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Aims: Diagnosis of myocardial fibrosis is commonly performed with late
gadolinium contrast-enhanced (CE) cardiac magnetic resonance (CMR), which
might be contraindicated or unavailable. Coronary computed tomography (CCT)
is emerging as an alternative to CMR. We sought to evaluate whether a deep
learning (DL) model could allow identification of myocardial fibrosis from
routine early CE-CCT images.
Methods and results: Fifty consecutive patients with known left ventricular (LV)
dysfunction (LVD) underwent both CE-CMR and (early and late) CE-CCT.
According to the CE-CMR patterns, patients were classified as ischemic (n= 15,
30%) or non-ischemic (n= 35, 70%) LVD. Delayed enhancement regions were
manually traced on late CE-CCT using CE-CMR as reference. On early CE-CCT
images, the myocardial sectors were extracted according to AHA 16-segment
model and labeled as with scar or not, based on the late CE-CCT manual
tracing. A DL model was developed to classify each segment. A total of 44,187
LV segments were analyzed, resulting in accuracy of 71% and area under the
ROC curve of 76% (95% CI: 72%−81%), while, with the bull’s eye segmental
comparison of CE-CMR and respective early CE-CCT findings, an 89%
agreement was achieved.
Conclusions: DL on early CE-CCT acquisition may allow detection of LV sectors
affected with myocardial fibrosis, thus without additional contrast-agent
administration or radiational dose. Such tool might reduce the user interaction
and visual inspection with benefit in both efforts and time.
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1. Introduction

The presence and extent of myocardial fibrosis has a crucial

prognostic and therapeutic role, potentially resulting in

irreversible reduction in left ventricular (LV) function over time.

Nowadays, gadolinium (Gd) contrast-enhanced (CE) cardiac

magnetic resonance (CMR) imaging represents the gold-standard

technique for the diagnosis and assessment of myocardial fibrosis

(1). However, as the clinical use of CMR could be limited by

resource availability, relative or absolute contraindications, and

by clinical setting where CMR may not represent the first-line

investigation (2, 3), an alternative reliable imaging technique to

detect myocardial fibrosis would be highly desirable.

The CE-cardiac computed tomography (CCT) was recently

demonstrated to be a potential accurate alternative to CMR for

the identification of myocardial fibrosis (4). The AHA/ACC 2020

guidelines propose CCT as an alternative technique to evaluate

myocardial properties (5), thus offering the possibility of

combining non-invasive coronary evaluation with myocardial

tissue characterization. Previous studies reported as late CE-CCT

can be feasible and accurate for the detection of ischemic

myocardial fibrosis when compared to CE-CMR (6, 7), providing

similar performance in the assessment of myocardial viability in

acute myocardial infarction (8, 9), even in non-ischemic fibrosis

(7, 10). Despite these promising results, myocardial fibrosis

assessment using late CE-CCT is limited by the low signal-to-

noise-ratio and by the need of a higher dose of contrast and

radiation when compared to coronary (i.e., early-enhancement)

evaluation (11). However, in the early-enhancement phase,

clinicians may fail to visually identify myocardial fibrosis.

The introduction in the clinical setting of artificial intelligence

(AI) to process cardiac images has showed remarkable performance

in both diagnosis and prognosis (12). We hypothesized that AI-

based methodologies could help tackling the challenges relevant

to myocardial fibrosis assessment using early CE-CCT, thus

reducing the need of additional contrast and radiation dose,

improving scar reading times and guiding clinical decision-

making. Accordingly, we aimed at developing a deep-learning

(DL) solution for the identification of the LV sectors affected

with myocardial fibrosis with early CE-CCT images, and test its

feasibility and accuracy using CE-CMR as reference.
2. Materials and methods

2.1. Study population

A consecutive cohort of fifty patients with an established

diagnosis of LV dysfunction (LV ejection fraction <50%)

undergoing CE-CMR between 2019 and 2020 were

retrospectively selected from an Institutional resource program

(13). CCT was performed per protocol within 10 days from

CMR. Diagnosis of myocardial fibrosis from CMR was part of

the inclusion criteria. Exclusion criteria included

contraindications to contrast-agents or to CMR (such as
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pacemaker or claustrophobia) and impaired renal function

