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Background: Arterial stiffness is a significant determinant and evaluation of cardio-
cerebrovascular disease and all-cause mortality risk in the stroke population.
Estimated pulse wave velocity (ePWV) is a well-established indirect measure of
arterial stiffness. We examined the association of ePWV with all-cause and cardio-
cerebrovascular disease (CCD) mortality in the stroke population in a large sample
of US adults.
Methods: The study design was a prospective cohort study with data from the
National Health and Nutrition Examination Survey (NHANES) from 2003 to 2014,
between the ages of 18–85 years, with follow-up through December 31, 2019.
1,316 individuals with stroke among 58,759 participants were identified and
ultimately, 879 stroke patients were included in the analysis. ePWV was calculated
from a regression equation using age and mean blood pressure according to the
following formula: ePWV=9.587− (0.402× age) + [4.560× 0.001 × (age2)]−
[2.621 × 0.00001 × (age2) ×MBP] + (3.176 × 0.001 × age ×MBP)− (1.832 × 0.01 ×
MBP). Survey-weighted Cox regression models were used to assess the association
between ePWV and all-cause and CCD mortality risk.
Results: The high ePWV level group had a higher increased risk of all-cause mortality
and CCD mortality compared to the low ePWV level group after fully adjusting for
covariates. With an increase in ePWV of 1 m/s, the risk of all-cause and CCD
mortality increased by 44%–57% and 47%–72% respectively. ePWV levels were
linearly correlated with the risk of all-cause mortality (P for nonlinear = 0.187). With
each 1 m/s increase in ePWV, the risk of all-cause mortality increased by 44% (HR
1.44, 95% CI: 1.22–1.69; P < 0.001). When ePWV was <12.1 m/s, an increase in
ePWV per 1 m/s was associated with a 119% (HR 2.19, 95% CI: 1.43–3.36; P < 0.001)
increase in CCD mortality risk; when ePWV was ≥12.1 m/s, an increase in ePWV per
1 m/s was not associated with in CCD mortality risk.
Conclusion: ePWV is an independent risk factor for all-cause and CCD mortality in
stroke patients. Higher levels of ePWV are associated with higher all-cause mortality
and CCD mortality in stroke patients.
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Introduction

Arterial stiffness, also known as arterial elasticity loss, has been

identified as a reliable indicator of altered arterial structure and

function (1, 2). It is a significant predictor of cardiovascular

events and all-cause mortality in asymptomatic people who have

no overt cardiovascular disease (3–8). In patients with acute

cerebrovascular disease, the infarct subtype was associated with

increased arterial stiffness (9, 10). Currently, stroke remained the

world’s second-leading cause of death and the third-leading

cause of death and disability in 2019 (11). The burden of stroke

is manifested not only in the high mortality but also in high

morbidity, which results in up to 50% of survivors being

permanently disabled (12). Thus, stroke prevention via early

intervention is essential. Aortic or carotid stiffness may improve

stroke prediction and prognostic outcomes beyond another

conventional risk factors (7, 13–15). It is extremely crucial to

identify unknown stroke risk factors, particularly biomarkers of

artery injury, to intervene appropriately. As a result, it is essential

to develop a simple and easy-to-use tool for assessing arterial

stiffness in clinical practice.

