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Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies
and accounts for 3%–6% of cardiac malformations. As congenital AVS is often
progressive, many patients, both children and adults, require transcatheter or
surgical intervention throughout their lives. While the mechanisms of
degenerative aortic valve disease in the adult population are partially described,
the pathophysiology of adult AVS is different from congenital AVS in children as
epigenetic and environmental risk factors play a significant role in manifestations
of aortic valve disease in adults. Despite increased understanding of genetic
basis of congenital aortic valve disease such as bicuspid aortic valve, the
etiology and underlying mechanisms of congenital AVS in infants and children
remain unknown. Herein, we review the pathophysiology of congenitally
stenotic aortic valves and their natural history and disease course along with
current management strategies. With the rapid expansion of knowledge of
genetic origins of congenital heart defects, we also summarize the literature on
the genetic contributors to congenital AVS. Further, this increased molecular
understanding has led to the expansion of animal models with congenital aortic
valve anomalies. Finally, we discuss the potential to develop novel therapeutics
for congenital AVS that expand on integration of these molecular and genetic
advances.
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Introduction

Congenital heart disease (CHD) is the most frequently occurring birth defect with an

incidence of 0.8%–1.2% among live births (1, 2). Congenital aortic valve stenosis (AVS)

has an incidence of 3.8–4.9 per 10,000 live births, representing ∼3%–6% of all CHD

(1–3). Congenital AVS occurs more commonly in males as compared to females, with

a reported ratio ranging from 3 to 5:1 (4, 5). It is defined as an obstruction of the

aortic valve orifice due to a congenital valve malformation, which could be in the form

of a bicuspid aortic valve (BAV), unicuspid aortic valve, or fused or malformed aortic

valve cusps (6, 7) Associated CHD is found in approximately 20% of patients with

congenital AVS, including ventricular septal defect (VSD), coarctation of the aorta

(CoA), and patent ductus arteriosus (8). In this review, we aim to describe our
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understanding of aortic valve development with a particular

focus on the embryology, anatomy and pathology relevant to

congenital AVS. Further, we discuss the clinical characteristics

of congenital AVS, including the natural history and current

treatment options. Lastly, we highlight the molecular genetics

of congenital AVS and discuss the prospects for the

development of future potential therapeutics.
Embryology

Heart development occurs during the first trimester of

pregnancy in humans from the embryonic gestational ages of 6

to 9 weeks. Here, we focus on semilunar valve development and

refer the reader to comprehensive reviews on cardiac

morphogenesis for details on this process (9, 10). Development

of semilunar valves, which include the aortic valve and

pulmonary valve, initiates between 7 and 9 weeks of gestation in

the human embryo, and development of mature valve cusps

continues after birth (11). This process has been well studied in

mouse embryogenesis and is detailed here (12, 13). The primitive

linear heart tube consists of an outer layer of myocardium and

an inner layer of endocardium at embryonic day (E) 8.0. By

E9.5, the heart has undergone rightward looping and is

composed of the following 4 segments: the atrium,

atrioventricular canal (AVC), ventricle, and outflow tract (OFT).

During this time, a subset of endocardial cells forms swellings

known as endocardial cushions within the AVC and embryonic

cardiac OFT. In response to molecular signals from the adjacent

myocardium, endocardial cells covering the cushions undergo

endothelial-to-mesenchymal transformation (EMT) between E9.5
FIGURE 1

Aortic valve development and progression to myxomatous aortic valve. (A
endothelial cells (VECs) lining the cushion undergo endothelial-to-mesenchy
between 7 and 9 weeks gestation in humans, and embryonic day (E) 9.5 and
remodeling into mature valve leaflet. (C) Mature valve layers consist of fibro
with leaflet thickening, activated VICs (black cells), disorganized extracellul
collagen and elastin fibers.
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and E11.5 (Figure 1A). These mesenchymal cells migrate into

