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Atherosclerosis is a basic pathological characteristic of many cardiovascular
diseases, and if not effectively treated, patients with such disease may progress
to atherosclerotic cardiovascular diseases (ASCVDs) and even heart failure. The
level of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) is
significantly higher in patients with ASCVDs than in the healthy population,
suggesting that it may be a promising new target for the treatment of ASCVDs.
PCSK9 produced by the liver and released into circulation inhibits the clearance
of plasma low-density lipoprotein-cholesterol (LDL-C), mainly by
downregulating the level of LDL-C receptor (LDLR) on the surface of
hepatocytes, leading to upregulated LDL-C in plasma. Numerous studies have
revealed that PCSK9 may cause poor prognosis of ASCVDs by activating the
inflammatory response and promoting the process of thrombosis and cell death
independent of its lipid-regulatory function, yet the underlying mechanisms still
need to be further clarified. In patients with ASCVDs who are intolerant to
statins or whose plasma LDL-C levels fail to descend to the target value after
treatment with high-dose statins, PCSK9 inhibitors often improve their clinical
outcomes. Here, we summarize the biological characteristics and functional
mechanisms of PCSK9, highlighting its immunoregulatory function. We also
discuss the effects of PCSK9 on common ASCVDs.
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1. Introduction

Atherosclerosis is an early pathological change in many cardiovascular diseases (1). The

occurrence and progression of atherosclerosis and atherosclerotic cardiovascular diseases

(ASCVDs) are associated with hyperlipidemia but also involves an imbalance between

proinflammatory and anti-inflammatory response (2, 3). During this process, the injured

arterial endothelium, multiple immune cells (such as macrophages, dendritic cells, B cells, T

cells, and mast cells), macrophage-like vascular smooth muscle cells (VSMCs), adhesion

molecules, cytokines, and oxidized low-density lipoprotein (ox-LDL) deposited beneath the

vascular intima work together to activate the local immune response, while foam cells always

have moderate proinflammatory functions and mainly participate in the formation of the

lipid core (3–6). Through earlier detection, earlier diagnosis, and more effective treatment,

the occurrence and progression of atherosclerosis and ASCVDs can be better controlled.

Statins, as a first-line drug recommended by clinical guidelines for the treatment of

atherosclerosis and ASCVDs, inhibits cholesterol synthesis by inhibiting the activation of
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the rate-limiting enzyme 3-hydroxy-3-methylglutaryl-coenzyme A

(HMG-CoA) reductase, thereby reducing cholesterol

concentrations in the endoplasmic reticulum (ER) (7, 8). Statin

resistance occurs mainly because the low cholesterol

concentration in the ER promotes the activation of sterol

regulatory element-binding protein 2 (SREBP2) and the

subsequent production of PCSK9 (9). PCSK9 inhibitors have

been shown to be beneficial in the treatment of patients with

atherosclerosis and ASCVDs (10–15).

PCSK9, also known as neural apoptosis-regulated convertase-1

(NARC-1), was first identified in 2003 (16). As the ninth and last

member of the proteinase K subfamily of subtilases, PCSK9

undergoes self-cleavage and multiple rounds of post-translational

modifications before becoming the mature form (17–19). PCSK9

functions in a nonenzymatic fashion, which differs from other

family members (20, 21). The carboxy-terminal domain (residues

452 to 692) of full-length PCSK9 protein shares structural

homology with the resistin, which is essential for the formation of

PCSK9-low-density lipoprotein receptor (LDLR) dimer (22). The

critical role of PCSK9 in cholesterol regulation was discovered, as

its gain-of-function variants could lead to human familial

hypercholesterolemia, while its nonsense mutations (Y142X and

C679X) in African Americans were associated with 40% lower

plasma level of low-density lipoprotein-cholesterol (LDL-C) and

lower risk of coronary heart disease (CHD) (23, 24). Then,

accumulating evidence has suggested that the effects of PCSK9 on

ASCVDs may be associated with immunoregulation, platelet

activation, thrombosis, and multiple forms of cell death, which may

be independent of its lipid-lowering capacity (25–27). In some

clinical trials, the correlation between PCSK9 and immune response

has been demonstrated in patients with atherosclerotic disease,

coronary artery disease, systemic lupus erythematosus, and human

immunodeficiency virus (HIV)-infected (28–31). Experiments in

vitro and in mice further support the immunoregulatory function

of PCSK9 (32–35).

Here, we used the following keywords to filter corresponding

papers in PubMed: “PCSK9 and atherosclerosis”, “PCSK9 and

myocardial infarction”, “PCSK9 and inflammation”, “PCSK9 and

platelets”, “PCSK9 and autophagy”, “PCSK9 and apoptosis”, as well

as “PCSK9 and pyroptosis”. We first introduce the production of

PCSK9 and the molecular mechanisms that regulate its expression.

