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Frontiers in Cardiovascular Medicine
Building the case for
mitochondrial transplantation as
an anti-aging cardiovascular
therapy
Colwyn A. Headley and Philip S. Tsao*†

Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States

Mitochondrial dysfunction is a common denominator in both biological aging and
cardiovascular disease (CVD) pathology. Understanding the protagonist role of
mitochondria in the respective and independent progressions of CVD and
biological aging will unravel the synergistic relationship between biological aging
and CVD. Moreover, the successful development and implementation of
therapies that can simultaneously benefit mitochondria of multiple cell types,
will be transformational in curtailing pathologies and mortality in the elderly,
including CVD. Several works have compared the status of mitochondria in
vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in
CVD dependent context. However, fewer studies have cataloged the
aging-associated changes in vascular mitochondria, independent of CVD. This
mini review will focus on the present evidence related to mitochondrial
dysfunction in vascular aging independent of CVD. Additionally, we discuss the
feasibility of restoring mitochondrial function in the aged cardiovascular system
through mitochondrial transfer.
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Cardiovascular disease and aging

Cardiovascular disease (CVD) is a term that encompasses pathologies of the heart and

blood vessels (1). Heart failure, congenital heart disease, coronary heart disease, peripheral

artery disease, cerebrovascular disease, atherosclerosis, and abdominal aortic aneurysm

(AAA) are all forms of CVD (1). Combined, CVD are the leading cause of death

nationally and globally (2). For reference, in 2020 ∼32% of the global death burden was

CVD-related (2). CVD etiology and pathophysiology are complex and mediated by several

concurrent genetic and non-genetic risk factors (3). For example, risk factors such as

hypertension, smoking, obesity, and aging contribute to the independent development of

atherosclerosis and AAA (4). Individuals affected by diabetes mellitus type 2 are at a

higher risk of developing atherosclerosis but are less likely to develop AAA (5). Yet, an

individual with atherosclerosis may still develop AAA (5). Our current understanding of

CVD pathophysiology is also confounded because several vascular cells (endothelial cells,

vascular smooth muscle cells) and immune cells (macrophages and T cells) innervate

multiple CVD (6).

Chronic inflammation, oxidative stress, and mitochondrial dysfunction

(mito-dysfunction) are some of the conserved cellular dysregulations present in various

CVD (7). Mechanistically, mito-dysfunction is directly linked to chronic inflammation
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and oxidative stress that plague the cardiovascular and immune

systems (8–22). For example, mito-dysfunction in immune cells

contributes toward increased inflammatory T cell polarization

(20, 21), and irreversible M1 macrophage polarization (13). In

the vasculature, mito-dysfunction contributes to endothelial cell

(EC) dysfunction by decreasing the production of nitric oxide

(NO), a potent vasodilator (8–12). Vascular smooth muscle cell

(VSMC) phenotype and extracellular matrix (ECM) composition

are also negatively impacted by mito-dysfunction (12, 18, 19).

Mito-dysfunction-associated ATP depletion and increased

mitoROS in cardiomyocytes are also well characterized in heart

failure (14–17).

On the molecular level, several critical cellular processes

succumb to aged-graded dysregulation (15, 23). These

dysregulated processes, collectively known as the cellular

hallmarks of aging, are also interconnected by oxidative stress

and mito-dysfunction (15, 23). In the context of aging, mito-

dysfunction is cell indiscriminate, and the magnitude of the

mito-dysfunction present in an individual’s immune and vascular

cells can aggravate underlying CVD pathology (10, 11, 16, 22,

24–27). However, whether mito-dysfunction is primarily a

consequence or instigator of CVD is still unresolved (24).

Understanding the protagonist role of mitochondria in the

respective and independent progressions of CVD and biological

aging will unravel the synergistic relationship between biological

aging and CVD. Moreover, the successful development and

implementation of therapies that can simultaneously benefit

mitochondria of multiple cell types, will be transformational in

curtailing pathologies and mortality in the elderly (10, 22, 26).

