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Introduction: Structural and functional heart abnormalities can be examined non-
invasively with cardiac magnetic resonance imaging (CMR). Thanks to the
development of MR devices, diagnostic scans can capture more and more relevant
information about possible heart diseases. T1 and T2 mapping are such novel
technology, providing tissue specific information even without the administration of
contrast material. Artificial intelligence solutions based on deep learning have
demonstrated state-of-the-art results in many application areas, including medical
imaging. More specifically, automated tools applied at cine sequences have
revolutionized volumetric CMR reporting in the past five years. Applying deep
learning models to T1 and T2 mapping images can similarly improve the efficiency
of post-processing pipelines and consequently facilitate diagnostic processes.
Methods: In this paper, we introduce a deep learning model for myocardium
segmentation trained on over 7,000 raw CMR images from 262 subjects of
heterogeneous disease etiology. The data were labeled by three experts. As part of
the evaluation, Dice score and Hausdorff distance among experts is calculated, and
the expert consensus is compared with the model’s predictions.
Results: Our deep learning method achieves 86% mean Dice score, while contours
provided by three experts on the same data show 90% mean Dice score. The
method’s accuracy is consistent across epicardial and endocardial contours, and
on basal, midventricular slices, with only 5% lower results on apical slices, which
are often challenging even for experts.
Conclusions: We trained and evaluated a deep learning based segmentation model
on 262 heterogeneous CMR cases. Applying deep neural networks to T1 and T2
mapping could similarly improve diagnostic practices. Using the fine details of T1
and T2 mapping images and high-quality labels, the objective of this research is to
approach human segmentation accuracy with deep learning.
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1. Introduction

Cardiovascular diseases are the leading cause of death worldwide, claiming

approximately 18 million lives a year (1). Its high morbidity burden further underscores

the need for improving our methods to address these diseases. Recent advances in

cardiovascular imaging has enhanced our capability to better understand, prevent,

diagnose and stratify patients (2).
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Cardiovascular Magnetic Resonance (CMR) is the gold standard

imaging method for cardiac anatomy and function assessment, as

well as enabling non-invasive tissue characterization. Besides late

gadolinium enhancement, parametric cardiac mapping is a widely

used technique to quantitatively measure the properties of the

myocardial tissue. It provides direct visualization of tissue-specific

MR properties like T1, T2 and T2*. Parametric mapping provides

pixel-by-pixel representations of the numerical T1 and T2

myocardial tissue properties defined in units of time

(milliseconds). In recent years mapping values have been

established as valuable descriptors of myocardial alterations (3).

These variations reflect on specific intracellular and/or extracellular

tissue changes linked to specific pathologies. For example,

intracellular accumulation of glycosphingolipid in Anderson-Fabry

disease, extracellular fibrosis in cardiac amyloidosis or extra- and

intracellular oedema in acute myocardial inflammation or injury.

Currently, the 2020 Society of Cardiovascular Magnetic

Resonance (SCMR) guideline recommends using manually drawn

regions of interest (ROI) within the mid-ventricular or basal septal

segment to assess the global tissue character (4). This contouring

practice reduces variability caused by motion artifacts, primarily

affecting the lateral wall. On the other hand, manual ROI

segmentation enables reader subjectivity and might increase

interobserver variability. Moreover, several pathological alterations

disproportionately affect the lateral wall of the left ventricle (LV),

such as myocardial injury caused by acute myocarditis,

necessitating reliable tissue quantification in all segments of the

left ventricular (LV) myocardium (5). In contemporary clinical

practice, labor-intensive manual segmentation is the prerequisite to

extracting key clinical measures of the tissue character, such as

global and segmental T1 and T2 mapping values. This task is not

only time-consuming but also prone to several subjective practices,

preventing the generalization of the results.

In recent years artificial intelligence driven methods have

transformed the segmentation and reporting practices in CMR

imaging. This effort, motivated by the time-consuming manual

contouring for precise quantification of volumes- and function,

has led to a multitude of automated tools for cine movie

segmentation (6). In contrast, reliable tools for automated

mapping contour generation is still scarce and did not reach

clinical applicability.

In general, segmentation tools developed within the

frameworks of large, generally very healthy cohorts such as the

UK Biobank (UKB) Imaging substudy are mainly exposed to

healthy anatomy (7); therefore, the performance of these

algorithms is lower within clinical cohorts. Tools developed

within these cohort studies are further limited by the specific set

of acquired slices. For example the UKB contains only one mid

ventricular T1 mapping slice per participant, which prevents

algorithm training in hard-to-learn basal or apical slices.

Moreover, a special type of mapping imaging sequence was used,

which is not widespread in the clinical routine, potentially

limiting clinical implementation of such algorithms.

In this study, we aimed to develop an automated segmentation

tool for mapping images within a diverse clinical cohort to promote

the generalizability of automated mapping segmentation tools.
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2. Related work

There are several CMR mapping sequences suitable for tissue

quantification. The most common variants based on inversion-

recovery, saturation recovery or the combination of both (3). In this

work, we are focusing on the most commonly used T1 mapping

sequence in the clinical routine: the modified Look-Locker

inversion recovery (MOLLI) (8) which permits measurement of T1

times in a single breath hold fashion over 17 heart beats.