We then summarize the functional mechanisms of PCSK9 and its

inhibitors in the cardiovascular system, such as the regulatory

function in lipid metabolism, immune response, thrombosis, and

multiple modes of cell death, with a particular focus on its

immunoregulation. Subsequently, we show the effect of PCSK9 and

its inhibitors on the prognosis of atherosclerotic and myocardial

infarction patients. Finally, we propose several issues that need to be

addressed in the future regarding PCSK9 and cardiovascular diseases.
2. Regulation of PCSK9 production and
expression

The liver is the major organ that produces PCSK9, and the

kidney, the small intestine, the pancreas, the lung, and the
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central nervous system also produce small amounts of PCSK9

(16, 36). Under physiological conditions, the expression of

PCSK9 was detected in cultured human smooth muscle cells

(SMCs), while was undetectable in human umbilical vein

endothelial cells (HUVECs), monocytes and macrophages (37).

Under an inflammatory state [lipopolysaccharide (LPS)

treatment], HUVECs can produce PCSK9 (38). When

atherosclerosis occurs, various types of cells, especially SMCs,

endothelial cells and macrophages in the injured vessels produce

large amounts of PCSK9 at the transcriptional and translational

levels in response to the stimulation of low shear stress,

lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α),

interleukin-1beta (IL-1β), ox-LDL, reactive oxygen species (ROS),

and mitochondrial DNA (mtDNA) and mitochondria-derived

reactive oxygen species (mtROS) released from damaged

mitochondria in ruptured cells (37, 39–42). When myocardial

infarction occurs, the expression level of PCSK9 is also

upregulated in the ischemic heart tissue, mostly in the border

zone, and hypoxia as well as proinflammatory cytokines may be

the key factors that upregulate its expression (43, 44).

The expression of PCSK9 is mainly regulated by SREBP2,

hepatocyte nuclear factor-1α (HNF-1α), and forkhead box O3

(FoxO3) at the transcriptional level (45–48). Sequence analysis of

the 5′ flanking region from −2,112 to −94 of the PCSK9 gene

revealed the presence of the sterol regulatory element (SRE) site

(5′-GTGGCGTGAT-3′) in the proximal region of the PCSK9

promoter (49, 50). In the process of sterol-dependent

transcriptional regulation of PCSK9, the SRE site and the

adjacent upstream nucleotides are critically required (45). The

SRE site is the target site for SREBPs (45). After treatment with

statins, decreased cholesterol concentrations in the ER promote

the production of PCSK9 by activating SREBP2, leading to a

weak effect of statin treatment in some ASCVD patients (49).

The transcriptional activation of PCSK9 induced by insulin is

dependent on SREBP1c (50). Caffeine inhibits the expression of

SREBP2 at the transcriptional level by increasing the Ca2+

concentration in the hepatic ER, thereby reducing the expression

of PCSK9 and the risk of cardiovascular disease (51). Besides,

both HNF1α and HNF1β are positive regulators of PCSK9

transcription, although there is little literature mentioning the

role of HNF1β in this process (52). HNF1α regulates the

transcription of PCSK9 through hepatocyte nuclear factor 1

(HNF1) site located 28 bp upstream from SRE (53). Mutation of

the HNF1 site significantly inhibits the activity of PCSK9

promoter, which is dependent on both its direct effect and its

indirect effect of inhibiting the activity of SRE site (46). In mice,

the activated mechanistic target of rapamycin complex 1

(mTOR1) pathway suppresses the transcription of PCSK9 by

silencing HNF-1α (54). FoxO3 is a negative regulator of PCSK9

transcription (47). Sirtuin-6 (Sirt6) is an NAD + -dependent

histone deacetylase (55). After the interaction of FoxO3 with

insulin-response element (IRE), Sirt6 binds to the PCSK9

promoter to deacetylate histone H3 at lysines 9 and 56, resulting

in the attenuated activity of PCSK9 promoter (47, 56). FoxO3

and Sirt6 also suppress the transcriptional activity of SRE and

HNF1 (47). Understanding the molecular mechanisms that
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regulate the production of PCSK9 is of great value to effectively

inhibit the overexpression of PCSK9 and alleviate the risk of

ASCVDs (Figure 1).
3. Molecular functions of PCSK9 and
its mechanisms

The occurrence and development of atherosclerosis is

associated with abnormal lipid metabolism and excessive

proinflammatory response (57, 58). Platelet activation and

thrombosis secondary to coronary atherosclerotic plaque rupture

can lead to myocardial infarction, a common disorder in

ASCVDs (59). Subsequently, cardiomyocytes die due to ischemia

and hypoxia (59). Here, we describe the molecular functions of

PCSK9 and its mechanisms around the above points.
3.1. Effect of PCSK9 on lipid metabolism