The impact of aging on cardiomyocyte mitochondria have been

described in detail (17). Several works have also compared the

status of mitochondria in vascular ECs and VSMCs in a CVD-

dependent context (11, 16, 28). Herein we focus on the present

evidence related to mitochondrial dysfunction in vascular aging

independent of CVD. We, additionally discuss the feasibility of

restoring mitochondrial function in the aged cardiovascular

system through mitochondrial transfer.
Structure of mitochondria

Structurally, a mitochondrion has 4 major partitions; the outer

mitochondrial membrane (OMM), the inner mitochondrial

membrane (IMM), an intermembrane space (IMS) that separates

the OMM and IMM, and the mitochondrial matrix (29, 30). The

OMM is primarily comprised of phospholipids, and interfaces

with cytosolic organelles such as the endoplasmic reticulum,

liposomes, peroxisomes, and the cytoskeleton (29, 30). While

small uncharged molecules and ions can transverse freely across

the OMM through porins (29, 30), larger proteins and molecules

require the activity of translocases (TOMMS) (29, 30). The IMM

folds within the mitochondrial matrix to create the

mitochondrial cristae (29, 30). The transport of ions and

molecules across the IMM into the mitochondrial matrix requires

specific membrane transport proteins (TIMMS) (29, 30).

Importantly, the mitochondrial matrix and the IMM are the
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respective sites of the tricarboxylic acid (TCA) cycle and

oxidative phosphorylation (Ox-phos) (29, 30).

Ox-phos refers to the activity of the electron transport chain

(ETC). The transfer of electrons across the 4 redox centers

generates a proton gradient within the IMS, that subsequently

powers the mitochondrial ATP synthase machinery. The

electrons that enter the ETC originate from the reduced forms of

NADH & FADH2. The tricarboxylic acid (TCA) is responsible

for generating reduced NADH & FADH2. However, the TCA

cycle is limited by the availability of Acetyl-CoA, which is

derived from the catabolism of translocated pyruvate, fatty acids,

and proteins (29–31). For these reasons, the stoichiometric

relationships among mitochondrial Acetyl-CoA, TCA cycle

intermediates, NADH, FADH2, O2, and ADP principally

influence the rate of ATP derived from Ox-Phos (29–31).

Consequently, mitochondria with compact cristae (i.e., densely

structured IMM) outperform mitochondria with loose cristae in

Ox-phos (substrate utilization and ATP generation) (32).

The redox chemistry of ETC, principally from complexes I &

III, are major sources of mitoROS (33, 34). Several antioxidants

such as SOD1-2, CAT, and GPxs are scattered within the

mitochondrial matrix and counterbalance mitoROS accumulation

(33–35). Accordingly, mitochondria architecture (size, shape, and

volume) is important for optimizing the use of substrates related

to mitochondrial respiration (36–39) and minimizing the

mitoROS-induced-cellular toxicity (33–35). Further, beyond their

role in ATP production, mitochondria participate in broad

cellular signaling cascades including calcium, redox, and

apoptotic signaling (40–42). Minute changes to the harmony of

mitochondrial function can have a domino effect on other

cellular processes (40).
What is mito-dysfunction?

The term mito-dysfunction describes the acute or chronic

inability of mitochondria to maintain optimal metabolic

stoichiometry, and or mitochondrial architecture. Because

mitochondrial processes are interconnected, determining whether

singular or multiple incipient events are the root cause mito-

dysfunction is challenging (43). Cells affected by aging-associated

mito-dysfunction undergo concurrent cellular events that

continually catalyze mito-dysfunction and cell dysregulations

(44). Specifically, excess mitoROS production, abnormal assembly

(biogenesis) and recycling (mitophagy) of mitochondria (i.e.,

abnormal mitochondrial mass), changes in mitochondrial DNA

(mtDNA) quality and quantity, and shifts in mitochondrial

respiration-related substrates are some of the prominent molecular

readouts seen in aged cardiovascular cells (7, 12, 14, 24, 25, 45–47).

A decline in mtDNA copy number in peripheral leukocytes is

associated with increased CVD risk and mortality (48, 49).

Independent of CVD, limited studies have examined the aging-

associated changes mitochondria undergo in vascular cells (16).