The gold standard for arterial stiffness has been established as

the carotid-femoral pulse wave velocity (cfPWV) (13). Although

the cfPWV measurement has been standardized (3), it requires

costly and specialized equipment that is rarely available in clinical

practice (14). Additionally, preceding research showed that age

and blood pressure (BP) are the primary determinants of arterial

stiffening in adults (16, 17). And Determinants of cfPWV

progression and accelerated arterial aging in hypertensive patients

were largely explained by age and BP values (18). Thus, as a

strategy to overcome the limitations of evaluating aortic stiffness

using cfPWV, researchers developed the concept of estimated

pulse wave velocity (ePWV), which is calculated using an

algorithm that takes into account age and means blood pressure

(MBP) (15). Preliminary research found a strong correlation

between ePWV and measured cfPWV (15), implying that daily

ePWV measurements can be used to monitor the severity of

arterial stiffness. Furthermore, previous research has discovered

that ePWV has an incremental predictive value in Western

populations for stroke, myocardial infarction, cardiovascular

mortality, and other outcomes (19–21). Therefore, we investigated

the long-term association between ePWV in assessing arterial

stiffness and all-cause and CCD mortality in the stroke population.
Method

Study design and population

The study design was a prospective cohort study with data

from the National Health and Nutrition Examination Survey

(NHANES) from 2003 to 2014, followed through the end of

December 31, 2019. The survey, which includes interviews,

physical examinations at home or mobile examination centers,

and laboratory tests, is administered by the National Centre for
Frontiers in Cardiovascular Medicine 02
Health Statistics and follows a complex, stratified, multi-stage

probabilistic design. The survey is conducted on a two-year cycle.

Detailed sampling methods and data collection processes have

been published elsewhere (22). NHANES was administered by

the National Center for Health Statistics of the US Centers for

Disease Control and Prevention (CDC) and approved by the

NHANES Institutional Review Board. All participants provided

the necessary written informed consent.

A total of 58,759 participants participated in six cycles of the

NHANES between 2003 and 2014. 1,316 stroke population were

identified using standardized questionnaires (Has a doctor or

other health professional ever told you that you had a stroke?/

How old were you when you were first told had a stroke?). One

of the participants was aged less than 17 years, one was

pregnant, two had missing follow-up data, 274 had cancer, and

75 had no ePWV data were excluded. Meanwhile, to reduce the

potential reverse causation bias, participants who died within 2

years of follow-up were excluded, and ultimately, 879

participants were included in the analysis. Detailed information

is available at https://wwwn.cdc.gov/Nchs/Nhanes/.
Evaluation of ePWV

ePWV is calculated according to the following formula

described by Greve et al. (15). The equation described was

derived from the Reference Values for Arterial Stiffness

Collaboration (16).

ePWV¼ :587�(0:402�age)

þ[4:560�0:001�(age2)]–[2:621�0:00001�(age2)�MBP]

þ(3:176�0:001�age�MBP)–(1:832�0:01�MBP)

In this formula, age is measured in years, and mean blood pressure

(MBP) is calculated as diastolic blood pressure (DBP) +0.4×

[systolic blood pressure (SBP)-DBP]. Blood pressure is measured

using a uniform sphygmomanometer. Before the test,

participants were placed in a quiet sitting position for five

minutes. Trained inspectors carry out the above operations. The

blood pressure value is the average of at least three measurements.
Study endpoints

The outcomes of this study were all-cause and CCD mortality.

All-cause mortality was the total of all mortality, and CCD

mortality was diagnosed by the International Classification of

Diseases version 10 code [ICD-10 I00–I09, I11, I13 or I20–I51,

Cerebrovascular diseases (I60–I69)].
Assessment of other variables

Information on age, sex, race, education level, marriage, family

income, smoking and drinking status, medical history, and medication
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usewas collected from family interviews andmobile examination centers

using standardized questionnaires. Biochemical indicators are tested

through a rigorous procedure, which can be found in the NHANES

Laboratory/Medical Technician Procedure Manual (22).