Deep learning (DL) has become one of the most widely used

approaches in cardiac imaging in several imaging modalities (e.g.,

Magnetic Resonance Imaging, X-Ray, Computed Tomography,

Ultrasound). These modalities enable non-invasive qualitative and

quantitative assessment of anatomical structures, functions and

support the radiologist/cardiologist for diagnosis, follow-up, and

prognosis as well.

In general DL, can be used within two fields of CMR, a.) at

k-space field, when machine learning reconstruction approaches

were used to learn non-linear optimization and improve the

CMR reconstruction when an MR-based acceleration technique

(e.g., Compressed Sensing) was used (9). In another perspective

DL can be applied at k-space to suppress the artifacts before the

image reconstruction (10).

The second field, b.) when DL could be useful is the image

domain. A huge number of studies concentrate on cardiac MRI

segmentation, because those provide an efficient way for

segmenting tissues (e.g., left ventricle, right ventricle, vessels, etc.).

Tran (11) applies DL to segment the left ventricle, right ventricle

and myocardium on short-axis images. Khened et al. (12) applied a

U-net for segmentation with large anatomical variability. The

majority of ventricle and myocardial segmentation studies used 2D

networks instead of 3D networks, due to the low resolution, motion

artifacts and the limited availability of 3D dataset. Fully

Convolutional Neural Networks (FCNs) could be useful at atrial

segmentation (13), scar segmentation/classification (14) or whole

heart segmentation (15). Hybrid segmentation is also worth

mentioning. In this case the DL-based algorithm is combined with

the traditional segmentation approaches (e.g. deformable models

(16) or atlas-based methods (17). These algorithms provide the

segmentation accuracy. Chen et al. (6) give a very comprehensive

overview about the DL-based applications, their summary illustrates

that to date the majority of DL segmentation tools have focused on

cine SAX and late gadolinium enhanced images providing limited

examples of automated mapping segmentations tools. Recently,

Evan Hahn et al. used DL to perform segmentation on T1

mapping images (7), they achieved high performance, nevertheless

ShMOLLI sequences were used, which have a very limited

availability. Rui Guo also applied deep learning to accelerate cardiac

T1 mapping images with inline MyoMapNet (18).
3. Materials and methods

In this chapter, we introduce the data we utilize in this study, its

acquisition method, preprocessing and annotation methodology.
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Then we present a deep convolutional network based automated

segmentation method, including the network’s architecture and

its training.
3.1. Experimental data: participants

Overall, we included 262 participants in our study (71% male,

mean age 46+ 16 years). To permit the consideration of a wide

variety of cardiovascular phenotypes we consecutively included all

clinical patients who were referred to CMR examination between

September and November 2021 at Semmelweis University Heart

and Vascular Center. Furthermore, we randomly selected healthy

volunteers from the Center’s CMR database.

Diagnostic labeling was provided for each case by two

independent, experienced CMR readers with more than

four and five years of experience (EACVI exams completed).
FIGURE 1

The proportion of healthy volunteers, athletes and pathologies in our dataset w
myocardial alterations” were reported, when the patient was referred to CMR
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In case of uncertainty a third, EACVI level III reader was

contacted for consensus. We labeled each participant as per

the current clinical guidelines and expert recommendations.

Please note, that this dataset is curated to produce a fair

representation of the diversity of clinical datasets and to

provide a real-life segmentation scenario for algorithm

training. If the results of the CMR examination were not

consistent with any specific underlying disease we provided

the phenotypic label best describing the scan, including

left ventricular hypertrophy, aspecific gadolinium

enhancement, aspecific cardiomyopathy indicating further

assessment. This approach will allow for the appreciation

of the diversity of the data. For simplicity, we pulled

together valvular diseases into one diagnostic label, as mitral

prolapse, aortic stenosis and aortic insufficiency are often

present at the same time. Diagnosis groups are shown in

Figure 1.
as reported using cardiovascular magnetic resonance (CMR) imaging. “No
due to a specific diagnostic question, but no pathology was found.
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3.2. Experimental data: image acquisition
and preprocessing

CMR examinations were performed on a 1.5T MR scanner

(Magnetom Aera, Siemens Healthcare, Erlangen, Germany)

using a spine and an 18-channels phased array coil. The

development and testing data contain 638 CMR pre-contrast

(native) T1 maps where the typical imaging parameters are:

TR ¼ 2:7 ms; TE ¼ 1:12 ms; pixelsize ¼ 1:5� 1:5 mm;

slicethickness ¼ 8 mm; flipangle ¼ 35�; FOV ¼ 323� 360; and

720 T2-maps with the following parameters: TR ¼ 2:4 ms;

TE ¼ 1:06 ms; pixelsize ¼ 1:5� 1:5 mm; slicethickness ¼ 8

mm; flipangle ¼ 70�; FOV ¼ 315� 360. MOLLI technique was

used at both maps. All images were short-axis views of the left

ventricular (LV) myocardium. We acquired mapping sequences

in three short-axis slices according to the anatomical

landmarks: in the basal, midventricular and apical part of the

heart. Two-fold accelerated parallel imaging technique

(GRAPPA) was used to shorten the breath-hold.

