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Background: IVUS-based virtual FFR (IVUS-FFR) can provide additional functional
assessment information to IVUS imaging for the diagnosis of coronary stenosis.
IVUS image segmentation and side branch blood flow can affect the accuracy of
virtual FFR. The purpose of this study was to evaluate the diagnostic
performance of an IVUS-FFR analysis based on generative adversarial networks
and bifurcation fractal law, using invasive FFR as a reference.
Method: In this study, a total of 108 vessels were retrospectively collected from 87
patients who underwent IVUS and invasive FFR. IVUS-FFR was performed by
analysts who were blinded to invasive FFR. We evaluated the diagnostic
performance and computation time of IVUS-FFR, and compared it with that of
the FFR-branch (considering side branch blood flow by manually extending the
side branch from the bifurcation ostia). We also compared the effects of three
bifurcation fractal laws on the accuracy of IVUS-FFR.
Result: The diagnostic accuracy, sensitivity, and specificity for IVUS-FFR to identify
invasive FFR ≤ 0.80 were 90.7% (95% CI, 83.6–95.5), 89.7% (95% CI, 78.8–96.1),
92.0% (95% CI, 80.8–97.8), respectively. A good correlation and agreement
between IVUS-FFR and invasive FFR were observed. And the average
computation time of IVUS-FFR was shorter than that of FFR-branch. In addition
to this, we also observe that the HK model is the most accurate among the
three bifurcation fractal laws.
Conclusion: Our proposed IVUS-FFR analysis correlates and agrees well with
invasive FFR and shows good diagnostic performance. Compared with FFR-
branch, IVUS-FFR has the same level of diagnostic performance with
significantly lower computation time.

KEYWORDS

computational fluid dynamics, coronary blood flow, bifurcation fractal law, generative

adversarial network, coronary artery disease, side-branch blood flow, intravascular

ultrasound (IVUS)

1. Introduction

Accurately diagnosing coronary artery stenosis is important in guiding the clinical

management of patients with known or suspected ischemic heart disease (1, 2). The

evaluation methods for coronary stenosis include morphological evaluation and functional

evaluation. Identifying information on these two aspects can accurately guide
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percutaneous coronary intervention (PCI). For morphological

evaluation and functional evaluation, respectively, IVUS and

invasive FFR are currently regarded as the gold standards in

clinical practice (3–5). However, neither IVUS nor invasive FFR

alone can comprehensively evaluate coronary artery stenosis. IVUS

alone is difficult to determine the impact of vascular stenosis on

distal coronary blood flow, and cannot accurately evaluate the

relationship between stenosis and myocardial ischemia (6).

invasive FFR alone cannot determine the type of vascular plaque,

stenosis location and size, and other morphological information.

Therefore, it is necessary to combine the morphological

information provided by IVUS and the functional information

provided by invasive FFR to precisely guide PCI.

The clinical feasibility of performing both IVUS and invasive

FFR on the same patient is low. Both IVUS and invasive FFR are

interventional exams with the traits of being high risk and

requiring a lot from the operator (7, 8). Performing IVUS and

invasive FFR at the same time will prolong the operation time

and increase the risk of surgery. In addition, performing two

tests on the same patient can significantly increase the cost of

inspections (9). In response to the above problems, researchers

proposed a virtual FFR analysis method relying on IVUS images.

This method provides a way to comprehensively evaluate

coronary stenosis from both morphological and functional

aspects with only one IVUS examination. Multiple studies have

demonstrated favorable diagnostic accuracy for this method

compared to invasive FFR and can reduce surgical risks and

inspection costs (10–14).

There are two challenges in IVUS-based virtual FFR. First,

segmentation of IVUS images requires learning the contextual

relationships between pixels and solving the problem of class

imbalance. Previous studies primarily used pixel-wise loss in the

last layer of their segmentation networks, which may have

ignored the features of contextual relationships between pixels.

Some studies (15–17) have improved the ability of networks to

learn contextual relationships by training CNNs on image

patches and using CNNs with various input resolutions or

different CNN architectures. However, it is still constrained by

the pixel-wise loss and unable to compel the network to learn

multi-scale contextual relationships in an end-to-end process.

Some studies (18) used skip connections to enable the network

to learn contextual relationships directly from the entire image.

These studies also used the weighted cross-entropy loss to

address the issue of class imbalance brought on by learning from

the entire image. This approach suffers from the problem that

hyperparameter selection is task-specific and difficult to optimize.

Second, missing branch information in IVUS images makes it

challenging to consider side branch blood flow. The

reconstructed 3D vessels based on IVUS images are single-tube

models. The virtual FFR analysis based on this single-tube model

is inaccurate as it ignores the effect of side branch blood flow on

the lesion vessel blood flow (19). Some studies have manually

added the branching orifice model to the reconstructed single-

tube vessel model (10, 11), which is more difficult to operate and

time-consuming for virtual FFR analysis. Figure 1 illustrates the

challenges addressed by this study.
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We proposed an IVUS-FFR analysis base on the generative