(creatinine clearance <60 ml/min). The Institution’s ethical

committee approved the protocol, and all patients gave written

informed consent.
2.2. CMR protocol

As previously indicated (13), CMR was performed with a 1.5 T

system (Discovery MR 450, GE Healthcare) using dedicated

phased-array surface receiver coil and ECG triggering, CE breath-

hold segmented T1-weighted inversion-recovery gradient-echo

sequence for myocardial fibrosis was performed 10–20 min after

an intravenous bolus of 0.1 mmol/kg of Gadobutrol (Gadovist,

Bayer Schering Pharma AG). All images were acquired in LV

short-axis (SAX) view. CE-CMR images, which represent the

gold-standard reference, were investigated visually by one reader

(EACVI Level III CMR certified reader). For each patient, based

on the per-segment level, the presence of myocardial fibrosis

based on the CE distribution was annotated according to the 17-

segments American Heart Association (AHA) model. Diagnosis

criteria for cardiomyopathy were associated with the CE pattern

(see Supplementary Material for more details).
2.3. CCT protocol

All CE-CCT images were acquired using a Revolution CT (GE

Healthcare) with slice configuration 256 × 0.625 mm, spatial

resolution 0.230 mm along the X–Y planes, rotational speed time

280 ms and prospective ECG triggering. Scans were performed

during the end-inspiratory phase using the breath-hold technique

with patients in the supine position. Coronary images were

acquired covering the entire cardiac cycle (R-R phases from 0%

to 100%), after intravenous injection of 1.5 ml/kg of contrast

medium (Iomeron 400 mg/ml), sub-divided into two boluses:

80 ml contrast medium through an antecubital vein at an

infusion rate of 5 ml/s, followed by 50 ml saline solution and a

second bolus of contrast medium to reach the predetermined

total dose of contrast medium. Imaging was performed using the

bolus tracking technique. A second series of ECG-gated breath-

hold CE-CCT images was acquired for myocardial delayed

enhancement after 8 min from the first contrast-agent injection

(100 kVp; 400 mA). Late CE-CCT images were reconstructed at

75% of the R-R interval using soft kernel and 0.625 mm slice

thickness. The effective dose was calculated as the dose-length

product times a conversion coefficient for the chest (K =

0.014 mSv/mGy/cm) (14).
2.4. Data analysis and labelling

A schematic illustration of the workflow is shown in Figure 1.

Myocardial late CE (Figure 1, top) was evaluated on the SAX view

from the base to the apex by two expert readers (EACVI guidelines

for training and certification), after a proper optimization of the
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FIGURE 1

Workflow of the proposed approach for myocardial fibrosis detection. For training and testing purposes, for each early CE-CCT images the myocardial
region was extracted and divided in sectors, according to the AHA model. Then scar ground-truths obtained with manual tracing of myocardial fibrosis
contours on late CCT images were used to label each corresponding sector on early phase. Abbreviations as in Figure 1. AHA, American Heart Association;
CCT, cardiac computed tomography; CMR, cardiac magnetic resonance; CE, contrast-enhanced.
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window settings. For each image, manual scar tracings was

provided with the visual support of the corresponding CE-CMR

distribution as reference, thus reducing regional disagreement

between modalities. Each CE-CMR slice was automatically

associated to multiple CE-CCT slices, based on its thickness and

its position considering the total number of slices covering the

entire LV in the two imaging techniques. An example of

CE-CMR image (gold standard) and relevant associated ground-

truth slices from late CE-CCT resulting from scar manual tracing

is shown in Figure 2, together with the corresponding early

CE-CCT.
FIGURE 2

Example of hypoenhanced area on early and late contrast-enhanced CCT
Figure 1.
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In the early CE-CCT volume (Figure 1, middle), the

myocardial (LV epicardial and endocardial) boundaries for each

SAX cut-plane covering the whole heart were automatically

segmented to delimit the scar searching area, by active contours

region growing algorithm (15) and manually adjusted when

needed (MATLAB®, The Mathworks). Papillary muscles were

included in the cardiac blood pool as recommended (16). Based

on the identified myocardial boundaries, a binary mask was

obtained and multiplied with the original image, to retain only

the videointensity information of the pixels in the myocardium

for further processing with DL.
and corresponding contrast-enhanced CMR image. Abbreviations as in
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Considering the number of slices included between the LV base