Conventional MOLLI sequence was used to produce T1 and

T2 mapping images as output maps from individual images

ascertained at predefined intervals. T2 maps were generated by

using a T2-prepared steady-state free precession sequence (19)

with three different echo times (TE): TE1 ¼ 0 ms, TE2 ¼ 25

ms, TE3 ¼ 55 ms (20). In order to generate T2 maps, several

images (in our case 3) with varying T2 sensitivity are acquired

at the same cardiac phase over multiple cardiac cycles. Then, a

mono-exponential curve is fit at each pixel on the T2-weighted

images and finally a T2 map is generated (20). For T1 maps

generation, multiple (in our case 8) T1 weighted images are

acquired at different times after the inversion pulse and then

the data can be fit to an equation: A� B exp (� t=T1), where

A and B are fitting parameters, t is the time after the

preparation pulse and T1 is the T1 relaxation time (21). To

increase the training and validation sample of our algorithm

we included each image individually as well as T1 and T2

parametric maps.

We split the dataset into three partitions: training, validation

and testing with 65%-20%-15% ratios of all study participants

respectively. This partitioning is fixed for all trainings to help

reproducibility and comparability of models. We perform

partitioning on a case level (instead of for images) to avoid any

information from the test set being included in the train and

validation partitions. I.e., all data of a patient is strictly included

in only one of the training, validation, or test partitions. This

partitioning results in 832, 287, 239 T1 and T2 maps (172, 50,

40 cases) in the training, validation and test sets respectively. A

summary of the number of samples per slice in both the training

and test sets can be found in Table 1.
TABLE 1 Number of mapping images for each slice in our training and test
datasets.

Basal Midventricular Apical Total
Train 294 293 245 832

Test 80 80 79 239
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3.3. Experimental data: ground truth
segmentation, and interobserver subset

Ground truth segmentation was performed by two experienced

observers using the Medis Suite Software (Medis Medical Imaging

Software, The Netherlands). We draw the endo- and epicardial

contours manually on the motion-corrected images. After visual

quality control, endo- and epicardial contours were manually

drawn in basal, midventricular and apical slices covering the LV

myocardium. To minimize partial volume effect care was taken

to exclude the border zones between myocardium and the blood

pool during segmentation.

In the test set (15% of the complete dataset, n ¼ 40 patients),

we evaluate the interobserver variability of the manual

segmentation approach. Three readers with one, five and four

years of experience in CMR reporting, respectively provided the

segmentation. They were blinded to clinical label and

demographic characteristics of the patients.
3.4. Implementation: model architecture
and training details

We apply a widely used U-Net (22) segmentation network to the

cardiac mapping segmentation problem. Our motivation for

choosing this architecture is to provide a method that can be

trained quickly and achieve a strong baseline for segmentation. To

simplify and shorten the training of this network we initialize the

U-Net’s encoder with weights which were previously pretrained on

a large and diverse general image dataset, ImageNet (23). Even

though properties and distribution of data from the ImageNet

dataset differ from MRI images, such transfer-learning approach is

often used successfully in medical image analysis problems (24).

As opposed to the encoder, we do not initialize the decoder from

pretrained weights, instead train its weights for the mapping

segmentation problem from random initialization.

A U-Net-like encoder-decoder model can be constructed of

multiple encoder and decoder architectures. Pretrained weights

are available for many encoder architectures. We opted for a

ResNet-50 (25) encoder due to its frequent use in computer

vision literature for segmentation tasks. The encoder and the

decoder consist of convolutional, pooling and upsampling layers,

with 50 and 8 convolutional layers in the encoder and the

decoder, respectively. The reason for choosing a smaller decoder

is to introduce less randomly initialized weights into the

segmentation network, thereby reducing its training time. The

detailed architecture of our model is shown on Figure 2.

Our experts provide ground truth segmentation labelling as epi-

and endocardial contours. These are represented as ordered two-

dimensional point sets described by {(x, y) [ R} pixel coordinates

for epicardial and endocardial left ventricle contours. Although

this representation is more accurate and efficient than

segmentation masks, the latter is required in order to train neural

networks for segmentation. We convert contour point sets to

segmentation masks, i.e., pixel-level classification labels, with three

classes: left ventricular cavity (area enclosed by the endocardial
frontiersin.org
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FIGURE 2

Deep neural network architecture: U-Net with ResNet-based encoder and convolutional decoder.
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contour), left ventricular myocardium (area between the endo- and

epicardial contour), and “background,” which is the class assigned

for pixels that do not belong to the first two classes, i.e. all pixels

outside the epicardial contour. Finally, we generate segmentation

masks to match the resolution of the input samples (thereby

achieving pixel-level classification). We apply random

augmentations to the input samples during training. These are

cropping, resizing, contrast and intensity perturbations. We use

fixed cropping and resizing to match the input size of the network

during inference (which is 224� 224 pixels).
FIGURE 3

Learning rate schedule used throughout the training as proposed by Loshchil
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We train the segmentation network using the Adam gradient-

based optimization algorithm (26). The objective function for

segmentation training is the Jaccard loss (27). We train the

network for 150 epochs, which takes 50–60 min on a single

NVIDIA TESLA V100 GPU. Based on empirical analysis, we

apply a periodic cosine annealing learning rate schedule (see

Figure 3).