adversarial network (GAN) and bifurcation fractal law. It uses

GAN to segment the vessel lumen contours from IVUS images

and considers the effect of side branch blood flow by bifurcation

fractal law, and finally solves Navier-Stokes equations to obtain

virtual FFR values. This method can reduce the manual analysis

operation and improve efficiency and clinical feasibility. This

paper aims to evaluate the diagnostic performance of the IVUS-

FFR analysis, using the invasive FFR as a reference.
2. Methods

2.1. Study design and study population

This is a single-center retrospective study designed with the

primary objective of evaluating the diagnostic performance of

IVUS-FFR analysis. Data for this study were obtained from the

7th People’s Hospital of Zhengzhou, China between 2020 and

2022. Inclusion criteria: both IVUS and invasive FFR were

performed; no less than one diseased coronary artery with 30–

90% (visual estimation) stenosis from angiography. Exclusion

criteria: age �80; coronary artery bypass grafting; IVUS

pullback not covering the entire lesion; presence of vasospasm

or injury. The study protocol was approved by the Institutional

Review Board. Study data were desensitized and personal

information was anonymized. Therefore the study does not

exceed the minimum risk and the informed consent

requirement was waived. Figure 2 shows the workflow of IVUS-

FFR analysis.
2.2. Coronary angiography and invasive FFR
measurement

Coronary angiography was performed via femoral or radial

artery access. According to Judkins’ method (20), two different

angiographic view angles of each major coronary artery were

examined and analyzed. FFR measurements were performed

using guide catheters and pressure wires. The aortic pressure at

the coronary ostium and the intra-coronary pressure at the distal

end of the target lesion were measured under adenosine. invasive

FFR value is defined as the ratio of distal lesion pressure to

aortic pressure.
2.3. IVUS imaging

IVUS images were obtained using the VOLCANO ultrasound

detection system or the Boston Scientific ultrasound detection

system. The ultrasonic detection probe was placed at the distal

end of the diseased blood vessel (along the direction of the

guiding wire), and the ultrasonic probe was withdrawn from the

distal to the proximal at the speed of 1 mm/s. After continuous

image collection and storage, it was to be analyzed offline.
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FIGURE 1

The challenges addressed by this study. The task of this study is to calculate virtual FFR value based on IVUS images. There are a few challenges in this
task: First, the challenges of IVUS segmentation are learning contextual relationships between pixels and solving the problem of class imbalance. Second,
missing branch information in IVUS images makes it difficult to consider side branch blood flow. We proposed an IVUS-FFR analysis based on generative
adversarial network and bifurcation fractal law to address these challenges.

Yong et al. 10.3389/fcvm.2023.1155969
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FIGURE 2

Workflow of IVUS-FFR analysis. The lumen borders in the IVUS images
are automatically segmented and reconstructed into a single-tube 3D
coronary artery model (A). Compensation of branch vessel flow was
calculated by the HK model (B). Using computational fluid dynamics
to solve the Navier-Stokes equations that govern blood flow (C).
IVUS-FFR was calculated and superimposed on the reconstructed 3D
model (D).

Yong et al. 10.3389/fcvm.2023.1155969
2.4. IVUS-FFR analysis

IVUS-FFR analysis was performed by an analyst who was

blinded to the invasive FFR values. The entire IVUS-FFR analysis

process is divided into two parts: Segmentation of IVUS images

and IVUS-FFR Calculation.
Frontiers in Cardiovascular Medicine 04
2.4.1. Segmentation of IVUS images
We performed the arterial lumen contours segmentation from

IVUS images using a generative adversarial network called SegAN

(21). SegAN is a high-performance semantic segmentation

network. The structure of the network is shown in Figure 3. The

network is divided into two parts: Segmentor network (S) and

Critic network (C). The segmentor network S is a fully

convolutional encoder-decoder structure. Skip connections are

also added between corresponding layers in the encoder and the

decoder according to the U-net structure. The structure of critic

network C is similar to the encoder of S. Hierarchical features

are extracted from the multilayers of C and used to compute the

multiscale L1 loss. After providing the network with an IVUS

image that has been delineated by an experienced IVUS analyst

(Ground truth), the network trains both the critic network and

the segmentor network using a multiscale L1 loss function:

LðuS; uCÞ ¼ 1
N

XN

n¼1

lmae fC xn � S xnð Þ½ �; fC xn � ynð Þf g (1)

where N is the number of training images, xn � S(xn) and xn � yn
are prediction masked images and ground truth masked images,

respectively. fc(x) indicates Critic’s hierarchical feature extraction

of the input image x. lmae is the Mean Absolute Error (MAE).

More specifically, the lmae function is defined as:

lmae[fC(x), fC(x
0)] ¼ 1

L

XL

i¼1

kf iC(x)� f iC(x
0)k1 (2)

where L is the total number of layers in Critic. f iC(x) is the feature

extracted for input x at layer i.

During the end-to-end training process, the segmentor is

trained to minimize the loss function with the goal of reducing

the difference between the output image and the ground truth,

while the critic aims to maximize this loss function as a way to

distinguish the segmentor’s output image from the ground truth.

After training with 270,362 IVUS images, the segmentor can

generate images that are very close to the ground truth. After the

segmentation of IVUS images, a single-tube 3D coronary artery

model is reconstructed based on the results of segmentation.
2.4.2. IVUS-FFR calculation
The four steps for calculating IVUS-FFR are as follows:

Extraction of centerline and cross-sectional area; Centerline

model splitting; Stenosis detection; and IVUS-FFR calculation of

each segment.

Firstly, the centerline and cross-sectional area of the vessel are

extracted based on the reconstructed 3D coronary model

simultaneously, and the branch nodes connecting the side

branches of the vessels are labeled according to the IVUS images.

Secondly, the centerline is split into normal segments and

junctions at the labeled branch nodes. Thirdly, a stenosis

detection algorithm that compares the difference between the

radius of the target vessel and the healthy vessel at the same
frontiersin.org
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FIGURE 3

Structure of the SegAN. Segmentor uses the convolutional layer with kernel size 4� 4 and stride 2 for downsampling and performs upsampling by
convolutional layer with kernel size 3� 3 stride 1. Skip connections are added between corresponding layers in the encoder and the decoder. The
structure of the critic is similar to the encoder in the segmentor. Hierarchical features are extracted from multiple layers of C and used to compute
the multi-scale L1 loss.
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location in a normal person, is applied to automatically detect the

location of the stenotic portion in the centerline model and define

the stenosis segment (22). Fourthly, to determine the pressure

distribution throughout the vessel, the Navier-Stokes equations

for each segment are sequentially solved using the centerline

model and the cross-sectional area (23–25). In particular,

calculations at the junctions are done according to the HK model

(26): 1, measure the diameters at both ends of the junction (i.e.,

the diameter of the mother vessel DMov and the diameter of the

main branch DMB), and 2, substitute into HK model to calculate

the flow variation (QMov is calculated from the previous

segment). Thus achieving the purpose of accurate IVUS-FFR

calculations in a single-tube coronary artery model.

