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Background: Moderate severity aortic stenosis (AS) is poorly understood, is
associated with subclinical myocardial dysfunction, and can lead to adverse
outcome rates that are comparable to severe AS. Factors associated with
progressive myocardial dysfunction in moderate AS are not well described.
Artificial neural networks (ANNs) can identify patterns, inform clinical risk, and
identify features of importance in clinical datasets.
Methods: We conducted ANN analyses on longitudinal echocardiographic data
collected from 66 individuals with moderate AS who underwent serial
echocardiography at our institution. Image phenotyping involved left ventricular
global longitudinal strain (GLS) and valve stenosis severity (including energetics)
analysis. ANNs were constructed using two multilayer perceptron models. The first
model was developed to predict change in GLS from baseline echocardiography
alone and the second to predict change in GLS using data from baseline and
serial echocardiography. ANNs used a single hidden layer architecture and a
70%:30% training/testing split.
Results: Over a median follow-up interval of 1.3 years, change in GLS (≤ or >median
change) could be predicted with accuracy rates of 95% in training and 93% in testing
using ANN with inputs from baseline echocardiogram data alone (AUC: 0.997). The
four most important predictive baseline features (reported as normalized %
importance relative to most important feature) were peak gradient (100%), energy
loss (93%), GLS (80%), and DI < 0.25 (50%). When a further model was run
including inputs from both baseline and serial echocardiography (AUC 0.844), the
top four features of importance were change in dimensionless index between
index and follow-up studies (100%), baseline peak gradient (79%), baseline energy
loss (72%), and baseline GLS (63%).
Conclusions: Artificial neural networks can predict progressive subclinical
myocardial dysfunction with high accuracy in moderate AS and identify features of
importance. Key features associated with classifying progression in subclinical
myocardial dysfunction included peak gradient, dimensionless index, GLS, and
hydraulic load (energy loss), suggesting that these features should be closely
evaluated and monitored in AS.
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GRAPHICAL ABSTRACT
Introduction

The understanding of aortic stenosis (AS) is rapidly evolving.

“Moderate severity” AS is actually a complex and poorly

understood entity (1–7). It involves hydraulic load on the left

ventricle, leading to fibrosis and adverse clinical outcomes, with

rates approaching those of severe AS (5). Moderate severity

aortic stenosis is no longer considered a benign, early stage of

disease, as was once thought (1–4). The importance of

subclinical myocardial dysfunction in moderate AS has recently

been highlighted (6). However, factors associated with the

progression of subclinical myocardial dysfunction in moderate

AS are not well understood. Mechanistically, myocardial

dysfunction is related to hydraulic load, which, in turn, relates to

valve stenosis severity (7). Metrics of valve stenosis severity are

challenging to interpret even in truly severe AS, let alone in

moderate AS when metrics can be more uncertain and

discordant (8, 9). Machine learning, and specifically artificial

neural networks (ANNs), can identify patterns in datasets to

predict risk and identify features of importance. We sought to

use machine learning to identify whether metrics of valve

stenosis severity could accurately predict the progression of

subclinical myocardial dysfunction in moderate AS, and we

additionally sought to identify which valve stenosis metrics were

most important to this progression. We believe that such
Frontiers in Cardiovascular Medicine 02
analyses could provide insights into the basis for progressive

deterioration and adverse outcome in what is traditionally

considered “early stage” disease.
Methods

Subjects

We evaluated the St. Vincent’s Hospital and Clinic

Echocardiography databases to identify studies between 2016 and

2021 with moderate severity AS, as determined by a text-search

of report conclusions [reports are finalized by an imaging

cardiologist or a senior cardiology fellow (minimum PGY7)] and

confirmation of mean gradient <40 mmHg. A total of 336

patients were identified with baseline imaging of adequate quality

for strain analysis in apical 2, 3, and 4-chamber views, of whom

100 had serial imaging but only 66 had serial imaging of

adequate quality for strain analysis at both index and follow-up.
Echocardiographic analysis

A reanalysis of raw echocardiographic images was performed at

the Heart Valve Disease and Artificial Intelligence Laboratory at

the Victor Chang Cardiac Research Institute. Left ventricular
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global longitudinal strain (GLS) analysis was performed by using