The plasma levels of LDL-C are closely associated with an

increased risk of ASCVDs (60). Downregulating LDL-C

concentrations can help to reduce the incidence of adverse

cardiovascular events (61, 62). Approximately 60%–70% of plasma

LDL-C is cleared in the liver after binding to LDLR on the surface

of hepatocytes (63). LDL-C-lowering LDLR variants are associated

with lower risk of CHD (64). PCSK9 affects the plasma lipid and

lipoprotein levels mainly by downregulating LDLR in the liver

(65). It has been confirmed that gain-of-function mutations of
FIGURE 1

The regulation of PCSK9 expression at the transcriptional level. HNF1, hep
regulatory element-binding protein; IRE, insulin-response element; FoxO3, fo
complex 1; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-coenzyme A.
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PCSK9 lead to increased risks of hyperlipidemia and ASCVDs,

whereas loss-of-function mutations of PCSK9 reduced plasma

levels of LDL-C and ASCVDs risk (Figure 2) (66–68).

PCSK9 promotes the synthesis of lipoprotein (69–72). In

C57BL/6 wild-type (WT) and LDLR-/- mice with high fat diet

(HFD), researchers found that human (h) PCSK9 promotes the

synthesis and secretion of cholesterol and triglycerides in

the intestine in both mice, but only significantly increased the

expression of key genes involved in lipogenesis at the

transcriptional and translational levels in the liver in WT mice

(70, 72). These findings indicate that PCSK9 promotes

lipoprotein production in the liver only through LDLR-

dependent mechanisms, whereas its facilitation of lipid

production is achieved through both LDLR-dependent and

LDLR-independent mechanisms in the intestine (70, 72).

PCSK9 promotes the upregulation of plasma lipoprotein via

reducing their removal. LDLR is a key receptor for PCSK9 to

regulate lipid metabolism (73). Under physiological conditions,

plasma LDL-C binds to LDLR on the surface of hepatocytes to

form the LDL-C-LDLR dimer, which is then transferred into the

intracellular space (74). LDL-C is then separated from LDLR in

endosomes and degraded in lysosomes (74). Subsequently, the

intracellular free LDLR is recycled to the cell surface to

participate in a new round of LDL-C transport and degradation

(74). Under pathological conditions, the liver produces large

amounts of PCSK9 and releases it into the plasma. The increased

PCSK9 conjunct with cyclase associated protein 1 (CAP-1) binds

to the LDL-C-LDLR dimer and promotes its degradation in

lysosomes through a caveolin-dependent mechanism, leading to
atocyte nuclear factor-1; SRE, sterol-regulatory element; SREBP, sterol
rkhead box O3; Sirt6, sirtuin-6; mTOR1, mechanistic target of rapamycin
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the downregulation of LDLR on the surface of hepatocytes (75).

Some LDL-C-LDLR dimers that are bound to free PCSK9

without CAP-1 are endocytosed and transferred to endosomes

through a clathrin-dependent mechanism, and LDLR is then

released from the dimer and recycled to the cell surface without

the diminution of total LDLR (75). CAP-1 is essential for PCSK9

to regulate lipid metabolism (75). There are also other LDLR

family members involved in the lipid regulatory process of

PCSK9, such as very low-density lipoprotein receptor (VLDLR),

apolipoprotein E receptor 2 (ApoER2), LDLR-related protein 1

(LRP1), LDLR-related protein 5 (LRP5), and LDLR-related

protein 6 (LRP6) (76–78). Because VLDLR and ApoER2 share a

common epidermal growth factor precursor homology domain A

(EGF-A) with LDLR, PCSK9 acts on the EGF-A domain of both

receptors and promotes their degradation in the same manner as

LDLR (79). PCSK9 is able to mediate the degradation of LRP1

(77). LRP5 and LRP6 act as coreceptors of Wnt ligands and

activate Wnt-related signaling (80). Recently, much attention has

been paid to the interaction between PCSK9 and LRP5/6 in the

development and progression of atherosclerosis (78, 81). LRP5 is

capable for promoting the accumulation of cholesterol in

macrophages and the formation of foam cells (78). There is a

positive feedback effect between LRP5 expression and the level of

plasma PCSK9 (78, 82). Despite the lack of direct evidence, LRPs

interact with PCSK9 may also rely on the epidermal growth

factor-like (EGF-like) domain as it is shared in these LDLR

superfamily members (83).