Work by Jendrach et al. (47) and Ungvari et al. (12) provide

some of the earliest quantifiable aging-associated changes to

mitochondria. Jendrach et al. showed that compared to actively
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dividing primary human umbilical vein ECs (HUVEC) (young

HUVEC), serially passaged/non-dividing (old) HUVEC

contained swollen mitochondria with unstructured cristae,

produced higher amounts of mitoROS, and harbored higher

amounts of fragmented mtDNA (47). Ungvari et al. reported that

vascular ECs from carotid arteries of 24-month-old rats have

lower mitochondrial mass, lower proteomic expression of ETC

complexes (I, III & IV), and increased mitoROS production, than

vascular ECs of the carotid arteries from 3-month-old (young)

rats (12). Similar results were also reported for VSMCs from

carotid arteries of old rats (12). Work by Vendrov et al. reported

increased mitoROS in aortic VSMCs from middle-aged mice (16

months) compared to young (4 months) (46). The mitochondria

from aortic VSMCs from old mice also contained higher

oxidized (carbonyl) residues, had decreased ETC activity

(Complex I & III), and decreased mitochondrial respiration

(oxygen consumption) (46).

The work by Ungvari et al. additionally reported that the

mRNA levels of the mitochondrial transcription factor A

(TFAM) and Peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC1-α), another transcriptional coactivator

of mitochondrial biogenesis, were decreased in the aortic tissue

isolated from old rats, compared to young (12). Work by Foote

et al. would later corroborate the aged-graded decrease in TFAM

and PGC1-α expression, albeit in C57BL/6 mice (45). Foote et al.

also reported an age-graded decline in mtDNA copy number in

aortic tissue isolated from 8-, 22-, 44- and 72-week-old C57BL/6

mice (45). The metabolic activity (oxygen consumption rate;

OCR) of mitochondria from aortic tissue also showed a

concomitant age-graded decline (45). Separate work by Tyrrell

et al. also reported a significant decline in the OCR of aortic

mitochondria from old mice (18–19 months) when compared to

young mice (2–3 months). Tyrrell et al. reported no difference in

the levels of mtDNA damage (mtDNA breaks) between young

and old C57BL6 mice (25). Interestingly, the aortic tissue of old

mice contained significantly more mitophagy-associated

proteins and ubiquitinated mitochondria, suggesting that

mitophagy was upregulated in the aortic tissue of aged mice

(25). Subsequent work by Tyrrell et al. later showed that under

increasing mitochondrial stress, vascular tissue from aged mice

do not have the capacity to concomitantly increase mitophagy,

and this is opposite to what was seen in vascular tissue from

young mice (50). These data ultimately point toward aging-

associated impairment of mitophagy in vascular tissue (50).
Mitochondrial DNA (mtDNA) damage
accumulation

The quality and quantity of mtDNA, and its inherent location

within cells are central to the heterogeneity of mito-dysfunction

(51, 52). Mitochondria assembly is coordinated through the

transcription and translation of nuclear (nDNA) and mtDNA-

encoded genes, at a ratio of 99:1 (34, 52, 53). The quantitative

contributions of mtDNA are far less than nDNA, however,

mtDNA-encoded components are indispensable in the assembly
Frontiers in Cardiovascular Medicine 03
of mitochondria. The size of mtDNA is also significantly smaller

than nDNA (∼16 kbp vs. ∼3,300,000 kbp respectively) and

mtDNA contains significantly fewer intron (non-coding DNA)

regions (52, 54). Additionally, deletions and mutations in

mtDNA often result in severe developmental defects and early

life mortality (55).

Because mtDNA is located within the mitochondrial matrix, its

DNA strands are susceptible to direct oxidation by mitoROS

(56–59). Specific mitoROS, hydroxyl (OH•), and peroxyl (ROO•)

radicals attack the nitrogenous bases and ribose backbones of

mtDNA, creating oxidative lesions (56–59). In addition to

mitochondrially localized antioxidants, TFAM also shields

mtDNA from radical damage through non-specific binding (60).