TomTec Arena software, with the apical 2, 3, and 4-chamber

views (10, 11). Studies were included for analysis only if the left

ventricular endocardium could be visualized and endocardial

tracking was accurate in the apical 2, 3, and 4-chamber views

throughout the cardiac cycle. Aortic valve stenosis severity was

assessed using aortic valve area (AVA) (as determined by

continuity equation), mean and peak transvalvular gradients, and

dimensionless index (DI). Valvular hydraulic load was assessed

using energy loss, modified from the method first described by

Garcia et al. (12). Information on body surface area was not

available in our database, and therefore, we evaluated total

(rather than indexed) energy loss. As flow conditions are

important for the metrics of aortic valve stenosis severity,

transvalvular flow rate (Q) was also measured as the ratio of

stroke volume to ejection time (13, 14).
Neural network analysis

We utilized ANN analysis with multilayer perceptron models

to identify features of valve stenosis severity from both baseline

and serial echocardiography that could predict change in GLS

between the index and the follow-up studies. We defined the

target of models as change in GLS (classified by ≤ or > cohort

median change). We constructed two models. The first used only

inputs from baseline echocardiography. The second included

additional inputs requiring data from serial echocardiography to

account for the effects of dynamic change in metrics. We

encoded inputs to optimize model efficiency, for example by

binarizing key metrics at established diagnostic thresholds (such

as AVA 1.0 cm2, DI at 0.25. Q≤ 210 ml/s) (13, 15, 16). Inputs

for the first model included the following: AVA≤ 1.0 cm2, DI <

0.25, transvalvular flow rate ≤210 ml/s, peak gradient, mean

gradient, left ventricular GLS, and energy loss. Inputs for the

second model included model 1 inputs and additionally included

the following: time between studies, change in AVA between
TABLE 1 Baseline characteristics.a

Age (years) 79 ± 10

Male/female 44 (66%)/22 (33%)

Peak gradient (mmHg) 39 (33–44)

Mean gradient (mmHg) 23 (20–27)

Aortic valve area (cm2) 1.1 (0.8–1.5)

Dimensionless index 0.34 (0.26–0.40)

Transvalvular flow rate (ml/s) 256 (199–297)

Energy loss (cm2) 1.2 (0.8–1.5)

Global longitudinal strain (%) −16.7 ± 4.3

Left ventricular ejection fraction (%) 61 ± 8

Left atrial dimension (mm, parasternal long axis) 42 ± 7

Interventricular septal thickness (mm) 11 (10–13)

Posterior wall thickness (mm) 11 (10–12)

Estimated pulmonary artery systolic pressure (mmHg) 27 (23–34)

aData presented as mean ± SD if normally distributed based on the skewness

statistic between −0.5 and +0.5, aside from age and LVEF which, while

not normally distributed, are reported here as mean ± SD per convention.

Non-normal data presented as median (IQR).
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studies, change in mean gradient between studies, change in

dimensionless index between studies, change in energy loss

between studies, and change in flow rate between studies. Both

models used a single hidden layer architecture and a 70%:30%

training/testing structure. This meant that models were trained

on 70% of the cohort that was randomly selected and tested on

the remaining unseen 30% of the cohort for validation, in order

to avoid overfitting (17).

Model performance was assessed using prediction accuracy (%

correct predictions), area under the receiver operating curve

(AUC), and gain and lift functions. Features of importance were

assessed using normalized importance scoring, with the most

important feature scoring 100%, and other features were scaled

accordingly as a proportion of importance.

Analyses were conducted using IBM SPSS Version 26.0 (IBM,

Armonk, NY).
Results

After exclusion criteria were implemented, 66 subjects (44

males, 22 females), aged 79 ± 10 years, with serial, strain-quality

imaging over a median follow-up interval of 1.3 years (IQR: 0.8–

2.0 years), remained. Baseline AS severity metrics are outlined in

Table 1. Key valve severity metric changes from baseline to

follow-up are noted in Table 2. All metrics of severity trended

worse over time, with statistical significance reached by peak

gradient, mean gradient, and peak velocity. GLS worsened over

follow-up (baseline mean GLS −16.7%, mean change in GLS

+0.74%, median change +0.48%), although the change in GLS

was of borderline significance (p = 0.06, paired t-test).

As described, multilayer perceptron models were created

initially from the metrics of AS severity from baseline

echocardiogram alone (Model 1), and subsequently,

incorporating parameters accounting for dynamic change in

variables between the index and the follow-up studies (Model 2).

The inputs and architecture for Model 1 are shown in Figure 1.