the cardiac jelly and proliferate to occupy the endocardial

cushions in the proximal OFT, while in the distal OFT the

cardiac neural crest cells (CNC) are the major contributor. By

E11.5, the AVC and OFT cushions have completed

cellularization. After E11.5, the AVC and OFT cushions rapidly

grow and remodel. This involves both apoptosis of valvular

interstitial cells (VICs) as well as dynamic ECM arrangement

(Figure 1B). Complex molecular networks tightly regulate each

step of EMT, including the transforming growth factor-β (TGF-

β) (14, 15), bone morphogenetic protein (BMP) (15, 16), WNT

(17, 18), Notch (19, 20) and vascular endothelial growth factor A

(VEGF) signaling pathways (21, 22). Although EMT is required

for pooling mesenchyme valve precursors within the endocardial

cushions, other cell lineages also play an essential role, including

the CNC and secondary heart field (SHF) cells (23–27). CNC

cells occupy the distal outflow tract cushions after migration from

the aortic sac. By E12.5, the distal outflow tract is divided into the

into the aorta and pulmonary artery by the aortopulmonary

septum. On the other hand, the proximal outflow tract cushion

contains mostly EMT-derived mesenchymal cells. During cushion

development, the two cushions fuse at the distal-proximal

boundary, where neural crest- and endothelium-derived

mesenchymal cells meet, and the proximal outflow tract is

separated into two ventricular outlets. The non-fused cushions

then undergo extensive ECM remodeling and morphological

sculpting and extend to become the coronary apex of the aortic

valve. Mature left and right coronary cusps are derived primarily

from endothelium-derived mesenchymal progenitor cells, with

little contribution from CNC cells, while non-coronary cusp

contains cells of the SHF lineage (28, 29).
) Valve development begins with endocardial cushion formation. Valve
mal transformation (EMT) to differentiate into valve interstitial cells (VICs)
E11.5 in the mouse. (B) The outflow tract endocardial cushions undergo
sa, spongiosa, and ventricularis. (D) Myxomatous alterations associated
ar matrix, diffuse accumulation of proteoglycans and fragmentation of
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Aortic valve anatomy

The aortic valve is located between the left ventricle (LV) and

ascending thoracic aorta (6). Like all valves in the heart, it serves to

maintain unidirectional flow. The aortic valve is avascular and is

connected to the aortic root by the fibrous annulus (30). Each

leaflet is named according to the location corresponding to the

coronary artery ostia and are accordingly referred to as the right

coronary cusp, left coronary cusp and noncoronary cusp (31).

Each cusp is composed of three layers of extracellular matrix

(ECM) components that are oriented relative to blood flow,

including the fibrosa comprised of collagen, the proteoglycan-

rich spongiosa, and the elastin fiber-containing ventricularis (32)

(Figure 1C). In addition, fibronectin and lamin are included in

the aortic valve cusps as minor ECM components (33). The

cellular composition of the aortic valve is comprised of VICs and

valve endothelial cells (VECs). VICs are found within the interior

of each cusp and important for ECM synthesis and homeostasis,

while VECs form a protective cellular layer that surrounds each

cusp. The communication between VICs and VECs via paracrine

signaling is necessary to preserve ECM homeostasis and prevent

disease (34–36).
Aortic valve pathology

The pathologic features of diseased heart valves include

myxomatous degeneration, which is characterized histologically

by leaflet thickening, diffuse accumulation of proteoglycans and

fragmentation of collagen and elastin fibers (Figure 1D) (37).

Myxomatous valve disease is more commonly found in the

mitral valve. It can be caused by congenital valve malformations,

genetic abnormalities such as pathogenic variants in ECM genes,

or can be acquired due to autoimmune diseases, progressive

cardiovascular dysfunction/heart failure and infective endocarditis

(38–40). Myxomatous valves also demonstrate an increased

recruitment of pro-inflammatory macrophages and immunogenic

ECM remodeling consistent with an inflammatory micro-

environment (41). These findings suggest that macrophages play

a role in the initiation and progression of myxomatous valve

disease.