In addition, PCSK9 is also involved in intracellular lipid

metabolism. After stimulation with recombinant PCSK9, the

expression levels of lectin-like oxidized low-density lipoprotein

receptor 1 (LOX-1), class A scavenger receptor (SRA), and CD36

on the surface of macrophages are 2- to 5-fold higher than those

of unstimulated macrophages, and the uptake of ox-LDL is also

increased by approximately 5-fold (84). LOX-1 is a key receptor

for macrophages to engulf ox-LDL (38). There is a positive

feedback between LOX-1 and PCSK9, promoting the

transformation of macrophages and VSMCs into foam cells (38).

PCSK9 also inhibits the expression of ATP-binding cassette

transporters [such as (ATP-binding cassette transporter A1)

ABCA1] on macrophages, which are key transporters for

cholesterol efflux (85). Thus, PCSK9 promotes the formation of

foam cells from two different aspects. PCSK9 also affects lipid

metabolism in cardiomyocytes. Cardiomyocytes meet their own

energy requirement mainly through β-oxidation of fatty acids

(FAs), and reactive oxygen species (ROS) is usually produced in

this process (86). When oxidative stress occurs, excess cytotoxic

ROS results in nonspecific oxidation of proteins, lipids, and DNA

(86). The major route that FAs enter cardiomyocytes is active

transport, which is mainly mediated by CD36, with fatty acid

transporter (FATP) and fatty acid binding protein (FABP)

involved (87).

Importantly, it is not beneficial to completely remove PCSK9 in

vivo (88). Complete knockout of PCSK9 in mice is deleterious, even

leading to heart failure with preserved ejection fraction (HFpEF)

(88). The pathological deposition of FAs in cardiomyocytes

causes lipotoxicity, with a reduced density of mitochondrial
Frontiers in Cardiovascular Medicine 04
cristae (88). Therefore, it is necessary to control the dosage of

PCSK9 inhibitors in a reasonable range in the treatment of

ASCVDs. Fortunately, in large clinical trials, PCSK9 inhibitors

are tolerated and effectively, without the increased risk of heart

failure (14, 89).
3.2. Role of PCSK9 in the inflammatory
response

In recent years, the functional pleiotropy of PCSK9 has been

gradually recognized, and its immunoregulatory function has

attracted much attention, especially in the fields of autoimmune

diseases, cancer, and cardiovascular diseases (25, 29, 90). PCSK9

accelerates the development of ASCVDs through its

proinflammatory function independent of its effect on lipid, but

the molecular mechanisms by which PCSK9 regulates the

immune response are still not well elucidated (Figure 3) (40, 91).

Several clinical studies have confirmed that PCSK9 promotes

the progression of ASCVDs by its proinflammatory function. In

the Further Cardiovascular Outcomes Research with PCSK9

Inhibition in Subjects with Elevated Risk (FOURIER) trial,

27,564 patients with stable ASCVDs and LDL-C≥ 70 mg/dl were

randomly assigned to the evolocumab group and placebo group,

both of which were then divided into three subgroups based on

the level of high sensitivity C-reactive protein (hs-CRP) (<1, 1–3,

and >3 mg/dl) at baseline (10, 92). Patients with higher hs-CRP

had a greater risk of the primary and key secondary endpoint

events, showing that inflammation may be an independent risk

factor in ASCVDs (90). In patients with higher hs-CRP, the

reduction in the absolute risk was more significant in

the evolocumab group than in the placebo group (93). Thus, the

protective effect of evolocumab on ASCVD patients, at least in

part, relies on its anti-inflammatory function. In addition, in the

ODYSSEY OUTCOMES trial, alirocumab reduced plasma

lipoprotein(a) and the risk of major adverse cardiac events

(MACEs) in patients with acute coronary syndrome (ACS) (94).

Lipoprotein(a) is a biomarker positively correlated with

inflammatory response (95). In the PACMAN-AMI trial, the use of

alirocumab in addition to high-intensity statin therapy resulted in a

significant regression of percent atheroma volume in the two non-

infarct-related coronary arteries and increased plaque stability in

patients with acute myocardial infarction without a reduction of

hs-CRP (14). However, further research revealed that alirocumab

caused a greater reduction in the mean angular extension of

macrophages, indicating that the local inflammatory response was

decreased in this process (14). Therefore, it may not be sufficient

to select hs-CRP as the only biomarker reflecting the intensity of

the inflammatory response, and PCSK9 inhibitors are useful to

inhibit the local inflammatory response in ASCVD patients (14,

96). Moreover, PCSK9 inhibitors suppress the accumulation of the

proinflammatory cytokine IL-6 in the plasma of stable coronary

artery disease patients with the IL6-74CC genotype and high level

of lipoprotein(a) (97). However, in patients with elevated

lipoprotein(a) and increased cardiovascular risk, evolocumab only

modestly reduces the lipoprotein(a), and residual high level of
frontiersin.org
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FIGURE 2