and apex, the LV obtained from the early CE-CCT was divided into

3 sections (basal, mid, apical) of equal length perpendicular to its

long axis, thus generating three groups (basal, mid-cavity and

apical) of SAX slices for the LV. For the basal section, only slices

where the myocardium surrounds completely the LV were

further considered for analysis. The apical cap was excluded from

the apical section as recommended (17) (Supplementary

Figure S1). Then, the corresponding LV myocardial region in

each slice was divided into four (i.e., for apical) or six sectors,

depending on the slice section (18), according to the 16-segment

AHA model. For each sector, a reference label was attributed

(Figure 1, bottom) based on the results of the scar manual

tracing in the corresponding late CE-CCT image (i.e., in the

same spatial location and at the same cardiac phase): the area of

the traced scar for each sector was calculated, together with the

area of the whole sector. A sector was labelled as “scar” if the

segmented enhanced area occupied >15% of the sector area, and

as “no scar” otherwise (see Supplementary Figure S2), as

recommended (19). Moreover, this might potentially attenuate

misalignment (e.g., different breath-holding) between early and

late CE-CCT acquisitions.
2.5. Deep learning model training

For model training, each image corresponding to a myocardial

sector in the early CE-CCT was cropped to reduce the processing

area, and resized into 85 × 85 pixels. In addition, videointensity

values in Hounsfield units were normalized to zero mean and

unit variance.

To obtain the binary classification of myocardial tissue in scar/

no scar, early CE-CCT sectors constituted the input of an end-to-

end DL classification model based on a custom 2D-Convolutional

Neural Network (CNN), together with the provided classification.

The CNN was built within the DL framework Tensorflow-Keras

(https://keras.io/) and consisted of 4 convolutional layers. The

number of filters was set to 32, 64, 96 and 96, respectively. After

each convolutional layer of kernel size 3 × 3, the feature volumes

were down-sampled by a max-pooling layer with 2 × 2 pixels

window. On top of the network, three fully-connected layers

(256, 64 and 1 neurons, respectively) preceded the classification

layer. After each max-pooling layer, batch normalization was

implemented to make the training process faster and less

sensitive to the learning rates. A random dropout of 30% was

applied during training in each fully connected layer to prevent

overfitting. The Rectified Linear Unit (ReLU) was used as

activation function in all layers except the final one, where the

sigmoid function was used. Training was performed from

scratch using Adam optimizer with the initial learning rate set to

1 × 10−3 to minimize the binary cross-entropy loss function. The

rate will be multiplied by a factor of 0.2 once the validation loss

does not continuously reduce over 6 epochs, and the training

phase will end when it reaches 1 × 10−7.

Model weights were initialized from normal distribution and

the network was trained with L2 regularization with λ = 10 × 10−3
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over 100 epochs on a batch size of 32 samples. All the training

parameters were established with a trial-and-error procedure.

To augment the training data, data augmentation was created

on the fly via randomly generated transforms, including rotation,

scaling, flipping and translation. To deal with the intrinsic

imbalanced nature of the dataset, a random undersampling

strategy to the majority class (no scar label) was applied until a

balanced ratio with the minority class (scar label) was reached.
2.6. Performance evaluation

To evaluate the classification performance, based on the

ground truth evaluation built on the late CE-CCT images, a

5-fold cross-validation strategy (20) was performed (patient-wise)

to reduce bias. For each of the 5 iterations in the validation, one-

fold was used as the test dataset and the remaining four folds

were used as the training dataset. The results of a per-segment

analysis were evaluated using standard metrics: accuracy, positive

predictive value (PPV), negative predictive value (NPV),

sensitivity and Area Under the Curve (AUC) of the Receiver

Operating Characteristic (ROC) curve (21). The final evaluation

score was calculated by averaging the scores obtained in the 5 folds.

To compare this performance in a per-patient analysis with the

CE-CMR gold standard, the 16-segment AHA model relevant to

the presence/absence of a delayed enhancement in the early CE-

CCT image was compared with the corresponding 16-segment

CE-CMR model. More details about the AHA-sectors subdivision

and analysis can be found in Supplementary Material.

Moreover, every myocardial segment was evaluated separately

and independently on late CE-CCT scan and compared with the

proposed method.

Continuous variables were expressed as mean ± standard

deviation (SD) or median (25th−75th percentiles), whereas

categorical data were given as absolute value and percentage, as

appropriate. Confidence intervals (CI) were set at 95%.