Accurate boundary conditions are one of the central parameters

to obtain accurate simulations (27–29). During the IVUS-FFR

calculation, we set pressure and blood velocity at the vessel inlet.

Where the inlet pressure Pa is set as the mean aortic pressure. The

inlet blood velocity V is set as the hyperemic flow rate, which is

determined by first using the TIMI framing method to measure the

resting flow rate (30) and then converting it to the hyperemic flow

rate according to a specific empirical formula (31). The outlet

boundary condition is assumed to be a fully developed flow. The

calculation process is carried out automatically and the virtual FFR

value is calculated for each point in the centerline based on the

final pressure distribution field obtained. To investigate the

diagnostic performance and computation time of IVUS-FFR, we
Frontiers in Cardiovascular Medicine 05
performed a comparison experiment using FFR-branch. In earlier

studies (10, 11), FFR-branch was commonly used for virtual FFR

analysis. In contrast to considering branch flow using the

bifurcation fractal law, this method considers branch flow by

manually extending the side branch from the bifurcation ostia and

subsequently performing CFD calculations using the modified

model as the reference lumen.

More details of the IVUS-FFR analysis can be found in

“DETAILS OF IVUS-FFR ANALYSIS” section in the

Supplementary Material.
2.5. Statistical analysis

The quantitative variables were the mean+ SD of normally

distributed variables and the median of Variables with non-

normal distribution (interquartile variance [IQR]). Categorical

variables are expressed as quantities (percentages). IVUS-FFR

and invasive FFR were considered as continuous variables and

were classified as dichotomous variables with a threshold of 0.80

(FFR � 0:80 was considered as myocardial ischemia). The

analysis is done on a per-vessel basis. The agreement of IVUS-

FFR with invasive FFR was assessed using the Bland-Altman

method. The correlation between IVUS-FFR and invasive FFR

was determined by the Pearson correlation coefficient (r). The

diagnostic performance of IVUS-FFR was evaluated using
frontiersin.org
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TABLE 2 Comparison of SegAN and state-of-the-art methods.

Dice Hausdorff Jaccard

Lumen MA Lumen MA Lumen MA

Yong et al. 10.3389/fcvm.2023.1155969
invasive FFR as a reference. The area under the ROC (AUC) was

used to estimate the diagnostic performance of the method. All

statistical analyses were performed using MedCalc v19.7

(MedCalc, Belgium) and SPSS software v26.0 (IBM, US).

DPUNet (32) 0.902 0.880 5.02 9.38 0.837 0.800

mfaUNet (33) 0.912 0.923 4.18 4.49 0.851 0.864

MPUNet (34) 0.907 0.896 4.61 7.77 0.844 0.823

FRRNet (35) 0.858 0.839 6.69 11.8 0.767 0.737

ivusNet (18) 0.903 0.893 5.12 8.53 0.838 0.818

HRNet (36) 0.901 0.914 4.90 6.04 0.835 0.851

CapsNet (37) 0.877 0.849 7.27 11.8 0.799 0.753

HNF3-Net (38) 0.917 0.919 3.61 5.15 0.861 0.859

Unet (39) 0.892 0.893 5.32 7.56 0.822 0.819

SMP (28) 0.925 0.931 3.47 3.93 0.873 0.879

SegAN 0.953 0.965 2.27 2.41 0.913 0.935
3. Result

3.1. Baseline clinical characteristics

In all, 92 patients with 113 vessels were included in this study,

among whom 5 patients with 5 vessels were excluded according to

the exclusion criteria mentioned in Method. The final study

population comprised 87 patients with 108 vessels. The baseline

clinical characteristics and vessel characteristics are listed in

Table 1. The average times for IVUS-FFR and FFR-branch were

3 and 20 min, respectively.
TABLE 1 Baseline clinical characteristics.

Patient characteristics n ¼ 87
Age (years) 60:6+ 9:7

Male 66 (76)

Body surface area 1:71+ 0:11

Heart rate (bpm) 68:4+ 4:8

SBP (mmHg) 129:5+ 15:1

DBP (mmHg) 77:9+ 8:9

Hypertension 55 (63)

Hyperlipidemia 61 (70)

Prior MI 3 (3)

Vessel characteristics n ¼ 108

LAD 67 (62)

LCX 15 (14)

RCA 26 (24)

Data are presented as mean+ SD or number (%), as appropriate. DBP Diastolic

blood pressure, SBP systolic blood pressure, MI myocardial infarction, LAD left

anterior descending artery, LCX left circumflex artery, RCA right coronary artery.

FIGURE 4

Segmentation result of SegAN compared with the Ground truth. From left to ri
Ground truth, respectively. In the figure, the red region is the lumen contour an
result of SegAN is very similar to the ground truth, and the edges are smooth
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3.2. Effectiveness of SegAN

To validate the effectiveness of SegAN, we used three indexes

to evaluate the similarity of SegAN segmentation results and

ground truth. The three indexes include Dice index, Hausdorff

index, and Jaccard index. We compared the performance of

SegAN and other state-of-the-art methods for segmenting MA

contours and lumen contours from IVUS images. As shown in

Table 2, the SegAN approach has better segmentation

performance than the other state-of-the-art methods. Figure 4

shows the segmentation results of SegAN compared with the

ground truth, where the red region is the MA contour and the

green region is the lumen contour. The results indicated that

the segmentation result of SegAN is very close to the ground

truth and has smooth edges. In summary, the SegAN

segmentation network used in this study is effective. For more

detailed validation, please see the “GENERALIZATION

PERFORMANCE OF SEGAN” and “IMPACT OF ACCURATE

SEGMENTATION FOR IVUS-FFR” sections in the

Supplementary Material.
ght are the original IVUS image, the segmentation result of SegAN, and the
d the green region is the MA contour. It can be seen that the segmentation
.
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FIGURE 5

Examples of the analysis results for IVUS-FFR and FFR-branch. The image on the left shows the angiography image of the patient and the invasive FFR
markers at the location of the lesion. The right panel shows the results of the IVUS-FFR and FFR-branch, respectively. It can be seen that IVUS-FFR is in
agreement with the invasive FFR and FFR-branch.