The functional mechanism of PCSK9 in regulating lipid metabolism. LDL-C, low-density lipoprotein-cholesterol; LDLR, low-density lipoprotein receptor;
VLDLR, very low-density lipoprotein receptor; ApoER2, apolipoprotein E receptor 2; PCSK9, proprotein convertase subtilisin/kexin type 9; CAP1, cyclase
associated protein 1; LOX1, lectin-like oxidized low-density lipoprotein receptor 1; SRA, scavenger receptor type A; EGF-A, epidermal growth factor
precursor homology domain A; LRP1, LDLR-related protein 1; LRP5, LDLR-related protein 5; LRP6, LDLR-related protein 6.

FIGURE 3

The functional mechanism of PCSK9 in regulating the immune response of ASCVDs. ASCVDs, atherosclerotic cardiovascular diseases; NLRP3, NOD-like
receptor family pyrin domain containing 3; TLR4, Toll-Like Receptor 4; ROS, reactive oxygen species; mtDNA, mitochondrial DNA; LPS,
lipopolysaccharide.
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lipoprotein(a) leads to persistent arterial wall inflammation (98).

Thus, whether PCSK9 inhibitors have anti-inflammatory function

and the mechanisms involved need to be further explored.
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In addition to regulating inflammatory cytokines, numerous

studies have linked PCSK9 with immune cell subsets in

ASCVDs. Circulating monocytes are usually divided into three
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1148486
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Ma et al. 10.3389/fcvm.2023.1148486
categories, including classical monocytes (CD14++CD16−;
CMs), intermediate monocytes (CD14++CD16+; IMs) and

nonclassical monocytes (CD14+CD16++; NCMs), among

which CMs have strong proinflammatory functions (99, 100).

When stable coronary artery disease occurs, the proportion of

CMs to total monocytes is larger in patients with higher

PCSK9 levels. Increased PCSK9 promotes the polarization of

monocytes from IM and NCM-like phenotypes to a CM-like

phenotype (101). In patients with hyperlipidemia, PCSK9

induces the expression of C-C chemokine receptor type 2

(CCR2) on the surface of monocytes and enhances their

migration ability (102).

Previous studies have shown that PCSK9 siRNA can inhibit

ox-LDL-induced proinflammatory function of THP-1-derived

macrophages via suppressing the activation of the NF-κB

pathway (35). Compared with C57BL6/J WT mice, the

C57BL6/J PCSK9 knockout (KO) mice have decreased infarct

size and improved cardiac function due to inhibition of the

polarization of M1-type macrophages, and the suppression of

the TLR4/MyD88/NF-κB pathway may be involved in this

process, which is consistent with the above results (43). In

apolipoprotein E (apoE) KO mice with hyperlipidemia-

induced atherosclerosis, PCSK9 silencing inhibits the

progression of plaque volume, the accumulation of

macrophages in lesion areas, and the secretion of

inflammatory cytokines, such as TNF-α and IL-1β, by

macrophages, which is accompanied by limited intracellular

activation of the TLR4/NF-κB pathway (32). Because the

AT04A anti-PCSK9 vaccine reduces the expression of NLR

family pyrin domain containing 3 (NLRP3) and

proinflammatory biomarkers in macrophages, both the

NLRP3 and TLR4/NF-κB pathways may be involved in the

PCSK9-mediated regulation of macrophage function (32).

The adaptive immune response is also found to participate in

the later stage of atherosclerosis as T cells localize near the

ruptured areas of unstable plaques in ischemic heart tissue (103).

Increased PCSK9 promotes the maturation of dendritic cells and

the differentiation of naive CD4+ T cells toward the Th1 and

Th17 subsets, resulting in increased secretion of interferon-γ

(IFN-γ) and interleukin 17A (IL-17A) (104). PCSK9 inhibitors

promote the differentiation of naive CD4+ T cells into regulatory

T cells (Tregs) and the production of anti-inflammatory

cytokines, such as interleukin 10 (IL-10) and transforming

growth factor beta (TGF-β), which contribute to the resolution of

inflammation and good prognosis of ASCVDs (104). Apart from

the cardiovascular system, PCSK9 also regulates the adaptive

immune response in the tumor microenvironment. The

interaction between LDLR and T cell receptor (TCR) regulates

TCR recycling and signaling, thus promoting the differentiation

of CD8+ T cells into cytotoxic T lymphocytes (90). PCSK9

inhibits the killing function of CD8+ T cells via binding to

LDLR and preventing the recycling of LDLR-TCR complex to

the plasma membrane (90). Thus, we postulate that PCSK9/

LDLR may also be a significant target for regulating the adaptive

immune response in ASCVDs, but this specific mechanism has

not been confirmed.
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3.3. Impact of PCSK9 on platelet activation
and thrombosis