In addition, to facilitate data integration, we further classified the

following variables: Age (≤60, >60 years), race (non-Hispanic white,
non-Hispanic blacks and Mexican Americans, or others), an

education level (less than grade 9, 9–11 grade/graduated from high

school or equivalent, college graduated or above), marital status

(never married, married/separated, divorced/widowed/living with

partner/others). Besides, smoking status was classified as never

smoking (smoking <100 cigarettes/session), former smoking

(smoking >100 cigarettes/session, now not smoking at all), and

current smoking (smoking >100 cigarettes/session, now smoking

some days or every day) (23). Drinking alcohol into never

drinking (life <12 drinks), was drinking (alcohol or 12 drinks in

the life, but not drinking) last year, the mild/moderate drinkers

(over the past year women are drinking 1 time/day or less, men

drink 2 times/day or less), heavy drinkers (over the past year

women drinking >1 time/day, men drinking >2 times/day) (24).
Statistical analysis

Appropriate weighting (Mec2yr weights) was carried out in the

statistical analysis. In population baseline characteristics,

continuous variables are expressed as weighted means (standard

errors, SE) and categorical variables as unweighted counts

(weighted %). Spearman’s correlation coefficient was used for the

assessment of the relationship between ePWV and age. Hazard

ratios (HRs) and 95% confidence intervals (CIs) of ePWV with

all-cause and CCD mortality were assessed using survey-weighted

Cox regression models. In the Cox model, ePWV was analyzed

as a categorical (low vs. group) and a continuous variable (1 m/

s), respectively. From baseline characteristics, confounders were

selected based on their association with the outcome of interest

or a change in the effect estimate of more than 10% (25).

Supplementary Table S1 shows the variables contributing more

than 10% to each result. Meanwhile, a time-dependent Receiver

operating characteristic (ROC) curve was used to assess the

predictive value of ePWV for all-cause and CVD mortality.

Furthermore, we obtained five data sets by multiple imputations

for the missing data, and the pooled multivariate Cox regression

results were regarded as a sensitivity analysis.

Subgroup analysis was performed according to the following

clinical characteristics: sex (male, female), age (<60, ≥60 years),

BMI (<30, ≥30 kg/m2), race (non-Hispanic white, non-Hispanic

black, Mexican American, and others), heart attack (no/yes), and

history of hypertension (no/yes), and P values for interaction

were obtained. In addition, a generalized additive model (GAM)

was used to visually assess the dose-dependent relationship

between ePWV and the risk of mortality (26), and log-likelihood

ratio tests the P-values for nonlinear. If the nonlinear association

is observed, a two-piecewise linear regression model is performed

to calculate the inflection point where the ratio of ePWV to

mortality significantly changes in the smooth curve (1).
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All statistical analyses were performed by R software (http://

www.R-project.org, The R Foundation), GraphPad Prism

(Version 9.0; USA, San Diego, CA), and EmpowerStats (Version

4.2.0, www.R-project.org, X&Y Solutions, Inc., Boston, MA). P-

values less than 0.05 indicate statistically significant differences.
Results

A total of 58,759 individuals participated in NHANES from

2003 to 2014, and 1,316 cases of stroke were identified. Among

these stroke patients, one participant was under 20 years of age,

one was pregnant, two had missing follow-up data, 274 had

cancer, and 75 did not have ePWV data. Besides, 84 died within

the first two years of follow-up were further excluded, and 879

stroke patients were eligible for analysis, representing a stroke

population of 4,543,943. The 879 stroke patients were followed

up for 7,706 person-years and divided into low (5.24–10.37 m/s)

and high groups (10.38–16.89 m/s) based on median ePWV

levels. The detailed baseline characteristics of the 879 stroke

patients were summarized in Table 1. ePWV levels were

significantly and positively correlated with age (r = 0.883), as

shown in Figure 1.
ePWV and all-cause mortality

In the crude model, the higher-level group had a 2.8-fold (HR

3.8, 95% CI: 2.81–5.13; P < 0.001) increased risk of all-cause

mortality compared to the lower ePWV level group (Table 2).