Yong et al. 10.3389/fcvm.2023.1155969
3.3. Comparison of IVUS-FFR and FFR-
branch

To demonstrate that IVUS-FFR with bifurcation fractal law

can be an alternative to FFR-branch, we performed virtual

FFR analysis based on these two different methods (based on
FIGURE 6

Correlation and agreement between invasive FFR and IVUS-FFR/FFR-branch. (A
FFR/FFR-branch was observed. (C, D) Bland-Altman plots show good agreem

Frontiers in Cardiovascular Medicine 07
the same patient data and the same boundary conditions) and

compared the results.

Figure 5 shows examples of the analysis results for IVUS-FFR

and FFR-branch, where IVUS-FFR is 0.95, and FFR-branch is 0.96.

Figure 6 shows the scatter plots and Bland-Altman plots for

invasive FFR and IVUS-FFR/FFR-branch. The median values of
, B) Strong correlation (r ¼ 0:933, 0.938) between invasive FFR and IVUS-
ent between invasive FFR and IVUS-FFR/FFR-branch.
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FIGURE 7

Correlation and agreement between IVUS-FFR and FFR-branch. (A) Strong correlation (r ¼ 0:969) between IVUS-FFR and FFR-branch was observed. (B)
Bland-Altman plot shows good agreement between IVUS-FFR and FFR-branch.

Yong et al. 10.3389/fcvm.2023.1155969
invasive FFR, IVUS-FFR, and FFR-branch were 0.785 (0.753–

0.820), 0.795 (0.763–0.827), and 0.790 (0.750–0.820), respectively.

A strong correlation with invasive FFR can be observed for both

methods (IVUS-FFR: r ¼ 0:933, p , 0:0001; FFR-branch:

r ¼ 0:9377, p , 0:0001). It can be seen from the Bland-Altman

plots that both IVUS-FFR and FFR-branch are in good

agreement with invasive FFR. And, there is also a good

correlation and agreement between the two methods (r ¼ 0:969,

p , 0:0001, Figure 7). Table 3 demonstrates the diagnostic

performance of both methods (with invasive FFR � 0:80 as the

disease benchmark). The ROC curve (Figure 8) was plotted and

AUC was 0.975 (95% IC: 0.925–0.995) for IVUS-FFR and 0.977

(95% IC: 0.928–0.996) for FFR-branch.
FIGURE 8

Receiver operating characteristic (ROC) curves for diagnosis of
3.4. Effect of bifurcation fractal law on
IVUS-FFR

There are three bifurcation fractal laws that are currently used

to consider the effects of side branch blood flow, namely the HK

model (26), the Finet model (40), and the Murray model (41). In
TABLE 3 Diagnostic Performance of IVUS-FFR and FFR-branch to identify
invasive FFR ≤ 0.80.

IVUS-FFR�
0.80

FFR-branch�
0.80

Accuracy, % (95% CI) 90.7 (83.6–95.5) 91.7 (84.8–96.1)

Sensitivity, % (95% CI) 89.7 (78.8–96.1) 89.7 (78.8–96.1)

Specificity, % (95% CI) 92.0 (80.8–97.8) 94.0 (83.5–98.7)

Positive predictive value, % (95%
CI)

92.9 (83.4–97.1) 94.5 (85.2–98.1)

Negative predictive value, % (95%
CI)

88.5 (78.2–94.3) 88.7 (78.5–94.4)

Positive likelihood ratio (95% CI) 11.2 (4.36–28.8) 14.9 (4.97–44.9)

Negative likelihood ratio (95% CI) 0.112 (0.052–0.241) 0.110 (0.051–0.236)

The calculation of IVUS-FFR utilizes the HK model to account for the effect of side

branch blood flow.

physiologically significant stenosis. The diagnostic performance of
IVUS-FFR is very close to that of the FFR-branch. AUC indicates the
area under the curves.

Frontiers in Cardiovascular Medicine 08
this study, IVUS-FFR analysis was performed according to three

models (based on the same patient data and the same boundary

conditions), and finally, the effects of the three models on the

accuracy of IVUS-FFR analysis were compared. Figure 9 shows

examples of the analysis results for the three models.

As seen in the correlation and agreement analysis (Figure 10), the

HK model had the highest correlation (r ¼ 0:9328; p , 0:0001) and

agreement with invasive FFR among the three models, and the

Murray and Finet models had poorer correlation and agreement
frontiersin.org
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FIGURE 9

Examples of the calculated results for the Finet model, Murray model, and HK model. The image on the left shows the angiography image of the patient
and the invasive FFR markers at the location of the lesion. The right panel shows the calculated results of the three models, respectively. It can be seen
that the HK model has the highest accuracy.

Yong et al. 10.3389/fcvm.2023.1155969
with invasive FFR. Table 4 shows the diagnostic performance of the

three models (with invasive FFR � 0:80 as the disease benchmark).

From the ROC curve (Figure 11), it can be seen that the HK
FIGURE 10

Correlation and agreement between Finet model/Murray model/HK model and
(r ¼ 0:933) was higher than that between Finet model (r ¼ 0:902) and Murray
invasive FFR.