Model 1 yielded a prediction accuracy rate of 95% in

training and 93% in testing, with an AUC of 0.997, while

Model 2 yielded a prediction accuracy rate of 84% in training

and 68% in testing, with an AUC of 0.844. Receiver operating

curves for both models are shown in Figure 2. Gain and lift

functions are shown in Figure 3. The relative feature

importance in each model is shown in Figure 4. In Model 1,

the four most important predictive baseline features (reported
Table 2 Changes in the metrics of AS severity at follow-up.a

Metric of severity Follow-up p-Valueb

AVA (cm2) 1.00 (0.77–1.26) 0.057

Peak gradient (mmHg) 43 (34–49) 0.02

Mean gradient (mmHg) 25.1 (21.0–29.9) 0.031

Peak velocity (m/s) 3.3 (2.9–3.5) 0.02

Dimensionless index 0.30 (0.23–0.36) 0.12

aResults are median (IQR).
bAs compared with baseline.
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FIGURE 1

Network diagram for a multilayer perceptron neural network model using baseline aortic stenosis severity metrics (model 1). AVA, aortic valve area; DI,
dimensionless index; GLS, left ventricular global longitudinal strain; Q, transvalvular flow rate. The network structure includes a bias node at the input layer
and hidden layer and has multiple nodes in the hidden layer, hence H(1:1), H(1:2) etc.

FIGURE 2

Receiver operating curves for Model 1 (baseline metrics only) and Model 2 (baseline metrics and dynamic change) for the classification of global
longitudinal strain (GLS) progression.

Namasivayam et al. 10.3389/fcvm.2023.1153814
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FIGURE 3

Gain and lift functions for Model 1 (baseline metrics only) and Model 2 (baseline metrics and dynamic change).

Namasivayam et al. 10.3389/fcvm.2023.1153814
as normalized % importance relative to the most important

feature) were peak gradient (100%), energy loss (93%), GLS

(80%), and DI < 0.25 (50%). In Model 2, the top four features

of importance were change in dimensionless index (100%),

baseline peak gradient (79%), baseline energy loss (72%), and

baseline GLS (63%).
FIGURE 4

Relative importance of input features in Model 1 (baseline metrics) and Mode
Valsalva; AVA, aortic valve area (in cm2); DI, dimensionless index; EL, energy
Q, transvalvular flow rate.
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Discussion

Studies have shown that patients with moderate AS have poor

overall survival (1–5) that is comparable to patients with severe AS

(5), suggesting that current classification systems are inaccurate and

understanding of the disease and its progression are limited.
l 2 (baseline metrics and dynamic change). AA, aortic area at sinuses of
loss; GLS, left ventricular global longitudinal strain; MG, mean gradient;
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Moreover, studies have shown that the subclinical myocardial

dysfunction in AS is associated with adverse clinical prognosis

(6). AS quantification is challenging, even when disease is severe,

but is particularly challenging in earlier, moderate stages of

disease. Knowing which features are most important can inform

echocardiographic assessment, clinical decision-making, and

overall patient management. In this study of moderate AS, we

have shown that progression in subclinical myocardial

dysfunction can be accurately predicted, using neural networks,

by simple echocardiographic metrics of AS severity. Moreover,

we have shown that some features of AS severity are considerably

more important than others in predicting change in myocardial

function. The most important features are peak gradient, baseline

GLS, DI, and energy loss.

These findings are important because they highlight that aortic

valve stenosis severity is a major contributing factor to the load

faced by the left ventricular myocardium, even in moderate

stages of the disease. Moreover, this load and subsequent

myocardial dysfunction can progress with time, even over a

relatively short follow-up interval (median time 1.3 years). This

is important because it means that ongoing exposure to load,

even at moderate AS severity, is likely to have a continued and

progressive adverse impact upon myocardial function, which may

be irreversible (18, 19).

Our findings also highlight which key parameters are

important to progression in myocardial dysfunction in moderate

AS. The importance of DI in both our models affirms recent

literature demonstrating the value of this metric (20). Of note,

AVA did not rank highly in importance in either of our models.

This finding of superiority of DI to AVA in our models, most

likely reflects the flow dependency of AVA and relative flow

independency of DI (13). As expected, baseline GLS was an

important feature relevant to the degree of GLS progression. This

finding supports the increasing calls to better quantify

myocardial dysfunction using tissue deformation in AS, both in

moderate and in severe disease (6, 21). Early detection of

myocardial dysfunction could identify those at high risk of

progression. Finally, energy loss, a marker of valvular hydraulic

load, featured as important in our analysis. This metric is not

routinely used in clinical practice but has a strong research

foundation and has been shown to identify clinical risk in

previous studies (12, 22, 23). Energy loss accounts for the

changes in the composition of total energy (comprised of kinetic

and static pressure energy that interchange, as well as

gravitational potential energy that remains stable) as blood

traverses a stenotic aortic valve. Energy loss accounts for the

phenomenon of pressure recovery that occurs in the proximal

aorta, whereby static pressure energy is “recovered” as blood

enters the proximal aorta and kinetic energy reduces. Incomplete

pressure recovery contributes to hydraulic load, and the degree of

this recovery, and hence energy loss, is itself dependent on the

ratio of effective aortic valve orifice area and aortic area.