With an increase in ePWV of 1 m/s, the risk of all-cause

mortality increased by 44% (HR 1.44, 95% CI: 1.36–1.52; P <

0.001). In Model 1, age, race, and gender were adjusted and the

results remained stable. In Model 2, after full adjustment for

maximum variables, the risk of all-cause mortality increased

3.75-fold (HR 4.75, 95% CI: 1.95–11.58; P = 0.001) in the higher-

level group compared to the lower ePWV level group. Similarly,

the risk of all-cause mortality increased by 57% (HR 1.57, 95%

CI: 1.29–1.90; P < 0.001) with an increase in ePWV of 1 m/s

(Table 2). Besides, the results of ePWV and the risk of all-cause

mortality remained significantly positively correlated before and

after multiple imputations (Supplementary Table S2).

To assess the robustness of the association between ePWV

levels and all-cause risk in the stroke population, the subgroup

analysis was performed, as shown in Figure 2A. With each 1 m/s

increase in ePWV, the risk of all-cause mortality correspondingly

increased by 20%–90%. For every 1 m/s increase in ePWV, those

with a history of asthma had a higher risk of all-cause mortality

(HR 1.9, 95% CI: 1.40–2.50; P = 0.011) than those without a

history of asthma.
ePWV and CCD mortality

In the crude model, the higher level group had a 2.97-fold (HR

3.97, 95% CI: 2.60–6.07; P < 0.001) increased risk of CCD mortality
frontiersin.org
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TABLE 1 Survey-weighted baseline characteristics of stroke patients (representing 4,543,943 individuals) stratified by ePWV median levels.

Variables Low ePWV (5.24–
10.37 m/s)

High ePWV (10.38–
16.89 m/s)

Variables Low ePWV (5.24–
10.37 m/s)

HighePWV (10.38–
16.89 m/s)

n = 439 n = 440 n = 439 n = 440
Represented size 2,678,800 1,865,144 Osteoporosis
BMI (kg/m2) 30.36 (0.43) 29.07 (0.39) No 314 (91.16) 303 (81.75)

PIR 2.35 (0.11) 2.33 (0.09) Yes 26 (8.84) 58 (18.25)

Waist (cm) 104.52 (1.07) 102.0 (0.94) Arthritis
HB (g/dl) 14.13 (0.11) 13.68 (0.11) No 224 (52.79) 191 (41.58)

HBA1c (%) 6.07 (0.09) 6.04 (0.06) Yes 215 (47.21) 247 (58.42)

FPG (mg/dl) 115.12 (3.52) 120.73 (3.87) DM
AST (U/L) 25.59 (0.61) 25.06 (0.51) No 292 (71.21) 224 (58.28)

ALT (U/L) 24.61 (0.83) 21.13 (0.61) Yes 147 (28.79) 196 (41.72)

TB (µmol/L) 11.37 (0.30) 12.42 (0.29) CHD
Creatinine (µmol/L) 87.72 (2.85) 97.94 (2.62) No 383 (87.67) 348 (80.69)

HDL (mmol/L) 1.30 (0.03) 1.38 (0.03) Yes 51 (12.33) 80 (19.31)

TC (mmol/L) 4.98 (0.07) 4.94 (0.07) Hyperlipidemia
LDL (mmol/L) 2.90 (0.09) 2.82 (0.10) No 86 (19.02) 71 (14.42)

TG (mmol/L) 1.77 (0.13) 1.63 (0.08) Yes 353 (80.98) 369 (85.58)

Age Hypertension
<60 years 259 (65.15) 13 (3.31) No 118 (31.03) 41 (9.15)

≥60 years 180 (34.85) 427 (96.69) Yes 321 (68.97) 399 (90.85)

Gender Antihypertensive medication
Women 232 (53.92) 227 (60.50) No 391 (90.90) 367 (81.23)

Men 207 (46.08) 213 (39.50) Yes 51 (9.10) 73 (18.77)

Race Diabetes medications
Non-hispanic white people 182 (64.91) 235 (73.72) No 332 (79.73) 303 (71.72)

Non-hispanic black people 139 (17.68) 105 (13.35) Yes 107 (20.27) 137 (28.28)

Mexican Americans 64 (6.70) 52 (4.31) Alcohol user
Other races 54 (10.71) 48 (8.63) Never 43 (6.67) 98 (24.29)