Agreement between CCT and CMR in the number of myocardial

segments involved was assessed with the Cohen K statistic.
3. Results

3.1. Population characteristics

Baseline characteristics of the study group (age 62 ± 10 years,

42 men) are reported in Table 1. According to CMR, 35 patients

(70%) had a non-ischemic fibrosis (well-establish patterns

associated to myocarditis, dilated cardiomyopathy, LV non-

compaction or pathological hypertrophy), while 15 (30%) had a

specific scar pattern corresponding to myocardial infarction.

Mean effective doses were 7.7 ± 2.5 and 0.9 ± 0.3 mSv in the

whole CCT and late phase, respectively.

According to early CE-CCT evaluation, 17 patients presented

significant coronary artery disease: nine patients presented single-

vessel disease, three had a two-vessel disease and 5 reported a

triple vessel disease. For details on the segmental involvement
frontiersin.org
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TABLE 1 Patient characteristics.

All (n = 50)
Age, years 62 ± 10

BMI, Kg/m2 26 ± 4

Female 8 (16%)

CMR
LVEDV index (ml/m2) 118 (98–160)

LVESV index (ml/m2) 81 (57–113)

LVSV index (ml/m2) 41 (32–48)

LVEF (%) 33.7 ± 11.2

LV mass index (g/m2) 68 (57–88)

RVEDV index (ml/m2) 80 (61–97)

RVESV index (ml/m2) 37 (26–58)

RVEF (%) 50.3 ± 14.7

Ischemic 15 (30%)

Non-ischemic 35 (70%)

Number of coronary artery disease by CT
0 33 (66%)

1 9 (18%)

2 3 (6%)

3 5 (10%)

Type of Cardiomyopathy
Myocarditis 11 (22%)

Dilated 22 (44%)

LVNC 1 (2%)

Hypertrophic 1 (2%)

Values are mean ± SD, median (25th−75th percentiles) or n (%).

BMI, Body Mass Index; CMR, cardiac magnetic resonance; LV, left ventricular; EDV,

end diastolic volume; ESV, end systolic volume; SV, stroke volume; EF, ejection

fraction; RV, right ventricular; CT, computed tomography; NC, non-compaction.
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and the respective CE-CMR pattern (subendocardial, mid-wall,

subepicardial or transmural) see Supplementary Table S1.
3.2. Deep-learning classification

Of the initial 44,187 sectors computed out of the 8,285 slices

available from the early CE-CCT images, 4,594 sectors (10%)

presented scar, of which, according to the threshold condition

based on the scar manual tracing, 1,090 were excluded, 3,504

(8%) were labeled as scar, and 39,593 (92%) were labelled as no

scar.

On the early CE-CCT images, a classification accuracy of 71%

was obtained through the 5-fold cross validation (Table 2). The

mean sensitivity, PPV and NPV for the testing fold resulted in

73%, 56% and 85%, respectively. Figure 3 shows the ROC curve

obtained from all the tested folds. The mean AUC across the five

folds was 76% (95% CI: 72%−81%). Diagnostic accuracy in
TABLE 2 Diagnostic accuracy of the model.

Patients AUC (95%CI) Accuracy Sensitivity PPV NPV
All 0.76 (0.72–0.81) 0.71 0.73 0.56 0.85

Ischemic 0.71 (0.64–0.79) 0.66 0.64 0.56 0.75

Non-ischemic 0.80 (0.68–0.93) 0.74 0.77 0.56 0.88

AUC, area under the curve; CI, confidence interval; PPV, positive predictive value;

NPV, negative predictive value.
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ischemic, and non-ischemic cardiomyopathy patients was 66%

and 74%, respectively, with AUC of 71% (95% CI: 64%−70%)
and 80% (95% CI: 68%−93%), respectively (Table 2).

Representative examples of the classification process for one

slice at basal, mid and apical levels is given in Figure 4.

In a per-segment analysis of the 16-segment AHA model, 708

out of 784 sectors were correctly classified, thus resulting in a total

accuracy from the early CE-CCT of 89% (ischemic: 86%; non-

ischemic: 92%) compared to the CE-CMR. The concordance

between the model prediction and CMR assessment of CE extent

is shown in Figure 5, with K values ranging between 0.34 (basal

inferior segment) and 0.95 (basal inferoseptal segment).