Frontiers in Cardiovascular Medicine 09
model has the best performance with an area under the curve

(AUC) of 0.975 (95% IC: 0.925–0.995), and the Murray and Finet

models have poor performance with an area under the curve of
invasive FFR. (A–C), The correlation between HK model and invasive FFR
model (r ¼ 0:890). (D–F) The HK model has the highest agreement with
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TABLE 4 Diagnostic performance of HK model, Finet model, and Murray
model to identify invasive FFR ≤ 0.80.

HK model Finet
model

Murray
model

Accuracy, % (95% CI) 90.7 (83.6–
95.5)

87.0 (79.2–
92.7)

85.2 (77.1–91.3)

Sensitivity, % (95% CI) 89.7 (78.8–
96.1)

84.5 (72.6–
92.7)

82.8 (70.6–91.4)

Specificity, % (95% CI) 92.0 (80.8–
97.8)

90.0 (78.2–
96.7)

88.0 (75.7–95.5)

Positive predictive value, %
(95% CI)

92.9 (83.5–
97.1)

90.7 (80.9–
95.8)

88.9 (78.9–94.5)

Negative predictive value, %
(95% CI)

88.5 (78.2–
94.3)

83.3 (73.1–
90.2)

81.5 (71.3–88.6)

Positive likelihood ratio
(95% CI)

11.2 (4.36–
28.8)

8.4 (3.65–19.5) 6.90 (3.23–14.7)

Negative likelihood ratio
(95% CI)

0.112 (0.052–
0.241)

0.172 (0.094–
0.317)

0.196 (0.110–
0.348)

In order to compare the effects of different bifurcation fractal laws, the HK model,

Finet model, and Murray model were used to calculate IVUS-FFR, respectively.

FIGURE 11

Receiver operating characteristic (ROC) curves for diagnosis of
physiologically significant stenosis. HK model shows higher diagnostic
accuracy than Finet model and Murray model.

Yong et al. 10.3389/fcvm.2023.1155969
0.939 (95% IC: 0.876–0.976) and 0.957 (95% IC: 0.899–0.986),

respectively.
4. Discussion

In this study, we proposed an IVUS-FFR analysis using

generative adversarial networks to segment IVUS images and

consider side branch blood flow by the bifurcation fractal law.
Frontiers in Cardiovascular Medicine 10
We assessed the effectiveness of applying SegAN to IVUS image

segmentation and contrasted the diagnostic performance of

IVUS-FFR with that of invasive FFR and FFR-branch. The

results showed that IVUS-FFR and invasive FFR had a good

correlation and agreement. Additionally, IVUS-FFR requires

significantly less computation time while maintaining the same

level of diagnostic performance as FFR-branch. We also

investigated how three hydrodynamic models affected the IVUS-

FFR analysis’ accuracy, and the results revealed that the HK

model has the highest accuracy and is most suitable for

calculating the IVUS-FFR.

The dimension of the arterial lumen is a major determinant of

resistance to flow in coronary vessels (10). Therefore, precise

segmentation of IVUS images is a central feature of IVUS-FFR

(42, 43). The method proposed in this study uses a modified

generative adversarial network, SegAN, to segment IVUS images.

As opposed to classical GAN, which trains the generator and

discriminator using different loss functions (44), SegAN trains

the segmentor and critic networks using a multi-scale L1 loss

function. This enables SegAN to be trained end-to-end on the

entire image without patches sampling or inputting images in

various resolutions. Similar to the idea of sampling multiple

times in the same image in patch training (45), the critic

network considers the feature differences between predicted

segmentation and ground truth at multiple scales (i.e.,

considering differences in multiple layers) utilizing the multi-

scale L1 loss function. Gradients that flow through the critic are

then used to train the segmentor. This approach is used to force

the network to learn the contextual relationships between pixels

in an end-to-end process and to avoid the class imbalance

problem. Thus, SegAN is more suitable for segmenting IVUS

images than previous methods.

During virtual FFR analysis, the blood flow in the target

diseased vessel is affected by the side branch blood flow (14, 19,

46). In our proposed method, the effect of side branch blood

flow is considered using the bifurcation fractal law. It is only

required to measure the diameters at both ends of the lesioned

vessel branches to calculate the flow variation, thus achieving the

purpose of accurate IVUS-FFR analysis in a single-tube coronary

artery model. Compared with previous studies (10, 11), which

were mainly based on the extension of side branches from the

bifurcation, the method proposed in this study shortens the

analysis time while maintaining accuracy.

Different bifurcation fractal laws yield different estimates of

side branch blood flow (47). The accuracy of IVUS-FFR can be

increased by locating hydrodynamic models that can precisely

assess the flow relationship between the coronary arteries’ main

branches and side branches. Currently, three bifurcation fractal

laws are applied to calculate the compensation of branched flow:

Murray, Finet, and HK. In this study, IVUS-FFR was calculated

on the same data according to three models separately and their

diagnostic performance was evaluated. The final experimental

results show that the HK model has the best diagnostic

performance. This is likely because the steady-state assumptions

of the HK model are more applicable to obtaining blood flow

relationships between microvessels (48).
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The current study has some inherent limitations. First,

coronary circulation can be impacted by conditions like severe

LV hypertrophy, hypertrophic cardiomyopathy, severe systolic

dysfunction, infarct-related arteries, or significant valvular

disease. The diagnostic performance of the IVUS-FFR was not

validated in cases with these diseases, which may affect the

accuracy of the results of this study. Second, the method used in

this study is limited by the quality of the IVUS images, which

can affect the accuracy of the results if the IVUS images are of

poor quality. Methods to reduce the impact of IVUS image

quality on IVUS-FFR accuracy are to be investigated in future

studies.
5. Conclusion

This study demonstrated that our IVUS-FFR analysis correlates

and agrees well with invasive FFR, showing good diagnostic

performance. Compared to FFR-branch, IVUS-FFR has the same

level of diagnostic performance and significantly lower

computation time. The time-saving and high accuracy

characteristics show the potential of applying IVUS-FFR to a

wide range of applications in catheterization laboratories.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by the 7th People’s Hospital of Zhengzhou. Written