During the first 70 epochs we include both T1 and T2

parametric maps and the images used to construct them in the

training sample set, however, during the last 80 epochs we limit
ov and Hutter (28).
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the inputs to the T1, T2 parametric maps only. The first part of the

training aims to achieve robust and well-generalizing performance

by training on as many samples as possible, while the second half

of the training aims to fine-tune the network to mapping

segmentation. (The reason for the uneven 70–80 split of the

epochs is to match the periodicity of the learning rate schedule.)
3.5. Implementation: hardware and
software architecture

For training our automated segmentation method, we used a

single Nvidia V100 16 GB GPU, 10 Intel(R) Xeon(R) Silver 4114

CPU cores (2.20 GHz) and 39 GB RAM. We implement our

model and training using PyTorch Lightning and utilize methods

from multiple open source repositories.1,2,3,4

Training our deep learning model on this system takes cca.

50–60 min, while inference on 100 images takes 12.3 sec. We use

the same hardware for inference on the test set.
3.6. Evaluation metrics

This chapter presents the metrics and comparison baselines we

used to evaluate the proposed segmentation method.

We evaluate the performance of our segmentation method based

on two metrics, Dice score and Hausdorff distance (DH) computed

between corresponding predicted contours and expert annotations.

For a single sample with contours from multiple annotators we

compare the same prediction to each expert’s contour. For

computing the Dice score we convert ground truth contours to

segmentation masks and compare these against predicted

segmentation masks. Computing the Hausdorff distance requires

predicted contours, which we obtain by fitting an epi- and

endocardial contour on the predicted segmentation mask. We

explain the applied contour fitting pipeline in the next paragraph.

In addition to these metrics, we calculate myocardial T1 and T2

mapping values based on the contours predicted by our model

and compare to those derived from expert-determined contours.

For fitting contours on predicted segmentation masks, we rely

on an algorithm by Teh and Chin (29). However, to acquire

accurate and robust contours, we apply further processing steps, as

illustrated on Figure 4. Inaccurate predictions can include multiple

distinct regions of the same class, which produce multiple epi- or

endocardial contours on a single mapping. From these we select

the ones which are “not too elongated” (have a less than 1:3 with-
1https://github.com/qubvel/segmentation˙models.pytorch, access date: 10

November 2022.
2https://github.com/rwightman/pytorch-image-models, access date: 10

November 2022.
3https://opencv.org/, access date: 10 November 2022.
4https://albumentations.ai/, access date: 10 November 2022.
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height ratio) and select the one with the largest area. On some

mapping images the myocardium appears very thin, resulting in C

shaped endocardial contours, which we correct by replacing the

contour with its convex hull. Note, that we only perform this

replacement if the contour is not fully closed (“C-shaped”), which

we determine based on the difference between the contour’s and

its convex hull’s area. As a last step, we interpolate the fitted

contour with a B-spline (30) to improve the accuracy of the

Hausdorff distance and Mean Surface Distance metric computation.
3.7. Implementation: experiment design

We compute evaluation metrics on T1 and T2 mapping images

of our test set for which contours are available from 3 expert

annotators. The train and the test partitions are disjunct sets. As

our aim is to develop a segmentation method for T1 and T2

parametric maps, we only use these during evaluation, while

during training we also use images that were used to compute

the parametric maps. We compute metrics on each slice and

mapping type (T1 or T2) separately and report the distributions

and cumulate results of these.

In order to evaluate the statistical significance of differences in

segmentation metrics of our model and the agreement of experts,

we employed one-way Analysis of Variance (ANOVA) with

Welch’s correction and the Tukey Post-Hoc Test, considering

a significance level of p , 0:05. We used Kruskal-Wallis

non-parametric one-way ANOVA test to evaluate the statistical

significance of differences in T1 and T2 values and used

Dwass-Steel-Critchlow-Fligner test for post-hoc pairwise

comparisons. We indicate the results of these tests in Tables 2 and

3 to 5 with identical letters in superscript for results that are not

significantly different. We used the jamovi statistical software for

these tests (31).
4. Results

4.1. General segmentation accuracy

Figure 5 and Table 2 show our primary results. On Figure 5,

both metrics on epi- and endocardial contours indicate that our

automated segmentation method performs comparable to how

expert annotators agree, as the distributions and even standard

deviation bands overlap. The Dice score and IoU score both show

5% difference between our model and experts’ agreement (see

Table 2).

The similar epi- and endocardial Hausdorff distance distribution

of expert’s agreement results indicates that experts can label epi- and

endocardial contours equally accurately. This observation is in-line

with clinical experience. In contrast, the epicardial Dice score

shows approximately 15% lower agreement between experts

compared to endocardial results. This can be explained by the

difference in how we compute epi- and endocardial Dice score.

We compute the epicardial Dice score on the myocardium, which

is a region with ring-like topology, while the endocardial Dice is
frontiersin.org
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FIGURE 4

(A) Illustration of our algorithm that fits epi- and endocardial contours to segmentation masks. (B) Segmentation mask with the same resolution as the
input image. (C) Contour points fitted on the low-resolution segmentation mask using a dominant point detection algorithm by C-H Teh and Roland
T Chin (29). (D) Illustration of a case where correcting the contour using its convex hull improves the validity and accuracy of the contour. (E) Result
the interpolation step which is performed by first fitting a smooth spline on the fitted contour points (30), then sampling it between the initial points.
This step improves the numeric accuracy of contour-based metric computation (e.g. Hausdorff distance) and also enforces a smooth property on the
fitted contours, similarly as the ones of expert annotators. On subfigure (A), steps indicated with dashed outline are only performed if necessary: -
Filtering of contours is only necessary if the segmentation network incorrectly predicts multiple disjoint epi- or endocardial regions. We select the
contour with the largest area and an approximately round shape (have a less than 1:3 with-height ratio) - Correcting a contour using its convex hull
is necessary only in rare cases, when the segmentation mask includes a C-shaped region (e.g. the light blue region on (D)) In such case he fitted
contour will inherit this C-shaped topology (see the red crosses on the figure). We can simply improve such contour by replacing in with its convex
hull (green line on subfigure D)).

