SGLT2 inhibitors

prior to the onset of myocardial infarction had a significantly

lower rate of in-hospital VAs after myocardial infarction than

those who were not using SGLT2 inhibitors (50). Thus, the

preventive effect of SGLT2 inhibitors on SCD, if any, may be

more prominent in high-risk populations such as patients with

heart failure, ischemic heart disease, and cardiomyopathy.

Overall, it appears that SGLT2 inhibitors at least tend to

decrease, rather than increase, events of SCD, but further de novo

studies that take into account factors of a small event rate of

SCD compared with that of heart failure or kidney disease, clear

definition of SCD, and patients’ backgrounds, are needed to

conclude whether SGLT2 inhibitors can prevent SCD and/or VAs.
Effect of SGLT2 inhibitors on ventricular
indices of electrocardiograms and
underlying mechanisms for their
potential favorable action in the heart

To assess the safety of a newly developed drug, it must be

confirmed that the drug does not affect ECG indices, especially

the QT interval. Consistent with this criterion, it has been

reported that SGLT2 inhibitors do not affect ECG indices,

including the QT interval, in healthy individuals (51, 52). On the

other hand, patients with cardiomyopathy or heart failure,

regardless of their etiology, often represent an abnormal ECG

that reflects impaired excitation-contraction coupling and

disturbance of conduction. Interestingly, there have even been

attempts to detect certain cardiac diseases through ECG

diagnosis using artificial intelligence in recent years (53). QT

dispersion, a classic index of ventricular repolarization

heterogeneity, has been reported to be increased in individuals

with cardiomyopathy, ischemic heart disease, prolonged QT

syndrome, and left ventricular hypertrophy of various etiologies

(54), and an increase in its index is associated with overall

mortality (55). Furthermore, Tpeak-Tend, defined as the interval

from the peak of the T wave to the end of the T wave in an

ECG at a chest lead, has also been reported to reflect ventricular
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repolarization heterogeneity and to be useful for predicting VAs

and SCD (56, 57). In patients with type 2 diabetes mellitus,

prolonged QT dispersion or Tpeak-Tend interval have been

reported by the authors and other groups to be improved by

SGLT2 inhibitors (58–60). It should be noted that there is a

report showing that SGLT2 inhibitors had no effects on ECG

indices including QT interval in patients with type 2 diabetes in

a cohort study, although indices of ventricle repolarization

heterogeneity were not assessed in that study (61). Since

conventional hypoglycemic agents have no effect on these indices

of ventricular repolarization heterogeneity (62), the improvement

of ventricular repolarization heterogeneity must be independent

of its glycemic control. Indeed, the degree of improvement in

ventricular repolarization heterogeneity was shown to be

associated with the degree of reduction of elevated blood

pressure (58) or weight loss (59). Furthermore, an abnormal

QRS-T angle, another index of ventricular repolarization

heterogeneity and a predictor for SCD (63), has been reported to

be improved by SGLT2 inhibitors in patients with type 2

diabetes mellitus with known cardiovascular diseases (64). Taken

together, the results of studies indicate that SGLT2 inhibitors

may improve impaired indices of ventricular repolarization

heterogeneity, but whether similar results are observed in

patients with heart failure or chronic kidney disease in the

absence of diabetes mellitus requires further investigation.

In case that SGLT2 inhibitors do in fact ameliorate the

abnormal heterogeneity of ventricular repolarization, its

underlying molecular mechanisms are of interest. As a novel

molecular mechanism of SGLT2 inhibitors on isolated

cardiomyocytes, several studies using rodent animals have shown

that SGLT2 inhibitors suppress late Na+ current, which is

increased by oxidative stress, in a calmodulin-dependent protein

kinase II (CAMKII)-dependent manner (30, 31). Late Na+

current can contribute to prolonged action potential duration by

increasing an inward current during the repolarization phase

(65). If the finding is also observed in the human myocardium,

modification of increased late Na+ current by SGLT2 inhibitors

may be a mechanism for improving abnormally prolonged

ventricular repolarization, resulting in amelioration of impaired

ECG indices of ventricular repolarization heterogeneity. In

addition to the direct effects of SGLT2 inhibitors, it has been

reported that systemic administration of SGLT2 inhibitors

exerts antioxidant effects via increased ketone bodies in the

blood (66) and improved metabolic flexibility with restored

mitochondrial function in the heart (67). These indirect effects

of SGLT2 inhibitors may also be involved in the suppression

of cardiac late Na+ current via reduced oxidative stress.