According to the CE-CMR model, 214 sectors were identified

with fibrosis. Based on the DL-model prediction, 186 (87%, true

positive) of these 214 sectors, and 522 (92%, true negative) of the

570 sectors with no-scar indication were correctly classified.

According to the visual analysis on late CE-CCT scan, the

agreement with the CE-CMR was 82% (ischemic: 80%; non-

ischemic: 84%). Results of the comparison between the 16-

segment AHA model from the CE-CMR and that from the early

CE-CCT, as determined by the CNN, is illustrated in Figure 6,

for both ischemic and non-ischemic LV dysfunction patients,

respectively, randomly selected from the whole population.
4. Discussion

An automatic AI system based on CNN for myocardial tissue

classification from early CE-CCT imaging was developed and

evaluated. Our results showed that its use in routinely

noninvasive coronary imaging, without the need of a dedicated

CCT acquisition, thus potentially eliminating the need for

additional contrast-agent administration or radiation dose,

enables myocardial fibrosis detection (AUC 0.76). Further, on a

per-segment basis of the 16-segment model, the proposed

method seemed to perform slightly better than the expert clinical

myocardial fibrosis evaluation based on late CE-CCT scan (CNN

accuracy 89% vs. 82% for expert). These results might pave the

way towards a future approach for scar detection parallel to

CMR, especially for those patients precluded from contrast-agent.

Besides the promising results, automatic sector classification

did not reach always satisfactory results. A possible hypothesis

could be that images of some patients were more critical to be

classified than others. Accordingly, the effect of the classification

accuracy for different patient classes (ischemic, non-ischemic)

was examined. A lower performance in patients with an ischemic

pattern over non-ischemic pattern was observed, in particular

relevant to the decrease in NPV. Nevertheless, these findings may

be of clinical relevance as automatic analysis of the 16-segment

AHA model showed appreciable accuracy for both ischemic

(86%) and non-ischemic (92%) cardiomyopathy patients, above

the clinical observation accuracy on late CE-CCT (ischemic: 80%;

non-ischemic: 84%).

Although CE-CMR imaging represents the reference technique

for locating and qualifying myocardial fibrosis (22), it involves

extending scanning time and the administration of Gd-based
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https://doi.org/10.3389/fcvm.2023.1151705
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

Receiver operating characteristic (ROC) curve for each fold of the 5-fold cross-validation, and the mean. ROC, Receiver Operating Characteristic; AUC,
Area Under the Curve.

FIGURE 4

Examples of model’s classification for a basal, mid-ventricular and apical slice. From left to right: ground truth, raw image, scar segmentation and the
predicted classification. CNN, convolutional neural network; other abbreviations as Figure 1.

Penso et al. 10.3389/fcvm.2023.1151705
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FIGURE 5

Per-segment analysis of the concordance (Cohen’s K statistic) between CE-CMR and CNN detection on early CE-CCT. CI: confidence interval.
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contrast-agent might be contraindicated. Advances in CCT

imaging have led to its role as possible alternative technique to

CMR, specifically for patients with poor access or

contraindications and by its availability. Recently, CT scanners

allow cardiac assessment without motion artefacts and elevated

spatial resolution compared to CMR (11). Although exposure to

ionizing radiations remains the main limitation factor for CCT,

modern scanners showed accurate myocardium and coronary

arteries diagnosis with appreciable image quality even using low-

radiation dose (23, 24). On this regard, dual-energy CT and

spectral CT may further improve CT image diagnostic quality

(25), proving more detailed tissue information, thus advancing

the potential utility of AI for myocardial fibrosis assessment.

Currently, the acquisition protocol for the delayed

enhancement CCT imaging is based on injection of large

volumes of iodinated contrast-agents (at least 1.5 ml/kg) which

might cause different complications (9, 26), besides no

complications were however observed in this study. Therefore,

the implemented method might represent an attractive clinical

solution, particularly to reduce user interaction and visual

interpretation with benefit in both efforts and time, with only

few seconds needed to automatically analyze the whole CCT

volume. Furthermore, identification of myocardial fibrosis from

CCT might improve strategy planning and prognosis even for

patients precluded from CE-CMR or when transthoracic

echocardiography is inconclusive.

So far, only few studies investigated how to detect myocardial

fibrosis from routine coronary CCT using AI-based approaches.