TABLE 2 Mean metrics for comparing our method to expert annotators.

Mean metrics Automated VS
expert annotation

Agreement of three
experts (interobserver)

IoU - Jaccard
index * (%)

80.02a 85.22b

Dice score * (%) 86.40a 90.81b

Hausdorff
distance + (mm)

4.68a 2.65b

Mean surface
distance + (mm)

2.10a 1.12b

For each metric, differences are statistically significant (p , 0:001, also denoted

with different lettering in superscripts). * indicates higher-the-better metrics,

while metrics + are lower-the-better.

TABLE 3 Mean metrics for comparing our method to expert annotators,
displayed separately for T1 and T2 mapping images.

Automated
vs expert
annotation

Agreement of
three experts
(interobserver)

T1 T2 T1 T2
IoU - Jaccard index * (%) 81.7a 78.39a 84.14b 86.25b

Dice score * (%) 87.8a 85.02a 89.84b 91.73b

Hausdorff distance + (mm) 3.97a 5.39a 2.89b 2.41b

Mean surface distance + (mm) 1.77a 2.44a 1.34b 1.00b

Number of training samples 378 454 — —

Number of test samples 116 119 116 119

For each metric and mapping type (T1 or T2), differences are statistically significant

(p , 0:001, also denoted with different lettering in superscripts). * indicates

higher-the-better metrics, while metrics + are lower-the-better.

Kalapos et al. 10.3389/fcvm.2023.1147581
computed on the closed disk-like region of the left ventricle. The

sensitivity of the Dice score to similar errors on ring-like regions

is higher than on closed disks, which can explain the lower

epicardial Dice results. Therefore, we argue that our automated

tool performs comparable on epicardial contours as well.

InTable 3, we present our results separately for T1 andT2mapping

images. All metrics indicate that our model performs better on T1

mapping than on T2 mapping, while metrics for experts indicate

greater agreement on T2 mapping. Based on our comparison of

expert agreements with our model, we observe that the model is

closest to expert accuracy on T1 mapping, while the gap between

model and expert accuracy is greater on T2 mapping. It can be

explained by the fact that T1 mapping images are often noisier than
Frontiers in Cardiovascular Medicine 07
T2 mapping images, which makes it more difficult for experts to

determine epi- and endocardial contours with accuracy, but our

method can learn to invariantly locate them despite these noises.
4.2. Analysis of segmentation accuracy at
basal, midventricular and apical short-axis
slices

Figure 6 illustrates qualitative results for our automated

method and allows for comparison to contours identified by an
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FIGURE 5

Violin plots showing the results of pairwise comparison of our automated method (pink halves) to expert annotators (green halves). Horizontal dashed
lines show median and Q1, Q3 quartiles. Violin plots are cut at the bounds of underlying data. Note the logarithmic y-axis on the Hausdorff Distance. We
plot epi- and endocardial results separately to allow for accurate reporting of Dice score results (plotting the mean of epi- and endocardial dice score
would hide the difference in these two metrics).
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expert. The three columns show examples with lowest,

intermediate, and highest agreement between an expert and our

model, separately for each slice. The rows of Figure 6 show

examples for apical, midventricular and basal slices respectively.

We include Figure 7 to illustrate the different levels of

agreement between two experts as a reference.

Figure 8 and Table 4 shows results separately for the three

slices used in this study, and Table 1 the number of training and

test samples for each slice. Both the Dice score and Hausdorff

distance distributions show that the proposed automated method

performs comparable to how experts agree on basal and

midventricular slices. However, the lower apical Dice score

highlights that apical slices are more challenging even for

experienced annotators. Also, our deep learning method shows a

higher accuracy degradation on apex slices than experts do.
4.3. T1 and T2 mapping values

Parametric T1 and T2 mapping images allow medical

practitioners to diagnose cardiac diseases based on quantitative

measures. The primary practical aim of our research is to develop

methods that automate the identification of epi- and endocardial

contours and thereby simplify the process of measuring myocardial

T1 and T2 values. To assess our method’s ability to aid T1 and T2

value measurement, we calculate myocardial T1 and T2 mapping

values based on the contours predicted by our model and

compared to those derived from expert-determined contours

(Table 5). Our model’s median T1 and T2 values were 1041.73ms

(IQR: 110.53ms) and 56.24ms (IQR: 13.2ms) respectively. These
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values were comparable to those obtained by each observer

(median T1 and T2 values across all observers were 1026.41 and

50.96ms respectively). The relatively close interquartile ranges

(IQRs) suggest good overall agreement between our model and

human observers, indicating the robustness of our method. This is

further supported by median T1 values not differing significantly

between our automated method and experts.

The intraclass correlation coefficient for the average ratings

across observers was 0.90 and 0.81 for T1 and T2 mapping,

respectively, indicating good reliability. The 95% confidence

interval for the ICC was 0.87 to 0.93 for T1 and 0.75 to 0.86 for T2.
4.4. Ablation

4.4.1. Network architecture
To investigate the effectiveness of our proposed network

architecture, we compare our results to a U-Net that follows the

original architecture proposed by Ronneberger et al. (22). Data for

training and testing is identical to that used in the rest of our work.