Aortic valves in infants with severe congenital AVS were

reported to be described as “greatly thickened” and “nodular”

and often had bicuspid morphology (42). Pathological and

histological findings of congenital AVS demonstrated the

primitive mesenchymal tissue, located between the valve

endothelial layers, to be increased as well as containing a loose

myxomatous ground substance. Further, the cells within the

ground substance were described as spindle-shaped, similar to

that seen in myxomatous valve tissue (Figure 1D). Interestingly,

the valvular tissue resembled that of the endocardial cushions in

the developing fetal heart. In normal heart development, loose

connective tissue within the endocardial cushions is supposed to

thin out and transition into dense, mature tissue. As a result, it is

suggested this persistence of this loose embryonic connective
Frontiers in Cardiovascular Medicine 03
tissue and likely its continued growth is a defining feature of

congenital AVS.

Inflammation remains unclear as a contributor to congenital

AVS. However, inflammation plays a significant role in many of

the chronic diseases of adulthood, including cardiovascular

disorders (43). Valvular inflammation can result in fibrosis,

thickening, and calcification. Calcific aortic valve disease (CAVD)

is the most common valvular condition in the developed world

and increases in prevalence with age (44). Evidence of chronic

inflammatory infiltrates in tissue exhibiting CAVD has been

demonstrated along with a positive correlation between rate of

progression and density of leukocytes (45). In the case of BAV,

chronic inflammation may explain the earlier onset of disease,

given that stenosis of a BAV is associated with increased

inflammatory cells and vascularity in comparison to AVS in a

tricuspid aortic valve (46). Together, these findings demonstrate

that congenital AVS and adult-onset AVS may differ in regard to

inflammation. There are multiple glycoproteins which regulate

the aortic valve structure during development and are associated

with progression (47, 48). N-glycosylation was found to be

spatially regulated within the normal aortic valve and sialylated

N-glycans were increased in pediatric end-stage congenital

AVS (49). Collagen deregulation is a distinctive feature of

congenital AVS, while the regulation of the collagen fibers in the

aortic valve remains largely elusive. A recent study identified the

collagen types and hydroxylated prolines (HYP) modifications,

which are critical to stabilizing the triple helix of collagen, that

are seen during human aortic valve development and at pediatric

end-stage congenital AVS (50). Histological and proteomic

analysis identified a unique region of high-density collagen

present in pediatric end-stage congenital AVS and reported that

specific collagen peptides were modified by HYP. In addition,

network analysis identified BAMBI (BMP and Activin Membrane

Bound Inhibitor) as a prospective regulator of the collagen

interactome.
Clinical characteristics, natural history and
management of congenital AVS

Clinical presentations of congenital AVS vary widely, ranging

from mild to critical, depending on the aortic valve morphology

and the severity of AVS, but progress over time. During the fetal

period, mild or moderate AVS leads to increased LV pressures

and LV hypertrophy. Severe AVS results in severe LV

hypertrophy and decreased flow through LV, which may

ultimately lead to hypoplastic left heart syndrome (HLHS)

(51–53). The fetus usually tolerates severe AVS, but symptoms

can develop rapidly after birth. Critical AVS in neonates often

presents with heart failure, cardiogenic shock, and other end

organ dysfunction and can lead to death within the first weeks of

life (54). Older children and adolescents with AVS tend to be

asymptomatic with approximately 10% experiencing symptoms

and signs of congestive heart failure, including dyspnea, angina,

or syncope especially upon exercise (55). A combination of

maximum aortic velocity (Vmax), mean pressure gradient (MPG),
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and aortic valve area (AVA) are used to assess the severity of

stenosis as published in the most recent American College of

Cardiology (ACC) and American Heart Association (AHA)

guidelines (56).

The natural history of patients with congenital AVS shows that

progressive obstruction is likely to occur by late adulthood. In

childhood, significant progression was seen in one third of all

medically managed patients in the Natural History Study (57). A

follow-up study for 30 years found that the diagnosis of mild

AVS before 6 months of age was associated with a significantly

increased risk of requiring aortic valvotomy and balloon

valvuloplasty with age (58). The likelihood that the stenosis

remains mild was reported to be less than 20%, thus supporting

the need for long-term follow-up of mild AS into adulthood.