MtDNA is normally found as a compact nucleoid wrapped by

TFAM (53). Alluding to its name, TFAM can also interact with

mtDNA at specific binding domains to influence mtDNA

synthesis/transcription and repair (53). TFAM has also been

shown to bind more tightly to oxidized mtDNA residues (8-oxo-

guanine), which likely is involved in promoting mtDNA repair

(61). In the event of severe damage to an mtDNA nucleoid,

mitochondria do contain multiple mtDNA nucleoids, allowing

for the compensatory translation of non-defective proteins and

tRNAs (55). DNA polymerase γ (Pol γ) is responsible for

mtDNA replication and repair (62). However, Pol γ repairs

oxidative-mtDNA lesions through base excision (BER), which

may introduce base pair transversions and point mutations (63).

Additionally, intramitochondrial components, molecules, and

enzymes, including Pol γ, are also highly susceptible to

mitoROS-induced damage, which impacts their functionality.

Regarding Pol γ, Anderson et al. showed that its proofreading

and repair abilities are severely hindered under increasing levels

of oxidative stress (62). Decreased Pol γ fidelity may further

introduce point mutations and deletions to replicated mtDNA

(64, 65). Adding to this, studies suggest that mtDNA with

deletions are favorably replicated due to their size (66–68). In

essence, depending on the burden of damage present within

mitochondria, DNA polymerase γ can either facilitate the

retention of healthy mtDNA or further aggrandize mito-

dysfunction (69). Importantly, regardless of the cause of mtDNA

damage, damaged mtDNA that escapes from the mitochondria

into the cytosol can activate inflammatory responses, via TLR9,

cGas-STING, and NLRP3 inflammasome signaling (70, 71).

Chronic activation of these cellular responses contributes to the

sterile inflammation seen in aging (70).
Modulating mito-dysfunction

The augmentation of mitoROS dynamics has been one of

the most effective inhibitory strategies in ameliorating

mito-dysfunction in vitro and in vivo (72). However, decreasing

mitoROS via modulating antioxidant defenses, reprogramming

cellular metabolism, and preserving mtDNA quality have shown

varied translational successes (73). Due to the conserved and

complex role of redox signaling in cellular homeostasis,

optimization of cell-specific dosing hinders the anti-aging
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therapeutic potential of antioxidants (73). Our current

understanding of cellular reprogramming is still naïve, and the

potential impact of in vivo de-differentiation toward oncogene

activation needs to be further clarified (74, 75).

Several studies have also assessed whether directly modulating

mtDNA is a viable therapeutic strategy (45, 76). The seminal in

vitro cybrid work of Porteous et al. and colleagues exemplified

how the thresholds of mtDNA heteroplasmy can manifest mito-

dysfunction (77). The deletion in mtDNA4799, one of the most

common mtDNA mutations detected in human diseases and

associated with biological aging, impacts the expression of

tRNAs, and several subunits of the ETC (I, IV, and V) (78).

Porteous et al. created cybrids from mitochondrially depleted

osteosarcoma cells and denucleated skin fibroblast from patients

harboring mtDNA4799. Mitochondrial abnormalities including

abnormal morphology, membrane potential, and ATP synthesis

only manifested in cybrids harboring a mtDNA4799 heteroplasmy

burden greater than 50% (77).

Regarding in vivo mtDNA heteroplasmy manipulation, most

studies have been conducted in transgenic mice overexpressing

nuclear-encoded genes, that relate to mtDNA stability and

replication, particularly TFAM and the mtDNA helicase, Twinkle

(51, 76, 79–81). Work by Ikeuchi et al. reported that the

transgenic overexpression of human TFAM (hTFAM) in murine

cardiomyocytes protected mice from myocardial ischemia-

induced cardiac dysfunction and cardiac tissue remodeling (81).

Interestingly, hTFAM is incapable of initializing murine mtDNA

synthesis (80). Ikeuchi et al. postulated that the protective effect

of hTFAM might be related to its ability to non-specifically bind

murine mtDNA, thereby offering increased mtDNA stability, and

prevented the decline in cardiac tissue Ox-Phos that normally

follows heart failure (81). Additionally, hTFAM may have averted

mito-dysfunction by shielding mtDNA from mitoROS. This

reasoning is supported by the work of Xu et al., which showed

that the overexpression of TFAM lacking the C-terminal tail, that is

required for mtDNA transcription, still protected neuroblastoma

mtDNA against oxidative damage (60).