Under pathological conditions, such as hyperlipidemia,

hyperglycemia, and atherosclerosis, high LDL-C levels are

associated with enhanced platelet reactivity and thromboxane

production (105, 106). Many factors are involved in the

regulation of this process, which is still not completely clear

(107). CD36 is associated with platelet reactivity, activation and

thrombosis under hyperlipidemic conditions (108). During the

processes of plaque formation with inflammation and

phospholipid oxidation, LDL is converted to ox-LDL (109). Ox-

LDL and hyperlipidemia activate blood platelets via a CD36

mediated pathway (110, 111). In patients with familial

hypercholesterolemia, researchers found that ox-LDL induced the

activation of platelets via the activation of CD36, LOX-1, and

NADPH oxidase 2 (NOX2) (112). PCSK9 is a positive modulator

in this process (113). Recently, researchers have found that

PCSK9 promotes the aggregation, activation, spreading of

platelets and thrombosis by interacting with CD36 on its surface

and activating the downstream p38 mitogen-activated protein

kinase (MAPK)/cytosolic phospholipase A2/cyclooxygenase-1/

thromboxane A2 pathway (26, 113). In C57BL/6J WT mice,

PCSK9 injection promotes FeCl3-induced mesenteric artery

thrombosis through binding to CD36 receptor in platelets (26).

When myocardial infarction occurs, PCSK9 promotes the

generation of ROS and activates CD36 in platelets, resulting in

microvascular obstruction and enlarged infarct size (26).

Therefore, the experimental results mentioned above confirm the

positive role of PCSK9 in platelet activation and thrombosis,

which may be adverse in ischemic heart disease.
3.4. Influence of PCSK9 on apoptosis,
autophagy, and pyroptosis

In the development of atherosclerosis, ox-LDL is one of the

important factors causing the dysfunction of endothelial cells and

the primary factor promoting apoptosis in endothelial cells by

upregulating the apoptosis-related factors, Bcl2-associated X

(Bax), caspase 3, and caspase 9, as well as downregulating the

antiapoptotic factor, Bcl2 (114, 115). PCSK9 is a key mediator of

ox-LDL-induced apoptosis in HUVECs (116). The proapoptotic

function of ox-LDL mainly depends on the upregulation of

PCSK9 expression and the activation of its downstream MAPK

signaling pathway, especially the phosphorylation of c-Jun N-

terminal kinase (JNK) and p38 (116). Upregulated PCSK9

promotes the apoptosis of endothelial cells in atherosclerotic

lesions (116). Targeting PCSK9 with short hairpin RNA

(shRNA)-PCSK9 inhibits the phosphorylation of p38 and JNK

induced by ox-LDL, as well as downregulates the ratio of Bax to

Bcl2, thus repressing the apoptosis of endothelial cells (116).

PCSK9 is associated with autophagy (44). Autophagy removes

damaged mitochondria, which is of great benefit to maintain cell

survival and normal function (117). MtDNA that escapes from
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autophagy leads to inflammation and heart failure (118). When 3-

methyladenine is used to inhibit autophagy, PCSK9 accumulates in

the cytoplasm, suggesting that it may be associated with autophagy

(41). Under inflammatory conditions, increased PCSK9 destroys

mtDNA and promotes the formation of mtROS in SMCs, which

further promotes the upregulation of PCSK9 and LOX-1 (41).

When myocardial infarction develops in mice with PCSK9

knockdown or with PCSK9 inhibitor Pep2-8 treatment, the

infarct size is smaller and the autophagy is reduced compared

with WT mice (44).

During the process of chronic myocardial ischemia,

upregulated PCSK9 induces mtDNA damage, which activates

NLRP3 inflammasome signaling [NLRP3, apoptosis-associated

speck-like protein containing a caspase recruitment domain

(ASC), caspase 1, IL-1β, and interleukin-18 (IL-18)] and

promotes caspase 1-dependent pyroptosis (27). The pyroptosis

marker, N-terminal gasdermin D fragment (GSDMD-NT), is

highly expressed in the peripheral area of the infarct zone (27,

119). In PCSK9 knockout mice, the activation of NLRP3 and the

upregulation of GSDMD-NT in the ischemic heart are

significantly inhibited (27).