Recently, the probability of requiring balloon valvuloplasty is

shown to be 20% in patients with catheter-measured peak

pressure gradients less than 25 mmHg, and 40% and 70% in

patients with gradients 25–49 mmHg and >50 mmHg,

respectively (59). Notably, congenital AVS is a progressive

disorder as the risk of morbid events such as heart failure,

sudden death, and ventricular arrhythmia increase at a rate of

1%–1.5% per year, if left untreated (6, 59). Similarly, the risk of

developing AVS in children with isolated BAV increases along

with age (6). As with all CHD, bacterial endocarditis remains a

potential complication of AVS, with an incidence of 27.1 per

10,000 person years (60). As congenital AVS is a progressive

condition, guidelines have been developed which outline the

indications for intervention. These interventions are limited to

balloon valvuloplasty in the cardiac catheterization laboratory

and transcatheter aortic valve replacement or surgical aortic valve

replacement. We refer readers to recent clinical management

guidelines from the ACC/AHA or European Society of

Cardiology (ESC) for timing of intervention and different valve

replacement options as these details are beyond the scope of this

review (56, 61, 62).
Molecular genetics of congenital aortic
valve disease

Recent advances in genetic sequencing technologies, such as

massively parallel sequencing, as well as interpretation of the

clinical presentation and genetic variants, have made it easier for

establishing a diagnosis and discovering new genetic etiologies

for congenital aortic valve disease, including ADAMTS19,

SMAD6 and ROBO gene family members (63, 64). Multiple

human genetic abnormalities associated with syndromic and

non-syndromic congenital aortic valve disease have been

identified, including AVS and BAV (Tables 1, 2). However,

compared to BAV, well established genetic contributors to

congenital AVS are scarce. Common syndromes associated with

congenital AVS are Turner syndrome and Jacobson syndrome.

Turner syndrome is caused by chromosomal aneuploidies

(Monosomy X) and associated CHD is observed in 30% of cases,

including AVS, BAV, CoA and HLHS (65). Jacobsen syndrome is
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caused by terminal deletion of chromosome 11q and associated

CHD is found in 56% of cases, including AVS, HLHS, CoA and

VSD (66). In addition to Turner syndrome and Jacobsen

syndrome, several common syndromes associated with BAV are

known. Congenital heart valve anomalies associated with

Trisomy 18 (Edwards syndrome) include BAV, bicuspid

pulmonary valve and polyvalvular nodular dysplasia (67, 68).

BAV is present in 1p36 deletion syndrome as well as Kabuki

syndrome caused primarily by KMT2D and KDM6A variants

(69–71). BAV and thoracic aortic aneurysm (TAA) have been

also described in Marfan syndrome associated with FBN1

variants (72) or Loeys-Dietz syndrome associated with TGFBR1

and TGFBR2 variants (73).

For non-syndromic congenital AVS, only a few genes have

been implicated. NOTCH1 pathogenic variants were identified in

individuals with left ventricular outflow tract (LVOT)

malformations, including congenital AVS, CoA and HLHS (74,

75). SMAD6 variants were observed in patients with AVS and

BAV (83). ROBO4 variants were also identified in individuals

with AVS and atrial septal defect (ASD) (84). Furthermore,

variants in vascular endothelial growth factor-A (VEGFA) were

found in a patient with congenital tricuspid AVS and LVOT

obstruction (85, 86). Moreover, ADAMTS19 variants were found

to cause a spectrum of congenital heart valve diseases, including

AVS, aortic valve insufficiency, subaortic stenosis, pulmonary

valve stenosis, pulmonary valve insufficiency and atrioventricular

valve insufficiency (87, 88). However, no other genes have been

reported as monogenic causes of congenital AVS. Previous

studies reported that common variants in genes linked to cardiac

development such as ERBB4, BMP4, and ISL1, may bestow risk

for LVOT defects, including congenital AVS (103–105).