Education Levels Former 143 (32.12) 175 (35.58)

Less than 9th grade 57 (8.41) 106 (16.95) Mild/moderate 97 (23.28) 96 (25.36)

9–11th grade/high school grade
or equivalent

214 (46.18) 188 (44.28) Heavy 122 (29.59) 31 (6.81)

College graduate or above 168 (45.41) 143 (38.76) Refused/Don’t
know

34 (8.34) 40 (7.96)

Marital status Smoke status
Never married 55 (11.50) 18 (3.19) Never 156 (36.03) 206 (49.85)

Married/Separated 233 (55.48) 223 (54.31) Former 115 (25.36) 173 (36.91)

Divorced/Widowed/Living with
partner/others

151 (33.02) 199 (42.05) Current 168 (38.60) 61 (13.24)

Asthma
No 334 (75.03) 383 (86.86)

Yes 104 (24.97) 56 (13.14)

Continuous variables are expressed as weighted mean (standard error, SE). Categorical variables are expressed as counts (weighted %). ePWV, estimated pulse wave

velocity; PIR, poverty income ratio; CHF, coronary heart failure; BMI, body mass index; HB, hemoglobin; FPG, fasting plasma glucose; TB, total bilirubin; TC, total

cholesterol; LDL, low-density lipoprotein cholesterol; TG, triglycerides; HDL, high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; HbA1c, glycated hemoglobinA1c.
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compared to the lower ePWV level group (Table 2). With an

increase in ePWV of 1 m/s, the risk of CCD mortality increased

by 47% (HR 1.47, 95% CI:1.34–1.62; P < 0.001). In Model 1, age,

race, and gender were adjusted and the results remained stable.

In Model 2, after full adjustment for maximum variables, the risk

of CCD mortality increased 4.01-fold (HR 5.01, 95% CI: 1.31–

19.22; P = 0.019) in the higher-level group compared to the lower

ePWV level group. Similarly, the risk of CCD mortality increased
Frontiers in Cardiovascular Medicine 04
by 72% (HR 1.72, 95% CI: 1.23–2.40; P = 0.001) with an increase

in ePWV of 1 m/s (Table 2). Besides, the results of ePWV and

the risk of CCD mortality remained significantly positively

correlated before and after multiple imputations (Supplementary

Table S2).

To assess the robustness of the association between ePWV

levels and CCD mortality risk in the stroke population, the

subgroup analysis was performed, as shown in Figure 2B. With
frontiersin.org
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FIGURE 1

Correlations between age and ePWV.

TABLE 2 Weighted univariate and multivariate Cox regression to assess
the association between ePWV levels and the risk of all-cause and
cardiovascular disease mortality in stroke patients.

Low ePWV
(5.24–

10.37 m/s)

High ePWV
(10.38–

16.89 m/s)

P-
value

Every 1 m/s
increase in

ePWV

P-
value

All-cause mortality
Number
of deaths

107 262 369

Crude
model

1 3.80 (2.81–
5.13)

<0.001 1.44 (1.36–
1.52)

<0.001

Model 1a 1 2.01 (1.38–
2.93)

<0.001 1.33 (1.23–
1.43)

<0.001

Model 2b 1 4.75 (1.95–
11.58)

0.001 1.57 (1.29–
1.90)

<0.001

CCD mortality
Number
of deaths

39 105 144

Crude
model

1 3.97 (2.60–
6.07)

<0.001 1.47 (1.34–
1.62)

<0.001

Model 1a 1 2.02 (1.22–
3.33)

0.006 1.36 (1.22–
1.52)

<0.001

Model 2c 1 5.01 (1.31–
19.22)

0.019 1.72 (1.23–
2.40)

0.001

aModel 1 adjust age, race, and gender.
bModel 2 adjust age, BMI, gender, race, education levels, marital status, waist, HB,