A comparable study using hTFAM mice, by Ikeda et al.,

recapitulated and extended the observations originally made by

Ikeuchi et al. (81). Additionally, Ikeda et al. examined whether

Twinkle overexpression was cardioprotective during heart failure

(76). The Twinkle overexpression was done using a murine

construct (80). Consequently, when compared against non-

transgenic wild-type controls, mtDNA synthesis was upregulated

in the cardiac tissue of Twinkle mice (80). The genetic

dissimilarities between hTFAM and Twinkle mice are obvious,

yet when compared to wild-type mice, the cardiomyocytes

isolated from both transgenic strains contained higher mtDNA

copy numbers and lower steady-state levels of mitoROS (76).

Moreover, devoid of the induction of heart failure, there were no

significant differences in the ETC proteome, and ETC complex

activities in hTFAM and Twinkle mice vs. wild type (76). Ikeuchi

et al. noted no significant differences in the enzymatic activity of

ETC complexes from hTFAM and WT mice (81), and Ikeda

et al. reported no significant differences in the expression of

mitochondrial antioxidant enzymes (76).
Frontiers in Cardiovascular Medicine 04
Unfortunately, these studies do not provide closure regarding

the full cardioprotective mechanism of increased mtDNA copy

number (76, 81). A pragmatic explanation is that increased

mtDNA content provided cardiomyocytes with a kinetic

reparative advantage after heart injury. However, the ubiquitous

overexpression of hTFAM and Twinkle is associated with

enlarged mtDNA nucleoids, and significant impairments to

mtDNA replication and transcription (79, 80). Whether the

overabundance of mtDNA nucleoids shifted mitochondrial

ultrastructure and contributed to cardioprotection is also unclear

(82). Although tissue-specific overexpression of mtDNA was

beneficial, the physiological consequences of ubiquitous and

constitutive mtDNA overexpression are also unclear, and few

studies have examined the long-term impact of high mtDNA

copy number in vivo (79). Work by Ylikallio et al. and colleagues

suggests that hTFAM or Twinkle transgenic mice are plagued

with age-graded increases in mito-dysfunction (79). Ylikallio

et al. showed an aging-associated increase in mtDNA nucleoid

enlargements and mtDNA deletions in the heart, brain, and

skeletal tissues of hTFAM and Twinkle mice (79). The authors

additionally reported mitochondrial cytochrome c oxidase

deficiencies in the heart tissue of old hFTAM and Twinkle mice,

indicative of decreased mitochondrial function (79). Contrasting

work by Foote et al. has however reported that Twinkle

transgenic mice have delayed cardiovascular aging (45).

Compared to non-trangenic C57BL6-aged mice, Twinkle mice

did not show mitochondrial deterioration (i.e., decreased

mtDNA, decreased mitochondrial respiration, and increased

ROS) in vascular tissue (45).

In essence, mtDNA quantity and quality wane with age, and

studies suggest that preserving mtDNA quality delays aging on

the cellular level. Understandably, transgenic models provide

important but experimentally limited information regarding the

translational potential of mtDNA repair, because of the

unforeseen consequences of perpetual mtDNA upregulation. To

this end, accumulating research suggests that mitochondrial

transplantation can bridge this gap and serve as an anti-aging

vascular therapy (83–89).
Mitochondrial transplantation

Mitochondrial transplantation (mito-transfer) is a technique by

which non-dysfunctional mitochondria are delivered to afflicted

cells, tissues, or organs. Mito-transfer has also been reported to

occur organically via direct cell-cell contact or extracellular vesicle

transport (83–85). Proximal mito-transfer is facilitated by tunnel

nanotubes (TNT), while distal mito-transfer is facilitated by

microvesicles (83–85). Evidence of mito-transfer in cellular repair

and dysfunctions has also been reported (83–87). For example,

cancer cells can sequester mitochondria from T cells, likely

contributing to T cell exhaustion and resistance to chemotherapy

(87). Cardiomyocytes have been shown to dispose of dysfunctional

mitochondria by vesicle budding (86). These vesicles are then

scavenged by cardiac macrophages for degradation (86). The

parameters that induce mito-transfer in vivo are unclear (83–85).
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Nevertheless, establishing whether in vivo intercellular mito-transfer

is a fundamental process can be advantageous for delivering

mitochondria to multiple cells from a single site.