Conceptually, it is the best physiologic marker of hydraulic load

faced by the ventricle as a result of aortic valve stenosis (12, 24),

and its importance in contributing to deteriorating strain affirms

that it adds clinical value. Our findings support increasing the
Frontiers in Cardiovascular Medicine 06
role of energy loss quantification, which is easily measured from

standard echocardiography, in assessment of AS. A particularly

interesting finding was that peak gradient outperformed mean

gradient as an input feature. Traditionally, mean gradient has

served as the more frequently evaluated metric in AS; however,

the spread of data in peak gradient (IQR: range 11 mmHg vs.

7 mmHg for peak vs. mean gradient) likely allowed a greater

resolution to detect differences in moderate stages of the disease,

where gradients are lower. This finding has potential implications

for low-gradient severe AS, where the focus on mean gradient

perhaps should be shifted to peak gradient.

Another important finding in our study was the demonstration

of the power of machine learning in the assessment of

echocardiographic data (25–30). We have shown that prediction

models with high accuracy and explainability (i.e., the ability to

explain the basis of model formulation and identify which

features are of particular importance in generating the model)

can be developed using easily acquired echocardiographic

metrics. Machine learning approaches can identify nonlinear and

interaction patterns more ably than conventional statistical

modeling, allowing these approaches to provide a greater insight

into the understanding of disease processes and progression from

existing clinical data repositories. Our findings support other

data, which has strengthened the calls to improve diagnosis and

phenotyping of AS through novel machine learning approaches

(31–34).

While our findings are important and add to the body of

literature supporting the need for greater advanced image

phenotyping and risk prediction in moderate AS, some

limitations should be discussed. First, our study is a single center,

retrospective observation of prospectively collected, longitudinal

data. To mitigate the limitation of a single-center approach, we

used sample splitting to create an independent training and

testing set, to avoid overfitting models to the trained dataset (17).

It is important to note that the limitations of a single center

machine learning approach are less relevant to our study because

the goal of this study was not to create a broadly usable risk

calculator. Rather, the motivation of this work was to (1)

demonstrate that baseline echocardiographic metrics of AS

severity can be used to predict change in myocardial function in

moderate AS and (2) identify which parameters were most

important to this change. In this sense, external validation is less

important, as the study was intended to disclose key concepts in

the understanding of disease progression in moderate AS, rather

than create an externally usable model that would benefit from

an external validation of generalizability. Having said this, the

general inherent biases of a single-center study and reliance on

subjects with a single-center follow-up must be acknowledged.

With regard to the comparatively small sample size, we used a

cohort that is well phenotyped and individually reanalyzed serial

images with strict quality control. We took this approach in

contrast to using a large-sized cohort with a shallow phenotyping

approach (e.g., automated data repository metric extraction),

which while important in its own right, can introduce noisy,

missing, and/or inaccurate data in an initial survey. Our work

demonstrates an early experience with this approach, which has
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yielded valuable insights, and we encourage larger studies using

database mining that could validate our findings. Our follow-up

time was relatively short (median 1.3 years). This partly explains

the modest changes in GLS over the study period. Indeed, our

observed GLS change over the study period falls within the range

of inter- and intraobserver variability reported elsewhere for GLS

(35). Nevertheless, we demonstrated a clear trend in worsening

GLS, and it is unlikely that random distribution of error would

obscure the overall trend. Hence, despite this relatively short time

interval, we were able to show that baseline AS metrics could

accurately predict change in myocardial function over time,

suggesting that the results would only have been amplified with a

longer follow-up. Prospective studies with longer follow-up times

could confirm and extend the findings of this study.
Conclusions

Moderate AS is a high-risk clinical entity, and subclinical

myocardial dysfunction is important for this risk. Factors

important to the progression of myocardial dysfunction in

moderate AS are not well known. In this study, we have shown

that neural network analysis could accurately predict change in

subclinical myocardial dysfunction in moderate AS and identify

which features were most important to this change. The key

features included peak gradient, DI, baseline GLS, and energy

loss, suggesting that these parameters should be evaluated

carefully while assessing patients with moderate AS.
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