informed consent for participation was not required for this

study in accordance with the national legislation and the

institutional requirements.
Author contributions

YD contributed to the data analysis, and interpretation. MC

contributed to the manuscript drafting. YD, YZ, JW, ZL, PL and
Frontiers in Cardiovascular Medicine 11
XL (Xiangling Lai) provided the data. XL (Xiujian Liu) proposed

the concept of the manuscript. JDS reviewed the manuscript. All

authors contributed to the article and approved the submitted

version.
Funding

This study was supported in part by Medical Science and

Technology Research Program of Henan Province

ChiCTR2100042337, Henan Provincial Medical Science and

Technology Project (LHGJ20191116), Natural Science

Foundation of China (U1908211), and National Key R&D

Program of China (2022YFE0209800). J. Del Ser acknowledges

funding support from the Basque Government through the

consolidated research group MATHMODE (IT1456-22).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcvm.2023.

1155969/full#supplementary-material.
References
1. Hakeem A, Uretsky BF. Role of postintervention fractional flow reserve to
improve procedural, clinical outcomes. Circulation. (2019) 139:694–706. doi: 10.
1161/CIRCULATIONAHA.118.035837

2. Zhang D, Yang G, Zhao S, Zhang Y, Ghista D, Zhang H, et al. Direct
quantification of coronary artery stenosis through hierarchical attentive multi-view
learning. IEEE Trans Med Imaging. (2020) 39:4322–34. doi: 10.1109/TMI.2020.
3017275

3. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U,
et al. 2018 esc/eacts guidelines on myocardial revascularization. Eur Heart J. (2019)
40:87–165. doi: 10.1093/eurheartj/ehy394
4. Waller BF, Pinkerton CA, Slack J. Intravascular ultrasound: a histological study of
vessels during life. The new ‘gold standard’ for vascular imaging. Circulation. (1992)
85:2305–10. doi: 10.1161/01.CIR.85.6.2305

5. Wu C, Liu X, Ghista D, Yin Y, Zhang H. Effect of plaque compositions on
fractional flow reserve in a fluid–structure interaction analysis. Biomech Model
Mechanobiol. (2022) 21:203–220. doi: 10.1007/s10237-021-01529-2

6. Chu M, Dai N, Yang J, Westra J, Tu S. A systematic review of imaging anatomy
in predicting functional significance of coronary stenoses determined by fractional
flow reserve. Int J Cardiovasc Imaging. (2017) 33:975–90. doi: 10.1007/s10554-
017-1085-3
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcvm.2023.1155969/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2023.1155969/full#supplementary-material
https://doi.org/10.1161/CIRCULATIONAHA.118.035837
https://doi.org/10.1161/CIRCULATIONAHA.118.035837
https://doi.org/10.1109/TMI.2020.3017275
https://doi.org/10.1109/TMI.2020.3017275
https://doi.org/10.1093/eurheartj/ehy394
https://doi.org/10.1161/01.CIR.85.6.2305
https://doi.org/10.1007/s10237-021-01529-2
https://doi.org/10.1007/s10554-017-1085-3
https://doi.org/10.1007/s10554-017-1085-3
https://doi.org/10.3389/fcvm.2023.1155969
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Yong et al. 10.3389/fcvm.2023.1155969
7. Doll JA, Hira RS, Kearney KE, Kandzari DE, Riley RF, Marso SP, et al.
Management of percutaneous coronary intervention complications: algorithms from
the 2018, 2019 seattle percutaneous coronary intervention complications conference.
Circulation. (2020) 13:e008962. doi: 10.1161/CIRCINTERVENTIONS.120.008962

8. Chen Z, Zhou YP, Liu X, Jiang X, Wu T, Ghista D, et al. A personalized
pulmonary circulation model to non-invasively calculate fractional flow reserve for
artery stenosis detection. IEEE Trans Biomed Eng. (2021) 69:1435–48. doi: 10.1109/
TBME.2021.3119188

9. Zhang D, Liu X, Xia J, Gao Z, Zhang H, de Albuquerque VHC. A physics-guided
deep learning approach for functional assessment of cardiovascular disease in iot-
based smart health. IEEE Internet Things J. (2023) 1–1. doi: 10.1109/JIOT.2023.
3240536

10. Bezerra CG, Hideo-Kajita A, Bulant CA, Maso-Talou GD, Mariani Jr J, Pinton
FA, et al. Coronary fractional flow reserve derived from intravascular ultrasound
imaging: validation of a new computational method of fusion between anatomy,
physiology. Catheter Cardiovasc Interv. (2019) 93:266–74. doi: 10.1002/ccd.27822

11. Yu W, Tanigaki T, Ding D, Wu P, Du H, Ling L, et al. Accuracy of intravascular
ultrasound-based fractional flow reserve in identifying hemodynamic significance of
coronary stenosis. Circulation. (2021) 14:e009840. doi: 10.1161/
CIRCINTERVENTIONS.120.009840

12. Jiang J, Feng L, Li C, Xia Y, He J, Leng X, et al. Fractional flow reserve for
coronary stenosis assessment derived from fusion of intravascular ultrasound and x-
ray angiography. Quant Imaging Med Surg. (2021) 11:4543. doi: 10.21037/qims-20-
1324

13. Siogkas PK, Papafaklis MI, Lakkas L, Exarchos TP, Karmpaliotis D, Ali ZA, et al.
Virtual functional assessment of coronary stenoses using intravascular ultrasound
imaging: a proof-of-concept pilot study. Heart Lung Circ. (2019) 28:e33–6. doi: 10.
1016/j.hlc.2018.02.011