Another possibility of impaired repolarization in the failing

cardiomyocytes is that voltage-gated K+ currents, which

contribute to regulating repolarization heterogeneity (68), have

been reported to be reduced in rodent models of diabetes

mellitus and/or heart failure (69, 70). Indeed, there are reports

that SGLT2 inhibitors can promote K+ currents that enhance

repolarization in different species (71–74). Besides acting on ion

channels themselves, SGLT2 inhibitors may also improve ECG

abnormalities via improved serum electrolytes. In fact, SGLT2
Frontiers in Cardiovascular Medicine 05
inhibitors have been suggested to improve abnormal serum

levels of potassium and/or magnesium (75–77), leading to

improved ECG abnormalities independently of the direct effect

of ion channels. In addition, increased myocardial stretch is

known to promote arrhythmogenesis via modification of

calcium handling (78), activation of stretch-induced angiotensin

II type 1 receptor signaling (79), and activation of stretch-

induced ion currents (80). Since it has been reported that

SGLT2 inhibitors have a potential to reduce cardiac volumes

(81), improved myocardial stretch by SGLT2 inhibitors in

patients with heart failure, at least partially, could explain the

anti-arrhythmic effect of SGLT2 inhibitors. Furthermore, the

arrhythmogenic potential is also promoted not only by single

myocyte abnormalities, but also by aberrant conduction via

myocardial injury-induced scar (82). Indeed, a recent study

demonstrated that administration of SGLT2 inhibitors

ameliorates ischemia/reperfusion injury via reduction of

microvascular obstruction and increases myocardial salvage

(83), suggesting that the cardioprotective effect of SGLT2

inhibitors on myocardial injury may be indirectly related to

another benefit of SGLT2 inhibitors on VAs. These reported

findings suggest that SGLT2 inhibitors have potential protective

effects on SCD and/or VAs via electrophysiologic mechanisms,

and further studies in this area are warranted.
Limitation

The recent COVID-19 pandemic, at least partially, has affected

several recent clinical trials, although it has been shown that SGLT2

inhibitors failed to improve outcomes in patients with COVID-19

(84). The possibility that some events of SCD may have been

caused by COVID-19 rather than VAs or cardiac events cannot

be ruled out. Therefore, caution is needed in interpreting the

results of recent clinical trials and the meta-analysis including

the studies that were affected by COVID-19. To address

questions of whether SGLT2 inhibitors decrease events of SCD, it

is necessary to obtain direct evidence of whether SGLT2

inhibitors reduce VAs or not in various patients. For example,

results of ongoing clinical trials, including those evaluating the

incidence of arrhythmic events before and after SGLT2 inhibitor

treatment in patients with type 2 diabetes mellitus with ICD (85)

and in patients with heart failure with ICD (86), may provide a

major clue for revealing the association between the use of

SGLT2 inhibitors and the incidence of SCD as well as VAs.

Finally, in terms of arrhythmias, this review did not address the

effect of SGLT2 inhibitors on atrial fibrillation, but SGLT2

inhibitors are likely to be effective in preventing the onset of

atrial fibrillation (87, 88).
Conclusion and perspective

SGLT2 inhibitors have the potential to improve abnormal

electrophysiological remodeling in the failing myocardium,
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possibly leading to a reduction in the incidence of SCD and VAs.

Clinical studies using SGLT2 inhibitors with a clear definition of

SCD and VAs may help to answer the remaining question of

whether SGLT2 inhibitors can reduce SCD and/or VAs.

Resolving these questions also has the potential to advance

current treatment strategies for the prevention of SCD.
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