Regarding CVD, mito-transfer has been used to ameliorate

pathology in several animal models, particularly in heart failure

(88, 89). Notability, Masuzawa et al. demonstrated that

autologous mitochondria injected into ischemic hearts of rabbits

confers cardio protection via enhanced ATP production, and

upregulation of several cytokines associated with promoting

angiogenesis (EGF, GRO, IL-6, MCP-3) (89). Importantly these

improvements persisted for at least 28 days and mito-transfer of

naked undamaged mitochondria did not induce cardiac or

systemic inflammation (89). Separate work by Ikeda et al.

demonstrated that the injection of mesenchymal stem cell

derived mitochondria rich extracellular-microvescles (M-EVs)

enhance the mitochondrial function of mouse cardiomyocytes

after myocardial infarction (88). Mito-transfer will likely surpass

the transgenic limitations of hTFAM and Twinkle mice, as

related to issues of constitutive mtDNA overexpression. Further

mechanistic insight is warranted, but current research suggests

that mito-transfer can at minimum positively impact aging-

associated mito-dysfunction in cardiovascular cells (88, 89).

Several factors must be accounted for before mito-transfer can

be implemented in a clinical setting to treat cardiovascular aging.

First, the inherent variability of mtDNA heteroplasmy and aging-

associated mtDNA damage in humans may complicate defining a

standard mito-transfer dose. Studies also show that mtDNA

exists as different haplotypes, with each haplotype displaying

different ETC expressions (90). The consequences of mtDNA

haplotype mixing are unclear (90). Theoretically, the expression

of a different mtDNA haplotype is only troubling if said

haplotype promotes mitochondrial dysfunction (91). Second, The

ethical isolation and harvesting of mitochondria are also

important factors to consider. Autologous mitochondria can be

isolated from lab grown IPSCs (92). However, current literature

suggests that mitochondrial dysfunctions can manifest after IPSC

differentiation in an age-dependent manner (93).

Lastly, the least immunogenic methods for extracellular mito-

transfer and mtDNA delivery are still unresolved (94–97). Internal

mitochondrial components that become extracellularly exposed

serve as damage associated molecular patterns (DAMPS/

mitoDAMPS), that initiate and amplify pro-inflammatory

signaling cascades (70, 71, 98). Work by Chang et al.

demonstrated that functional allogeneic mitochondria can be

intranasally delivered to the brain of 6-hydroxydopamine

(6-OHDA)-lesioned rats (99). Although the mito-transfer

improved mitochondrial function and dopaminergic neuron

viability, intranasal delivery increased the expression of several

pro-inflammatory cytokines, including IL-1α, IL-1β, and IL-17A

(99). Interestingly, Dache et al. reported on the presence of intact,

fully functional non encased (i.e., cell free) mitochondria in the

plasma of healthy individuals (100). These findings are thought

provoking, as they suggest mitochondria encapsulation may not be
Frontiers in Cardiovascular Medicine 05
required for systemic health benefits. Another inference from

Dache et al.’s work is that systemic inflammation associated with

mito-transfer may be related to healthy mitochondrial infusions

being contaminated with damaged mitochondria. In this regard,

work by Zhang et al. (101) demonstrated that systemic injection of

autologous mitochondria isolated from the skeletal muscle of mice,

reduced systemic inflammation (IL-6 and IL-1β) and enhanced

bacterial clearance in an acute model of sepsis (101).

In conclusion, both the magnitude of dysfunctional

mitochondria and damaged mtDNA are higher in the elderly.

Since less damaged mtDNA is present in younger cells, these

mtDNA heteroplasmy profiles more readily support the synthesis

of non-dysfunctional mtDNA derived proteins. Current literature

supports the further exploration of mito-transfer as an anti-aging

therapy in the cardiovascular compartment. Several limitations

must also be addressed prior to implementation of mito-transfer

as therapy. Whether, mito-transfer confers the same magnitude

of benefits to young cells, as what is to be anticipated in aged

cells, is also an intriguing thought.
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