14. Seike F, Uetani T, Nishimura K, Kawakami H, Higashi H, Fujii A, et al.
Intravascular ultrasound-derived virtual fractional flow reserve for the assessment of
myocardial ischemia. Circ J. (2018) 82:815–23. doi: 10.1253/circj.CJ-17-1042

15. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain
tumor segmentation with deep neural networks. Med Image Anal. (2017) 35:18–31.
doi: 10.1016/j.media.2016.05.004

16. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, et al.
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion
segmentation. Med Image Anal. (2017) 36:61–78. doi: 10.1016/j.media.2016.10.004

17. Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using
convolutional neural networks in MRI images. IEEE Trans Med Imaging. (2016)
35:1240–51. doi: 10.1109/TMI.2016.2538465

18. Yang J, Tong L, Faraji M, Basu A. Ivus-net: an intravascular ultrasound
segmentation network. Smart Multimedia: First International Conference, ICSM 2018;
2018 Aug 24–26; Toulon, France. Revised Selected Papers 1. Springer (2018). p. 367–377.

19. Li Y, Gutiérrez-Chico JL, Holm NR, Yang W, Hebsgaard L, Christiansen EH,
et al. Impact of side branch modeling on computation of endothelial shear stress in
coronary artery disease: coronary tree reconstruction by fusion of 3D angiography
and OCT. J Am Coll Cardiol. (2015) 66:125–35. doi: 10.1016/j.jacc.2015.05.008

20. Judkins MP. Percutaneous transfemoral selective coronary arteriography. Radiol
Clin North Am. (1968) 6:467–92. doi: 10.1016/S0033-8389(22)02831-7

21. Xue Y, Xu T, Zhang H, Long LR, Huang X. Segan: adversarial network with
multi-scale L1 loss for medical image segmentation. Neuroinformatics. (2018)
16:383–92. doi: 10.1007/s12021-018-9377-x

22. Shahzad R, Kirişli H, Metz C, Tang H, Schaap M, van Vliet L, et al. Automatic
segmentation, detection and quantification of coronary artery stenoses on CTA. Int
J Cardiovasc Imaging. (2013) 29:1847–59. doi: 10.1007/s10554-013-0271-1

23. Behr M, Hormes M, Steinseifer U, Arora D, Coronado O, Pasquali M. A review
of computational fluid dynamics analysis of blood pumps. Eur J Appl Math. (2009)
20:363–97. doi: 10.1017/S0956792509007839

24. Müller LO, Blanco PJ, Watanabe SM, Feijóo RA. A high-order local time
stepping finite volume solver for one-dimensional blood flow simulations:
application to the ADAN model. Int J Numer Method Biomed Eng. (2016) 32:
e02761. doi: 10.1002/cnm.2761

25. Huo Y, Kassab GS. A hybrid one-dimensional/womersley model of pulsatile
blood flow in the entire coronary arterial tree. Am J Physiol Heart Circ. (2007) 292:
H2623–33. doi: 10.1152/ajpheart.00987.2006

26. Huo Y, Kassab GS. A scaling law of vascular volume. Biophys J. (2009)
96:347–53. doi: 10.1016/j.bpj.2008.09.039

27. Sankaran S, Kim HJ, Choi G, Taylor CA. Uncertainty quantification in coronary
blood flow simulations: impact of geometry, boundary conditions and blood viscosity.
J Biomech. (2016) 49:2540–7. doi: 10.1016/j.jbiomech.2016.01.002
Frontiers in Cardiovascular Medicine 12
28. Liu X, Xu C, Rao S, Zhang Y, Ghista D, Gao Z, et al. Physiologically personalized
coronary blood flow model to improve the estimation of noninvasive fractional flow
reserve. Med Phys. (2022) 49:583–97. doi: 10.1002/mp.15363

29. Xue X, Liu X, Gao Z, Wang R, Xu L, Ghista D, et al. Personalized coronary
blood flow model based on ct perfusion to non-invasively calculate fractional flow
reserve. Comput Methods Appl Mech Eng. (2023) 404:115789. doi: 10.1016/j.cma.
2022.115789

30. Gibson CM, Cannon CP, Daley WL, Dodge Jr JT, Alexander B, Marble SJ, et al.
TIMI frame count: a quantitative method of assessing coronary artery flow.
Circulation. (1996) 93:879–88. doi: 10.1161/01.CIR.93.5.879

31. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, et al. Diagnostic
accuracy of fast computational approaches to derive fractional flow reserve from
diagnostic coronary angiography: the international multicenter favor pilot study.
Cardiovasc Interv. (2016) 9:2024–35. doi: 10.1016/j.jcin.2016.07.013

32. Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular
ultrasound images using dual path u-net. Ultrasonics. (2019) 96:24–33. doi: 10.1016/j.
ultras.2019.03.014

33. Xia M, Yan W, Huang Y, Guo Y, Zhou G, Wang Y. Extracting membrane
borders in IVUS images using a multi-scale feature aggregated u-net. 2020 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC). IEEE (2020). p. 1650–1653.

34. Ling L, Hong H, Chen L, Tu S. Segmentation of intravascular ultrasound images
by mask propagation network. Medical Imaging 2021: Ultrasonic Imaging and
Tomography. Vol. 11602. SPIE (2021). p. 282–288.

35. Pohlen T, Hermans A, Mathias M, Leibe B. Full-resolution residual networks for
semantic segmentation in street scenes. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE (2017). p. 4151–4160.

36. Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, et al. Deep high-resolution
representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell.
(2020) 43:3349–64. doi: 10.1109/TPAMI.2020.2983686

37. Bargsten L, Raschka S, Schlaefer A. Capsule networks for segmentation of small
intravascular ultrasound image datasets. Int J Comput Assist Radiol Surg. (2021)
16:1243–54. doi: 10.1007/s11548-021-02417-x

38. Jia H, Xia Y, Cai W, Huang H. Learning high-resolution and efficient non-
local features for brain glioma segmentation in MR images. Medical Image
Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International
Conference, Proceedings, Part IV 23; 2020 Oct 4–8; Lima, Peru. Springer (2020).
p. 480–490.