Taking another approach, genome-wide DNA methylation

analysis identified significant alterations in CpG methylation at

59 sites in 52 genes for congenital AVS (106). A significant

epigenetic change in the APOA5 and PCSK9 genes, which are

known to be important in lipid metabolism, was also observed

associated with AVS. It remains to be determined if pathogenic

variation in the other 50 genes will be implicated in congenital

AVS.

As BAV is often found in the setting of congenital AVS, there is

likely overlap in the genetic etiologies of BAV and congenital AVS.

BAV is widely acknowledged to have genetic contributors with a

reported heritability of 89% (107). Insights into the genetic

contributors of BAV were first provided from studies of familial

BAV, where NOTCH1 variants were discovered to segregate in

familial aortic valve disease through linkage analysis, including

BAV, AVS and CAVD (74). Since then, pathogenic variants in

NOTCH1 have been found to cause not only left -sided CHD,

including BAV, CoA and HLHS (75, 76–79), but also other types

of CHD such as tetralogy of Fallot (TOF) and VSD (80–82). The

GATA family of zinc-finger transcription factors, particularly

GATA4, GATA5, and GATA6, play essential roles in cardiac

development. Pathogenic variation in GATA5 is well

characterized in human BAV (89–91), but GATA5 variants have

also been associated with a spectrum of CHD, including TOF,
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TABLE 1 Genetic syndromes associated with congenital aortic valve disease.

Syndrome Gene Location Cardiac defects Gene MIM Reference
Turner syndrome Unknown 45, X (monosomy X) AVS, CoA, BAV, dilated Ao, HLHS NA (65)

Jacobsen syndrome ETS 11q terminal deletion AVS, HLHS, VSD, CoA, Shone’s complex 164720 (66)

FLI1 193067

Edwards syndrome Unknown Trisomy 18 BAV, Bicuspid pulmonary valve, Polyvalvular nodular dysplasia NA (67, 68)

Kabuki syndrome KMT2D 12q13.12 BAV, CoA, VSD, TOF, HLHS, TGA 602113 (69–71)

KDM6A Xp11.3 300128

Marfan syndrome FBN1 15q21.1 BAV, TAA, aortic dissection, mitral valve prolapse 134797 (72)

Loeys-Dietz syndrome TGFBR1 9q22.33 BAV, TAA, aortic dissection, mitral valve prolapse 190181 (73)

TGFBR2 3p24.1 190182

AVS, aortic valve stenosis; BAV, bicuspid aortic valve; CoA, coarctation of the aorta; dilated Ao, dilated ascending aorta; HLHS, hypoplastic left heart syndrome; NA, not

available; TAA, thoracic aortic aneurysm; TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

TABLE 2 Human genes associated with congenital aortic valve disease.

Gene Location Cardiac defects Gene
MIM

Reference

NOTCH1 9q34.3 AVS, BAV, CAVD, HLHS,
TOF, PS, VSD, CoA, TAA

190198 (74–82)

SMAD6 15q22.31 AVS, BAV, CoA, TAA 602931 (83)

ROBO4 11q24.2 AVS, BAV, ASD, TAA 607528 (84)

VEGFA 6p21.1 AVS, BAV, CoA, VSD,
PDA, dilated Ao

192240 (85, 86)

ADAMTS19 5q23.3 AVS, Aortic valve
insufficiency, BAV,
subaortic stenosis, PVS,
pulmonary valve
insufficiency, mitral/
tricuspid valve insufficiency

607513 (87, 88)

GATA5 20q13.33 BAV, ASD, VSD, DORV,
TOF

611496 (89–91)

GATA4 8p23.1 BAV, ASD, VSD, AVSD,
PS, TOF

600576 (92, 93)

GATA6 18q11.2 PTA, TOF, BAV 601656 (94–96)

NKX2.5 5q35.1 BAV, ASD, atrioventricular
conduction delay, TOF,
HLHS

600584 (97)

NOS3 7q36.1 BAV 163729 (98, 99)