HBA1c, FPG, ALT, AST, TB, creatinine, asthma, DM, CHD, Hypertension, diabetes

medications, alcohol use, smoke.
cModel 2 adjusts age, BMI, gender, race, education levels, marital status, HB,

HBA1c, FPG, ALT, TB, creatinine, HDL, LDL, arthritis, DM, CHD, diabetes

medications, and alcohol use.
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each 1 m/s increase in ePWV, the risk of CCD mortality

correspondingly increased by 10%–100%.
Dose-dependent relationship between
ePWV levels and risk of all-cause and CCD
mortality

As shown in Figure 3A, ePWV levels were linearly correlated

with the risk of all-cause mortality (P for nonlinear = 0.187).
Frontiers in Cardiovascular Medicine 05
With each 1 m/s increase in ePWV, the risk of all-cause

mortality increased by 44% (HR 1.44, 95% CI: 1.22–1.69; P <

0.001), which is approximately the same as the results of the Cox

regression model.

As shown in Figure 3B, ePWV levels were nonlinearly

correlated with the risk of CCD mortality (P for nonlinear =

0.04). The two-piecewise linear regression model showed an

inflection point of 12.1 m/s for ePWV and CCD mortality risk.

When ePWV was 12.1 m/s, an increase in ePWV per 1 m/s was

associated with a 119% (HR 2.19, 95% CI: 1.43–3.36; P < 0.001)

increase in CCD mortality risk; when ePWV was ≥12.1 m/s, an

increase in ePWV per 1 m/s was not associated with in CCD

mortality risk (HR 0.99, 95% CI: 0.58–1.69; P = 0.966) (Table 3).

In addition, because the P value for nonlinear is nearly 0.05, the

linear results were also reported. With each 1 m/s increase in

ePWV, the risk of CCD mortality increased by 55% (HR 1.55,

95% CI: 1.21–1.98; P < 0.001), which is approximately the same

as the results of the Cox regression model.
Predictive value of ePWV for 10-year all-
cause and CCD mortality

As shown in Figure 4A, ePWV had a strong predictive value

(AUC = 0.71) for 10-year all-cause mortality in the stroke

population, with a cutoff value of 10.7 m/s, and a sensitivity and

specificity of 63.9% and 68.3%, respectively. Similarly, as shown

in Figure 4B, ePWV maintained a strong predictive value (AUC

= 0.698) for 10-year CCD mortality in the stroke population,

with a cutoff value of 10.8 m/s, and a sensitivity and specificity

of 68.3.% and 62.4%, respectively.
Discussion

The results of our research can be summarized in two aspects.

(1) Higher levels of ePWV were associated with all-cause and CCD

mortality in stroke patients. (2) ePWV was linearly related to all-

cause mortality and non-linearly related to CCD.

Several previous studies have revealed a link between ePWV

level and the risk of all-cause and CCD mortality in normal and

diseased populations. In hypertensive adults (27) and the general

population, ePWV is linked to cardiovascular outcomes and

all-cause mortality (19–21). Vlachopoulos and colleagues

reported that the ePWV predicted the primary composite

cardiovascular outcome with an HR of 1.30 (95% CI: 1.17–1.43;

P < 0.001) (28) and all-cause mortality with an HR of 1.65 (95%

CI: 1.46–1.86; P < 0.001) (27). Chunpeng Ji and colleagues also

discovered that the ePWV was associated with the risk of CVDs

and all-cause mortality regardless of cardiovascular risk factors

(29). Greve and colleagues (15) found that the ePWV and

measured cfPWV predicted the combined outcome of nonfatal

myocardial infarction, cardiovascular mortality, ischemic heart

disease, and stroke. In the other study, they also found that

ePWV is independently associated with the risk of stroke in

middle-aged men (21). Thus, ePWV may be a simple metric
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FIGURE 2

(A) The association between ePWV levels and all-cause risk in the stroke population; (B) the association between ePWV levels and CCDmortality risk in the
stroke population.