Table 6 shows that the proposed architecture (using a residual

encoder and a lightweight decoder) outperforms the original U-Net

architecture, while also offering faster training and inference times.
4.4.2. Pretrained encoder
We conducted experiments with initializing the encoder’s

weights randomly and from a pretrained ImageNet model.

Table 7 shows that initializing the encoder’s weights from an

ImageNet pretrained encoder provides 5% in terms of Dice score
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FIGURE 6

Predicted and ground truth contours with low, intermediate and high Hausdorff distance results, selected separately for apical, midventricular and basal
T1 maping images.
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over random initialization. All further inspected metrics were also

superior for the pretrained approach.

4.4.3. Post-processing
Ablation experiments are conducted to verify that each

post-processing step we propose in Section 3.6 improves the

accuracy of the fitted contours. Following the contour fitting

algorithm (29) we add each post-processing step one-by-one

and report the mean Hausdorff distance results of the same

model in Table 8. Additionally, we include the distribution

of Hausdorff distance results over all samples for each post-

processing step in the Appendix, Figure A1. Since the Dice

score is independent of the contour-fitting pipeline, we

report only the Hausdorff distance results. We observe that

each post-processing step improves the fitted contour
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accuracy. The most significant improvement is achieved by

the interpolation step. In particular, this is due to the

fact that we calculate the Hausdorff distance for the

discrete points of the predicted and ground truth contours.

Due to the interpolation, Hausdorff distance computations

are considerably more accurate. In cases where the

predicted segmentation map includes additional incorrectly

labelled pixels, the fitted contours must be filtered to select

the one that is most likely the correct one. This is

accomplished through the filtering step, which results in a

significant improvement in the Hausdorff distances.

Finally, the correction step based on the convex hull of

the predicted contour improves contours in a few cases

and therefore improves the overall accuracy of the fitted

contours.
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FIGURE 7

Example contours from two experts with different levels of agreement (measured by Hausdorff distance), plotted for two observers as a reference. All
subfigures show apical T1 maps.

FIGURE 8

Per-slice violin plots comparing the agreement of our model with experts to agreement among experts. Table 1 shows the number of mapping images
we used for training and evaluation (testing). Violin plots were generated on the test set.
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5. Discussion

This single center study based on 262 heterogeneous CMR

cases may have important implications into clinical practice by
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providing high accuracy automatic segmentation for clinical use.

Our algorithm can be implemented into the everyday clinical

workflow after rigorous external validation. Automated contour

prediction using our tool takes 12.3 sec for 100 slices on average,
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TABLE 4 Mean metrics for comparing our method to expert annotators, displayed separately for each slice.

Automated vs expert annotation Agreement of three experts (interobserver)

Basal Midventricular Apical Basal Midventricular Apical
IoU - Jaccard index * (%) 84.06a 81.83a 73.13A 87.5b 85.49b 81.78B

Dice score* (%) 90.09a 88.24a 79.86A 92.62b 90.98b 88.12B

Hausdorff distance + (mm) 3.59a 3.52a 7.41A 2.51b 2.6b 2.91B

Mean surface distance + (mm) 1.57a 1.59a 3.37A 1.05b 1.12b 1.39B

For each metric and each slice, differences are statistically significant (p , 0:001, also denoted with different lettering in superscripts). * indicates higher-the-better

metrics, while metrics + are lower-the-better.

TABLE 6 Ablation study for the effect of the architecture on the
segmentation performance.

Original U-Net
(22)

Resnet50 encoder
with lightweight
decoder (Ours)

Inference time for one slice (s) 0.42 0.18

Training time (min) 90 60

Number of parameters 31M 32M

IoU - Jaccard index * (%) 73.21 80.02

Dice score * (%) 79.14 86.39

Hausdorff distance + (mm) 15.4 4.69

Mean surface distance + (mm) 8.89 2.11

* indicates higher-the-better metrics, while metrics + are lower-the-better.

TABLE 7 Ablation study for the effect of pretrained encoder on the
segmentation performance.

Without pretrained
encoder

With pretrained
encoder

IoU - Jaccard index * (%) 75.11 80.02

Dice score * (%) 81.69 86.39

Hausdorff distance + (mm) 9.63 4.69

Mean surface distance + (mm) 3.82 2.11

The decoder is always initialized randomly. * indicates higher-the-better metrics,

while metrics + are lower-the-better.

TABLE 5 Median T1 & T2 values computed on our model’s output and for
each observer.

Model Observer 1 Observer 2 Observer 3
T1 (ms) 1041.7 (110.5)a 1017.4 (62.3)a 1025.9 (69.7)a 1032.9 (76.17)a

T2 (ms) 56.2 (13.2)a 49.5 (5.3)b 51.6 (6.8)c 51.7 (6.4)c

Inter Quartile Range (IQR) is also reported in brackets. For each observer the

median and IQR are computed over cca. 113 samples. For each mapping value,

medians with different letters in superscript differ significantly (p , 0:05).

TABLE 8 Ablation results showing the effect of each step in the proposed
contour fitting pipeline.