TAB2 6q25.1 BAV, Aortic stenosis,
subaortic stenosis, ASD,
TOF, VSD, myxomatous
mitral/tricuspid valves

605101 (100, 101)

MAT2A 2q11.2 BAV, TAA 601468 (102)

ASD, atrial septal defect; AVS, aortic valve stenosis; AVSD, atrioventricular septal

defect; BAV, bicuspid aortic valve; CoA, coarctation of the aorta; dilated Ao,

dilated ascending aorta; DORV, double-outlet right ventricle; HLHS, hypoplastic

left heart syndrome; PDA patent ductus arteriosus; PS, pulmonary stenosis; PTA,

persistent truncus arteriosus; PVS, pulmonary valve stenosis; TAA, thoracic aortic

aneurysm; TOF, tetralogy of Fallot; VSD, ventricular septal defect.
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VSD, ASD and double outlet right ventricle (DORV) (108–110).

GATA4 pathogenic variants were identified in BAV cases (92)

and in addition, the burden of rare variants in GATA4 were

shown to be significantly enriched in early-onset BAV (93).

Although GATA6 variants have been mainly implicated in

conotruncal heart defects (94, 95), GATA6 loss-of-function

variants were identified in a family with BAV (96). Furthermore,

a deleterious variant in NKX2.5 was identified in a family with

BAV (97), while pathogenic variants in NKX2.5 have been

reported in ASD along with atrioventricular conduction
Frontiers in Cardiovascular Medicine 05
abnormalities, VSD, TOF and HLHS (111–113). The

contribution of other candidate genes, such as NOS3, TAB2, and

MAT2A has been also suggested in BAV (98–102).
Mouse models of congenital aortic valve
disease

Since congenitally stenotic aortic valves have often been

manipulated due to current management strategies, there is

limited access to diseased human tissues to investigate

mechanisms of disease initiation and progression. Accordingly,

animal models serve an important role in understanding the

genetic etiologies and progression of congenital AVS (114). A

summary of reported genetic mouse models found to exhibit

congenital aortic valve disease can be found in Table 3,

including congenital AVS and BAV. Morphological phenotypes

in BAV are summarized in Figure 2 (133). Although NOTCH1

has been implicated in human aortic valve disease, Notch1

haploinsufficiency causes CAVD and ascending aortic aneurysms

in mice, but not congenital aortic valve abnormalities (134, 135).

Interestingly, while mice which are homozygous for a null

mutation in endothelial NOS (Nos3−/−) display a partially

penetrant BAV at an incidence of ∼25% (117, 118), Notch1;

Nos3 compound mutant mice (Notch1+/−; Nos3−/−) display

congenital aortic valve disease such as BAV and AVS at a

penetrance of 64%. These aortic valve abnormalities are

accompanied by additional cardiac outflow tract defects resulting

in ≈65% lethality by postnatal day 10 (35, 115). Telomere

shortening in Notch1 haploinsufficient mice (Notch1+/− mTRG1–

3) elicit age-dependent tricuspid AVS and aortic valve

calcification, however, early lethality is observed (116). In

addition, cell-specific deletion or inactivation of mediators of

Notch signaling pathway, such as JAG1 or RBPJ, in mice

demonstrate BAV at a penetrance of 47%–54% with high

perinatal lethality (121, 122). Interestingly, no endocardial

cushion defects are observed in these murine models of BAV

targeting Notch ligands, suggesting that congenital aortic valve

disease may result from a disruption in the process that occurs

after EMT, potentially during the valve remodeling. Genetic
frontiersin.org
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TABLE 3 Mouse models of congenital aortic valve disease.