In summary, PCSK9 inhibits autophagy but promotes

apoptosis and pyroptosis, which is unfavorable for the prognosis

of ASCVDs.
4. Relationship of PCSK9 with ASCVDs

4.1. PCSK9 and atherosclerosis

There is a significant positive correlation between plasma

PCSK9 levels and the risk of atherosclerosis. Feeding a high-fat

diet to mice transduced with an adeno-associated virus

overexpressing the PCSK9 gene induces hypercholesterolemia

and even atherosclerosis (120). Similarly, transgenic pigs with the

D374Y gain-of-function mutation in the PCSK9 gene are more

prone to develop atherosclerosis than WT pigs when fed a high-

fat and high-cholesterol diet (121). In patients with rheumatoid

arthritis (RA), the plasma level of PCSK9 and the ratio of PCSK9

to LDLR are positively correlated with the occurrence and

development of atherosclerosis (122). LRP5 and LRP6, as

coreceptors of PCSK9, promote atherosclerosis by activating the

Wnt/β-catenin signaling pathway, resulting in significant

proliferation of VSMCs and decreased anti-inflammatory

macrophages (78, 81). However, there may still be lack of

correlation between the plasma PCSK9 level and the severity of

subclinical atherosclerosis in patients without symptoms of

cardiovascular diseases (123).

Researchers have found that LincRNA-p21 binding to miR-221

promotes the deacetylation of PCSK9 via negatively regulating the

expression of SIRT1, eventually leading to the enhance of the

proliferation, migration and angiogenesis of arterial endothelial

cells, ultimately diminishing the development of atherosclerosis

(124). Treatment of ApoE-/- mice on a high-fat diet with

berberine reverses the progression of atherosclerotic plaques by

downregulating PCSK9 expression and upregulating LDLR
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expression through the activation of the ERK1/2 signaling

pathway in hepatocytes (125). Similarly, in ApoE-/- mice with a

high-cholesterol diet (1.25% w/w), the sirtuin 1 activator

[SRT3025 and 20(S)-protopanaxadiol] exerts an anti-

atherosclerotic function by reducing plasma PCSK9 and

upregulating LDLR (126, 127).

The proatherogenic effect of PCSK9 may be independent of its

lipid-regulatory function (32). In ApoE-/- mice fed a high-fat diet,

the overexpression of PCSK9 promotes the progression of

atherosclerotic plaques without upregulating the plasma

cholesterol level (32). The increased PCSK9 could accelerate

atherosclerosis through activating the TLR4/NF-κB signaling

pathway and promoting inflammation (32). In homocysteine-

treated ApoE-/- mice with a methionine diet, upregulated PCSK9

inhibits cholesterol efflux mediated by ABCA1 and ABCG1 in

macrophages, thereby accelerating the formation of foam cells

(128). Therefore, PCSK9 promotes the development of

atherosclerosis dependent on inflammatory regulation in part.
4.2. PCSK9 and myocardial infarction

Myocardial infarction is one of the major causes of mortality

worldwide (129). Patients with myocardial infarction have a high

risk of ischemia reperfusion injury and the “no-reflow”

phenomenon after successful percutaneous coronary intervention

treatment, and more improvement in therapeutic strategies is still

needed (129, 130). Cardiomyocytes from adult mice express

PCSK9 at both the transcriptional and translational levels (131).

One week after ligation of the left anterior descending coronary

artery in C57BL/6J WT mice, the increased expression of PCSK9

in the zone bordering the infarct area leads to the progression of

myocardial infarction (44). Non-ST-segment elevation myocardial

infarction patients with higher plasma levels of PCSK9 have a

higher risk of MACEs than those with moderate or low levels of

PCSK9 (132). In young males with myocardial infarction, higher

level PCSK9 exacerbates the severity of coronary artery diseases

and increases the risk of MACEs (133). Consistently, patients in

the Chinese Han population with the PCSK9 R93C variant

(PCSK9 loss-of-function mutant) have a lower risk of myocardial

infarction (134). Therefore, the level of plasma PCSK9 is

positively related to the occurrence risk and the severity of

myocardial infarction.

PCSK9 inhibitors can further reduce plasma LDL-C in addition

to statins treatment at the maximum dose, which is beneficial to the

prognosis of myocardial infarction (135). In the PACMAN-AMI

study, 300 patients with acute myocardial infarction treated with

rosuvastatin (20 mg/day) were randomly divided into two groups.