39. Dong L, Jiang W, Lu W, Jiang J, Zhao Y, Song X, et al. Automatic segmentation
of coronary lumen and external elastic membrane in intravascular ultrasound images
using 8-layer u-net. Biomed Eng Online. (2021) 20:1–9. doi: 10.1186/s12938-021-
00852-0

40. Finet G, Gilard M, Perrenot B, Rioufol G, Motreff P, Gavit L, et al. Fractal
geometry of arterial coronary bifurcations: a quantitative coronary angiography and
intravascular ultrasound analysis. EuroIntervention. (2008) 3:490–8. doi: 10.4244/
EIJV3I4A87

41. Murray CD. The physiological principle of minimum work: a reply. J Gen
Physiol. (1931) 14:445. doi: 10.1085/jgp.14.4.445

42. Gao Z, Chung J, Abdelrazek M, Leung S, Hau WK, Xian Z, et al. Privileged
modality distillation for vessel border detection in intracoronary imaging. IEEE
Trans Med Imaging. (2019) 39:1524–34. doi: 10.1109/TMI.2019.2952939

43. Liu X, Feng T, Liu W, Song L, Yuan Y, Hau WK, et al. Scale mutualized
perception for vessel border detection in intravascular ultrasound images. IEEE/
ACM Trans Comput Biol Bioinform. (2022) 1–12. doi: 10.1109/TCBB.2022.3224934

44. Chen J, Zhang H, Mohiaddin R, Wong T, Firmin D, Keegan J, et al. Adaptive
Hierarchical Dual Consistency for Semi-Supervised Left Atrium Segmentation on
Cross-Domain Data. IEEE Transactions on Medical Imaging. (2022) 41(2):420-433.
doi: 10.1109/TMI.2021.3113678

45. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic
segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE (2015). p. 3431–3440.

46. Gosling RC, Sturdy J, Morris PD, Fossan FE, Hellevik LR, Lawford P, et al. Effect
of side branch flow upon physiological indices in coronary artery disease. J Biomech.
(2020) 103:109698. doi: 10.1016/j.jbiomech.2020.109698

47. Dérimay F, Kassab GS, Finet G. Structure-function relation in the coronary
artery tree: theory and applications in interventional cardiology. Biomechanics of
coronary atherosclerotic plaque. Elsevier (2021). p. 545–554.

48. Kassab GS, Fung YCB. The pattern of coronary arteriolar bifurcations and the
uniform shear hypothesis. Ann Biomed Eng. (1995) 23:13–20. doi: 10.1007/
BF02368296
frontiersin.org

https://doi.org/10.1161/CIRCINTERVENTIONS.120.008962
https://doi.org/10.1109/TBME.2021.3119188
https://doi.org/10.1109/TBME.2021.3119188
https://doi.org/10.1109/JIOT.2023.3240536
https://doi.org/10.1109/JIOT.2023.3240536
https://doi.org/10.1002/ccd.27822
https://doi.org/10.1161/CIRCINTERVENTIONS.120.009840
https://doi.org/10.1161/CIRCINTERVENTIONS.120.009840
https://doi.org/10.21037/qims-20-1324
https://doi.org/10.21037/qims-20-1324
https://doi.org/10.1016/j.hlc.2018.02.011
https://doi.org/10.1016/j.hlc.2018.02.011
https://doi.org/10.1253/circj.CJ-17-1042
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1016/j.jacc.2015.05.008
https://doi.org/10.1016/S0033-8389(22)02831-7
https://doi.org/10.1007/s12021-018-9377-x
https://doi.org/10.1007/s10554-013-0271-1
https://doi.org/10.1017/S0956792509007839
https://doi.org/10.1002/cnm.2761
https://doi.org/10.1152/ajpheart.00987.2006
https://doi.org/10.1016/j.bpj.2008.09.039
https://doi.org/10.1016/j.jbiomech.2016.01.002
https://doi.org/10.1002/mp.15363
https://doi.org/10.1016/j.cma.2022.115789
https://doi.org/10.1016/j.cma.2022.115789
https://doi.org/10.1161/01.CIR.93.5.879
https://doi.org/10.1016/j.jcin.2016.07.013
https://doi.org/10.1016/j.ultras.2019.03.014
https://doi.org/10.1016/j.ultras.2019.03.014
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1007/s11548-021-02417-x
https://doi.org/10.1186/s12938-021-00852-0
https://doi.org/10.1186/s12938-021-00852-0
https://doi.org/10.4244/EIJV3I4A87
https://doi.org/10.4244/EIJV3I4A87
https://doi.org/10.1085/jgp.14.4.445
https://doi.org/10.1109/TMI.2019.2952939
https://doi.org/10.1109/TCBB.2022.3224934
https://doi.org/10.1109/TMI.2021.3113678
https://doi.org/10.1016/j.jbiomech.2020.109698
https://doi.org/10.1007/BF02368296
https://doi.org/10.1007/BF02368296
https://doi.org/10.3389/fcvm.2023.1155969
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Diagnostic performance of IVUS-FFR analysis based on generative adversarial network and bifurcation fractal law for assessing myocardial ischemia
	Introduction
	Methods
	Study design and study population
	Coronary angiography and invasive FFR measurement
	IVUS imaging
	IVUS-FFR analysis
	Segmentation of IVUS images
	IVUS-FFR calculation

	Statistical analysis

	Result
	Baseline clinical characteristics
	Effectiveness of SegAN
	Comparison of IVUS-FFR and FFR-branch
	Effect of bifurcation fractal law on IVUS-FFR

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