Gene Genotype of mouse
model

Valve phenotype Aortic valve disease
penetrance

BAV
subtype

Other cardiac
defects

Lethality Reference

NOTCH1 Notch1+/−; Nos3−/− BAV, thickened AoV
and PV

≈64% NA Ascending aortic dilation,
VSD, overriding aorta

≈65% (35, 115)

Notch1+/− mTRG1–3

(mTR−/− generation 1–3)
AVS, Thickened AoV,
CAVD, PVS

NA None Ascending aortic dilation,
ASD, VSD

70% (116)

NOS3 Nos3−/− BAV 27–42% R/NC None None (117, 118)

GATA5 Gata5−/− BAV 25% R/NC Mild LV hypertrophy None (119)

GATA6 Gata6+/− BAV 56% males, 27% females R/L None None (120)

ROBO4 Robo4tm1Lex/tm1Lex BAV, AVS, thickened
AoV

18% males, 11% females NA Ascending aortic dilation None (84)

ADAMTS19 Adamts19KO/KO AVS, AR, thickened
AoV, BAV

38% NA None None (87)

JAG1 Nkx2.5Cre+; Jag1flox/flox BAV 47% R/NC or R/L VSD 94% (121)

RBPJ Nkx2.5Cre+; Rbpjflox/flox BAV 54% 75% R/NC,
25% R/L

VSD, DORV 100% (122)

NKX2.5 Nkx2.5+/− BAV, AVS 8.2% NA ASD None (123)

MATR3 Matr3Gt−ex13 heterozygotes BAV 15% NA CoA, PDA, VSD, DORV None (124)

EGFR EgfrVel/+ Unicuspid AoV, AVS,
AR

38% None None None (125)

BRG1 Nfatc1Cre+; Brg1flox/flox BAV, thickened AoV
and PV

35% 67% L/NC,
33% R/NC

VSD 97% (126)

HOXA1 Hoxa1−/− BAV 24% NA VSD, TOF, IAA NA (127)

ADAMTS5 Adamts5−/−; Smad2+/− BAV 41% NA Ascending aortic anomalies None (128)

EXOC5 Nfatc1Cre+; Exoc5flox/+ BAV, AVS,
dysmorphic AoV

45% 80% R/NC,
20% L/N

VSD None (129)

ALK2 Gata5Cre+; Alk2FXKO BAV 78% NA VSD 55% (130)

NPR2 Npr2+/− BAV, AVS, CAVD 9.4% R/NC Ascending aortic dilation,
LV dysfunction

None (131)

Npr2+/−; Ldlr−/−

VGLL4 Vgll4−/− Thickened AoV and
PV

NA NA LV hypertrophy 89% (132)

Tie2Cre+; Vgll4−/−

AoV, aortic valve; AR, aortic regurgitation; ASD, atrial septal defect; AVS, aortic valve stenosis; BAV, bicuspid aortic valve; CAVD, calcific aortic valve disease; CoA,

coarctation of the aorta; DORV, double-outlet right ventricle; IAA, interrupted aortic arch; L/NC, left/noncoronary fusion; LV, left ventricular; NA, not available; NS,

non-syndromic; PDA patent ductus arteriosus; PV, pulmonary valve; PVS, pulmonary valve stenosis; R/L, right/left fusion; R/NC, right/noncoronary fusion; SVAS,

supravalvular aortic stenosis; TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

FIGURE 2

Schematic of morphologic phenotypes in bicuspid aortic valve (BAV). Schematic depiction of a normal tricuspid aortic valve (TAV) and three subtypes of
BAV based on the raphe position relative to coronary artery origins: Type 0 (no raphe), Type 1 (one fibrous raphe) and Type 2 (two raphae). Type 1 is the
most common, including BAV R/L (right-left fusion), R/NC (right-noncoronary fusion) and L/NC (left-noncoronary fusion), followed by Type 0, including
lat (lateral arrangement of the free edge of the cusps) and ap (anterior-posterior arrangement of the free edge of the cusps), and the most infrequent is
Type 2.
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deletion of Gata5 in mice (Gata5−/−) lead to R/NC subtype BAV at

a partially penetrance of 25% (119). Gata6 haploinsufficient mice

(Gata6+/−) develop R/L subtype BAV with incidence of 56% in

males and 27% in females (120). Furthermore, SHF-specific

deletion of Gata6 within the Isl1-lineage recapitulated the BAV

phenotype, suggesting the role of Gata6 in SHF during valve
Frontiers in Cardiovascular Medicine 06
development. Heterozygous Nkx2.5 knockout mice display a