Patients in the experimental group received alirocumab (150 mg)

subcutaneously once every 2 weeks, and those in the control

group received an equal dose of placebo. Fifty-two weeks after the

initial treatment, intravascular ultrasonography, near-infrared

spectroscopy, and optical coherence tomography results all showed

that the use of alirocumab significantly reversed the plaque in the

two non-infarct-related coronary arteries and improved the

stabilization of plaques (14, 136). In the FOURIER study, the
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reduction of absolute occurrence risk of the endpoint events after

using evolocumab in stable atherosclerotic patients with previous

myocardial infarction was three times as much as in patients

without previous myocardial infarction (137, 138). Similarly, in the

ODYSSEY OUTCOMES study, the use of alirocumab in addition

to statin treatment significantly reduced the risk of MACEs and

death in patients with ACS, which is more significant in patients

with previous myocardial infarction (139).

The level of plasma PCSK9 is positively correlated with hs-CRP

in myocardial infarction patients (140). Higher plasma levels of

PCSK9 and hs-CRP lead to an earlier decline in left ventricular

ejection fraction in myocardial infarction patients, further

increasing the risk of myocardial infarction-induced heart failure

(HF) and even death (140). In C57BL6/J WT mice with

myocardial infarction, PCSK9 promotes the polarization of M1-

type macrophages and inhibits the polarization of M2-type

macrophages by activating the TLR4/MyD88/NF-κB signaling

pathway, leading to the significant inflammatory response,

increased infarct size, and excessive impairment of cardiac

function (43).

In addition, CD36-mediated thrombosis and NLRP3

inflammasome-mediated autophagy are both associated with the

effect of PCSK9 on myocardial infarction prognosis (26, 141).

Regardless of the specific underlying mechanism, upregulated

PCSK9 is unfavorable to the recovery of myocardial infarction.
5. Summary and clinical implications

As the number of patients with ASCVDs increases, many

evidences show that PCSK9 has become a new promising

therapeutic target for patients who are intolerant of statins or

who fail to achieve the plasma lipid goal after treatment with a

maximum dose of statins (10). In general, PCSK9 affects

homeostasis in vivo through multiple functional mechanisms,

including regulating lipid metabolism, promoting the immune

response, promoting platelet activation, promoting thrombosis,

promoting apoptosis, promoting pyroptosis, and inhibiting

autophagy. PCSK9 promotes the progression of ASCVDs via

various mechanisms, and it has been confirmed that PCSK9

inhibitors effectively improve the prognosis of patients with

ASCVDs (10–15).
6. Perspectives and directions for
future research

Based on the existing researches on PCSK9 and cardiovascular

diseases, we propose several perspectives and directions for future

research. First, many studies regarding PCSK9 and immunity in

cardiovascular diseases only detected changes in immune cell

subsets, and a few studies have demonstrated that the above

functions of PCSK9 are mediated by classical pathways, such as

TLR4/NF-kB and NLRP3 (27, 43). Thus, it is meaningful to

determine whether other pathways associated with inflammation

are involved, such as cGAS-STING pathway, Notch pathway
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et al. (142, 143). Whether PCSK9 regulates the transformation of

immune cells subsets by altering their metabolic activity? Which

kind of metabolic activity is altered most dramatically? Which

kind of immune cells subset is most sensitive to the metabolic

effects of PCSK9? These can be further studied. Second, because

PCSK9 and CD8+ T cells accumulate in the ischemic heart and

the effect of PCSK9 on CD8+ T cells in the tumor

microenvironment is already clear, will their cross-talk in the

cardiac microenvironment be different from the former (90)?

What factors account for this difference? Third, whether PCSK9

inhibitors are useful in improving the prognosis of patient with

heart failure (HF) remains controversial. For example, in the

multicenter, prospective, observational Biology Study to Tailored

Treatment in Chronic Heart Failure (BIOSTAT-CHF) study, the

rates of all-cause mortality and the composite of mortality or

unscheduled hospitalizations due to HF had a positive

association with plasma level of PCSK9 and a negative

association with the level of LDLR in HF patients (144). In the

ODYSSEY OUTCOMES study, however, it was found that

although alirocumab reduced plasma cholesterol levels to the

same extent, it did not lower the incidence of MACEs, death, or

unscheduled hospitalizations for HF in ACS patients with

previous HF (145, 146). The inconsistency among the above

findings may be related to the heterogeneity of the enrolled

patient population with respect to the cause or severity of the

heart injury, or the usage and dosage of PCSK9 inhibitors.

Therefore, according to these influencing factors, we can divide

the enrolled patients into different subgroups before carrying out

our research. Finally, it is valuable to investigate whether PCSK9

inhibitors can improve the prognosis of other common

cardiovascular diseases.
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