A first attempt exploiting DL for the identification of ischemic

myocardial fibrosis from early CE-CCT was proposed in (27).

However, scar analysis was performed on a limited number of 25

CCT datasets. In comparison, we proposed a larger and

heterogeneous population including both ischemic and non-

ischemic patterns of myocardial fibrosis. Moreover, our method

resulted in the identification of the presence of the myocardial

fibrosis for each LV AHA sector, thus contributing to a more

precise regional analysis of the LV myocardium, as usually
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conducted in clinical practice. More recently, the ability to

predict myocardial fibrosis from early CE-CCT was also

demonstrated by integrating AI and radiomic features (28).

Differently from our approach, only one slice for each sector of

the heart (i.e., base, middle and apex) was analyzed, thus making

it difficult to detect scar tissue in the acquired CCT volume and

hampering the translation of the methodology into the actual

clinical practice. This limitation was overcome in our work, with

the classification of every slice in the CCT volume, followed by

the integration of the results into a more conventional AHA

16-segments model that could help the clinician in focusing

more the attention to those slices and segments suggested as

pathological.

In line with previous studies, results suggest the potential role

of AI-based technologies as a support for individual-level

diagnosis into routine workflow, classifying myocardial sectors

affected by fibrosis using early-enhanced CCT images, even when

this is not clearly visible by human eyes. Besides the promising

results, our study is not free from limitations. First, the image

quality of the late CE-CCT, from which scar manual tracing was

performed, is worse than that of the CE-CMR, thus potentially

introducing under- or over-estimation in the scar size, which

might explain the cause for false positives in CNN diagnoses. As

our aim was to analyze all slices covering the LV included in the

CCT volume, using scar manual tracing on CE-CMR would not

have provided the proper reference, due to its limited number of

slices. Accordingly, our choice of performing scar manual tracing

on late CE-CCT, while having available as reference the CE-CMR

images, was taken as an attempt to minimize the described above

limitations. Second, considering that there is no consensus on

the optimal time delay when to acquire late CE-CCT with

sufficiently good image quality, and that only a single attempt

should be performed to limit the exposure of patient to x-rays,

the same time delay was applied in all the acquired patients. This

setting could have limited the image quality in same patients,

thus potentially affecting the manual segmentation accuracy, and

raising the hypothesis that variability in performance between
frontiersin.org
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FIGURE 6

16-segment AHA model comparison between CE-CMR visual analysis and CNN detection on early CE-CCT for patients with ischemic and non-ischemic
LV dysfunction: red and green represent pathological and healthy sectors, respectively. Blu indicates the sector excluded during pre-processing phase.
Abbreviations as in Figure 1.
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ischemic and non-ischemic patients might be likely related to

image quality. Third, possible misalignment among early and late

CE-CCT slices due to heart rate variation or different breath-

holding needed to be adjusted when visually detected by

manually re-setting the long-axis. In addition, this evaluation was

performed as a single-center study using the same scanner for all

the acquisitions, so further external evaluation (i.e., using

different population and/or different scanner) is required to

prove generalizability of our CNN model. Also, a larger training

population could further improve the performance.

Unfortunately, it is not common for patients to undergo both

CMR and CCT in such a short window time, so specific research

protocols need to be performed for this aim. Fourth, large

volume of iodinated contrast-agent was used to account for the
Frontiers in Cardiovascular Medicine 08
detection of myocardial delayed enhancement, thus potentially

hampering the model’s performance at lower concentration of

contrast agent. Finally, while scar location and scar tissue area

lead to different prognoses (29), where the ratio of scar to LV

myocardial mass represents an important factor for sudden

cardiac death risk, the quantification of the myocardial fibrosis

area was beyond our scope: only the indication of the possible

LV myocardial segments affected by scar was given.

We addressed the challenging topic of myocardial fibrosis from

routine noninvasive coronary scans. To this end, a novel AI system

for myocardial characterization was proposed. The results suggest

that the developed method has the potential to classify both

ischemic and non-ischemic myocardial fibrosis sectors from early

CE-CCT acquisition, thus removing the need of additional
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contrast-agent administration or radiations. This might potentially

facilitate the investigation and management of patients with LV

dysfunction and coronary artery disease. Further, being CE-CCT

more widely available than CE-CMR, it could place CCT in a

favorable position for a faster myocardial tissue characterization

than CE-CMR.
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