variety of cardiac phenotypes, depending on the genetic

background, including BAV with AVS at a low penetrance of

8.2% (123). In addition to these mice, other genetic mouse

models of congenital aortic valve disease have been described,

whereas the majority have limitations with regards to a low
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penetrance or high lethality (84, 87, 124–132). Further studies are

needed to generate murine models with a high penetrance that

survive to adulthood, allowing us to validate the role of cardiac

developmental genes in the etiology of aortic valve disease as

well as investigate their role in disease progression and to serve

as models to test novel therapies.
Clinical implications and future directions

Given the limited translation of molecular mechanisms found

in animal models to human patients, effective pharmacologic

therapies for congenital AVS remain elusive. The current

standard treatment is transcatheter/surgical repair or replacement

of the diseased valve. Recently, fetal aortic valvuloplasty has been

performed in fetuses with AVS and evolving HLHS. However,

outcomes for achieving biventricular circulation remain

controversial and this has not been applied to isolated congenital

AVS (136, 137). Thus, development of novel medical treatment

for congenital AVS is essential, while pharmacological therapies

are limited. One limited treatment option is statin therapy to

treat elevated cholesterol levels. Statins have been demonstrated

to reduce cardiovascular risk and prevent cardiovascular disease

such as coronary artery disease (138, 139). Although some

attempts have been made to utilize pharmacologic treatments

such as statins to treat CAVD with associated AVS in adults,

these studies did not show consistent beneficial effects for

progression of AVS (140, 141). The pathophysiology of

degenerative AVS in adults is similar to coronary artery disease,

whereas atherosclerosis pathway may not play a significant role

in the development of congenital aortic valve disease, including

BAV. Therefore, statins have not been tested in children with

aortic valve disease and the clinical impact on congenital AVS in

children remains unknown. Increased understanding the

molecular pathways regulating aortic valve development along

with advances in genetic sequencing technologies have allowed

for the discovery of new candidate genes for congenital aortic

valve disease. In addition, genetic murine models of aortic valve

disease have been generated and uncovered molecular pathways

as potential therapeutic targets. Specifically, TGF-β signaling is

activated in degenerative valves with ECM abnormalities and

may be a potential therapeutic target, as TGF-β antagonists such

as the angiotensin II type 1 receptor blocker, losartan, could

prevent abnormal aortic root growth in a mouse model of

Marfan syndrome (142). In addition, targeting monocyte-derived

macrophages has emerged as a potential therapeutic approach to

prevent myxomatous valve disease in Marfan syndrome mice

(41). Recent studies by using single-cell RNA-sequencing, human

induced pluripotent stem cell (iPSC) technology and machine

learning, identified new pathogenic pathways and a new

therapeutic candidate to prevent aortic valve disease in mouse

models of CAVD, although the implications for congenital AVS

are unknown (36, 143). Further, the molecular and genetic links

between congenital aortic valve disease and adult CAVD need to

be defined. Improved identification of human aortic valve disease

genes, generation of murine models for clinically relevant
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congenital AVS, and new technologies such as single cell

genomics, iPSC modeling and machine learning may reveal novel

therapeutic targets to develop effective treatments for early

intervention.
Conclusions

Congenital AVS is a complex and progressive disease that

affects children and adults throughout their lives. Although

advances in transcatheter aortic valvuloplasty and transcatheter

or surgical aortic valve implantation have improved morbidity

and mortality in this patient population, pharmacologic therapies

for congenital AVS remain elusive. Several potential therapeutic

targets have been proposed in animal models to prevent the

myxomatous valve disease by using next-generation sequencing,

single-cell genomics, machine learning, cardiac organoid and

bioengineering technologies. A continued escalation of our

understanding in molecular genetics of congenital AVS has

clinical implications as it will facilitate the development of new

treatment options to prevent the progression or treat congenital

AVS.
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