Hausdorff
distance (mm)

No post-processing (only contour-fitting by (29)) 14.67

+ Interpolation 9.91

+ Size- and roundness-based filtering 5.27

+ Convex hull-based correction 4.70
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while this requires approx. 100 min for experts. The automated

segmentation algorithm will contribute to the optimization and

time efficiency of mapping post-processing, which is still

unsolved by most commercially available tools. Our segmentation

method provided reasonably good results for apical segments

which are notoriously challenging. This heterogeneous data

source will help maintain the stability of the results across CMR

vendors and mapping sequences. Future research looking into

the clinical validity of global mapping values derived from the

implementation of this code will later permit automated

segmentation of long axis images.

Our study’s novelty resides in three significant aspects. Firstly,

we leveraged a U-Net based deep learning architecture, which,

while widely used in cine CMR image segmentation tasks (6),

has not been explored in T1 and T2 mapping segmentation. Our

work optimizes the U-Net architecture for this specific

application, along with tailored data processing techniques

applied in the model training phase. Secondly, the segmentation

of T1 and T2 mapping images presents unique challenges, as it

contains more detailed information about tissue properties and,

thus, slight discrepancies in segmentation can result in notably

different measurements. Our study is one of the first to address
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these distinct challenges of mapping image segmentation (7).

Finally, we augmented the robustness and generalizability of our

segmentation tool by training and validating it on a diverse

dataset comprising both clinical patients and healthy volunteers.

This heterogeneous dataset ensures that our model is effective

and applicable across various cardiovascular conditions.

Our tool holds significant implications for diagnosing and

managing a variety of cardiovascular diseases by enabling faster

quantitative analysis of critical diagnostic markers, potentially

saving clinicians and researchers significant time and labor.

Envisioned as an integral part of existing clinical workflows, our

model’s key goal is to serve as an inline segmentation tool on

CMR scanners. This integration would allow real-time analysis,

facilitating a more streamlined diagnostic workflow, and enabling

radiographers and physicians to adjust scanning protocols on-

the-go if necessary, thus significantly enhancing patient care.

Our method shows very similar mid-ventricular and basal

performance and the notably worse apical segmentation

performance. We would like to emphasize multiple factors

contributing to these results, as they contradict findings of

previous studies reporting cine segmentation tools (6). First,

our training dataset contains a lower number of labelled

Apical slices (see Table 1). Second, the segmented region is

the smallest on apical slices and the resolution of these areas
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FIGURE 9

Distribution of achievable best Hausdorff distance values. We measure
achievable lowest contour accuracy for each mapping by converting
ground truth contours to mask, fitting contours to these, then
computing Hausdorff distance between these and the initial ground
truth contour.
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is the worst, which makes this region challenging both for our

model and experts. Third, in our center we take particular care

during mapping slice planning, and we aim to ensure that the

basal slice does not contain the aortic outflow tract. This

planning approach reduces the complexity of the basal slices

in our dataset, allowing our algorithm to perform more

effectively in these regions. Finally, the blood-myocardium

contrast in mapping images is inherently different from that in

cine images, which are commonly used for most segmentation

tool development. Our algorithm addresses the unique

challenges posed by this contrast difference, demonstrating its

ability to handle these characteristics and provide efficient,

accurate segmentation.

The potential of our tool to be incorporated in clinical practice is

also highlighted by our results on estimating T1 and T2 values values.

Non-significant differences between T1 values obtained using our tool

and those obtained by experts indicated that our model’s accuracy is

comparable to that of experts on T1 mapping images.

Our automated model yielded a slightly elevated median T2 value

of 56 ms, which can be attributed to multiple factors. Notably, our

training and testing datasets encompassed a diverse set of patients

with varying cardiac conditions, including myocarditis, post-heart

transplant, and hypertrophic cardiomyopathy. Each of these

conditions is known to potentially elevate T2 values due to the

presence of myocardial edema or fibrosis. The borderline increased

T2 values observed in both our training (median 52ms, IQR 7ms)

and testing sets (median 51ms, IQR) as provided by expert

annotation confirms this assertion. It is important to clarify that

our model was designed with an emphasis on segmentation

accuracy, rather than specifically trained on predicting T2 values.

Despite this, the input data, with its broad pathological range, may

have indirectly influenced the resulting T2 values.

One of the challenges with automated models is the potential for

segmentation errors. Even minor discrepancies in segmentation can

significantly influence the derived T2 values. In our case, if the

model tends towards over-segmentation, it might include areas

affected by partial volume effect that is excluded by the expert

readers, thereby inflating the computed T2 values. Our finding

highlight the need for stringent quality control procedures when

deploying automated tools in clinical scenarios. Such measures can

help ensure segmentation accuracy, providing more reliable T2

mapping values. Furthermore, it underscores the necessity of

ongoing research to understand these discrepancies better, to

continuously refine our model (for example through further

optimizing for mapping values), and to enhance its clinical utility

in a diverse patient population.

This is a relatively small, single center study using CMR data

from a single vendor and scanner, which prohibits the

generalizability of our results. Of note all study participants are

of Caucasian ancestry, therefore we could not test the fairness of

our algorithm in terms of a more diverse ethnic background.

Moreover, the dataset is biased in gender (�71% male vs �29%

women), which might also affect our outputs. To maximally

preserve patient privacy, we removed all metadata, such as sex,

age, ethnicity and body size measure, from our dataset. As a

result, we did not analyze our method’s segmentation accuracy
Frontiers in Cardiovascular Medicine 12
with respect to variables. We believe that different types of

diseases (e.g., HCM, DCM) have a much greater influence on the

efficiency of our segmentation model, however, to ensure optimal

clinical implementation, future works should investigate the

effect of these variables on the accuracy of our model.

Deep learning models could be improved in many cases by

adding more data and building bigger models, according to the

power law of deep learning (32). For much more general use, the

inclusion of additional data (from other sites, scanners, field

strength) would be essential. It is the theoretical best error, that

can be reached by exploiting the information content of the data,

namely T1 and T2 mapping images in this case. It is our belief

that the consensus labeling is a good approximation of this

region. Although the current discrepancy between the consensus

label and the AI-based model is small, it may be further reduced

by incorporating more data in the training phase.

Moreover, the limitation of the deep learning approach are the

following:

† Anamnesis or any additional information describing the

patients are not used by our segmentation method, therefore

it cannot incorporate these into its predictions.

† Our approach is based on a simple 2D segmentation network,

therefore it is unable to learn and reason based on 3D

structure of the hearth.

† In this study we do not conduct confidence estimation, or apply

an explainability method to the applied automated method.

† We ran experiments with a single model. Introducing other

architectures (e.g. vision transformers (33)) and massive

hyperparameter optimization (34) is the subject of future

research.

† Producing segmentation masks from ground truth contours

results in some information loss, because contours are given
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more accurately than the resolution of the segmentation masks.

This leads to noticeable inaccuracy of contours fitted ground

truth segmentation masks, which presents the best achievable

accuracy for our model. We can measure this value for each

mapping by converting ground truth contours to mask, fitting

contours to these, then computing Hausdorff distance

between these and the initial ground truth contour. The

distribution of the best possible values is plotted on Figure 9.

6. Conclusion

In this study, we successfully developed and demonstrated

the feasibility of a deep learning model for the segmentation

of cardiac T1 and T2 mapping images. Our AI-based model,

trained on over 7,000 raw mapping images from 262

participants, showed minimal discrepancies when compared

with expert consensus, affirming its accuracy and reliability.

The challenges encountered during the development of our

model underlined the complexity of CMR T1 and T2 mapping

segmentation. Our research underscored the need for future

work to not only focus on achieving accurate segmentation,

but also on ensuring the accurate measurement of tissue

properties. The promising initial results from our model

suggest potential for its integration directly into scanner

systems. This prospect could significantly streamline clinical

routines and enhance the diagnosis and management of

cardiovascular diseases. Ultimately, our work represents a

significant step towards the development of real-time,

automated tools for CMR mapping analysis.
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Appendix

We supplement the results of Section 4.4.3 with Figure A1

showing the effect of each step in the proposed contour fitting

pipeline. For this, we show the distribution of Hausdorff distance

results over all samples for the same model, with the indicated

post-processing steps added to the pipeline.

Figures A2 and A3 show qualitative results on T2 mapping

images, comparing our model to one observer (Figure A2) and

illustrating interobserver variability as a reference (Figure A3).
FIGURE A1

Ablation results showing the effect of each step in the proposed
contour fitting pipeline. The figure shows the distribution of Hausdorff
distance results over all samples for the same model, with the
indicated post-processing steps added to the pipeline.

TABLE A1 Ablation study comparing dedicated models for T1 and T2
mapping images with a combined model. The table shows the mean
and standard deviation of each metric over all samples.

Model Combined model T1 only
model

T2 only
model

Test sample type T1 T2 T1 T2
IoU - Jaccard index * (%) 81.7 (9.07) 78.39 (8.8) 82.41 (8.16) 82.73 (8.3)

Dice score * (%) 87.8 (8.79) 85.02 (9.12) 88.51 (7.51) 88.78 (8.14)

Hausdorff distance + (mm) 3.97 (3.36) 5.39 (7.69) 3.79 (3.65) 4.55 (9.41)

Mean surface distance +
(mm)

1.77 (1.31) 2.44 (5.52) 1.77 (1.95) 2.21 (6.11)
Dedicated model for T1 and T2
mapping images

Training a dedicated model for T1 and T2 mapping images

separately could have the benefit of better fitting to each type of

image, as these have different intensity range and characteristics.

To verify this hypothesis, we modify our methods to train and

test dedicated models on T1 or T2 images only, while keeping all

other hyperparameters unchanged. Table A1 shows the results of

dedicated T1 and T2 models, evaluated on T1 and T2 images

respectively, and includes the resuts of the combined model

separately on T1 and T2 images (as in Table 3) for comparison.

The results show that the dedicated models perform better than

a combined model. The accuracy improvement of dedicated

models on T2 mapping is statistically significant, however not on

T1 mapping. In our opinion, these improvements are not

guaranteed to transfer to larger more diverse (multi-center)

datasets, and don’t justify the added complexity resulting from

training, fine-tuning and deploying separate models. Therefore,

we choose to use a single model for both T1 and T2 mapping

images in our experiments.
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FIGURE A2

Predicted and ground truth contours with low, intermediate and high Hausdorff distance results, selected separately for apical, midventricular and basal
T2 maping images.

FIGURE A3

Example contours from two experts with different levels of agreement (measured by Hausdorff distance), plotted for two observers as comparison
baseline to Figure A2. All subfigures show apical T2 maps.
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