FIGURE 3

(A) ePWV levels were linearly correlated with the risk of all-cause mortality; (B) ePWV levels were nonlinearly correlated with the risk of CCD mortality.
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generated from age and BP that may offer insight into all-cause

and CCD mortality risk in the stroke population and be used in

clinical practice.

According to our studies, the stroke population with arterial

stiffness and a high ePWV level had an increased risk of
TABLE 3 The results of two-piecewise linear regression model for ePWV
and the risk of all-cause and CCD mortality in stroke patients.

Outcome Inflection-point of ePWV
(m/s)

HR 95% CI P-value

CCD mortality <12.1 2.19 1.43–3.36 <0.001

≥12.1 0.99 0.58–1.69 0.966

HRs has been fully adjusted as described in the Table 2.
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all-cause and CCD mortality with increasing ePWV. Whether

variables were adjusted or not, the mortality rate of all-cause and

CCD was still higher in the stroke population with high ePWV

values than in those with low ePWV values. Furthermore, each

1 m/s increase in ePWV increased the risk of all-cause and CCD

mortality in the stroke population. Apart from an increase in

ePWV per 1 m/s, when ePWV was 12.1 m/s, there was no

association with CCD mortality risk. We considered that the

stroke population may be complicated by hypertension as arterial

stiffness increases and that most of the population is already on

antihypertensive therapy at this time. Because ePWV is

calculated using age and blood pressure, it may be influenced by

antihypertensive therapy in predicting the risk of death from
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FIGURE 4

(A) ePWV had a strong predictive value (AUC = 0.71) for 10-year all-cause mortality in the stroke population; (B) ePWV maintained a strong predictive value
(AUC = 0.698) for 10-year CCD mortality in the stroke population.
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CCD. Besides, our study provided some evidence that ePWV is

associated with all-cause and CCD mortality in the stroke

population. As demonstrated by some previous studies, revealed

that high PWV doubles the risk of future ischemic stroke in a

population with acute lacunar infarction, regardless of age,

gender, or blood pressure levels (28). Measuring PWV during the

acute phase of an ischemic stroke is useful for predicting future

ischemic stroke (28). As a result, Aortic pulse wave velocity

(PWV) is a well-established indirect indicator of arterial stiffness

(30). Although ePWV is not a replacement for cfPWV, it can be

used in conjunction with traditional risk classification to improve

risk prediction in the stroke population when measuring cfPWV

is not feasible. Furthermore, the use of ePWV will lead to a

greater understanding of the role of arterial stiffness and will

assist physicians in incorporating it into clinical practice. Second,

in some populations with arterial stiffness, ePWV may be used

to assess the efficacy of antihypertension treatment.

The association of arterial stiffness with mortality in stroke

patients may involve several mechanisms. Arterial stiffness is

substantially influenced by blood pressure, and angiogenic

hypertension indices have been associated with cancer (31). It

also is linked to inflammation and oxidative stress (32, 33),

which play a role in the pathophysiology of high-mortality

diseases such as cancer and inflammatory diseases. Vascular

biomarkers are strongly linked to genetic indicators of biological

aging and life expectancy, indicating a genetic predisposition to

arterial function and death (34, 35). Increased arterial stiffness

also causes hypertension and high pulse pressure, reduces

coronary perfusion pressure, and increases left ventricular

afterload, promoting remodeling and dysfunction (36). Increased

pulse pressure enhances pulsatile flow penetration into organ

microvasculature, including the brain, heart, and kidney (37).

Hemodynamic stress, pulsatile pressure, and blood pressure

variability damage the brain and heart (38).
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Perspectives

To date, studies on the correlation between ePWV and cfPWV

are limited. American adults with mild-to-moderately increased BP

and obesity had a high association between baseline ePWV and

cfPWV (r = 0.70) (39). In Danish, French, Australian, and US

adults, there is a weak to moderate association between ePWV

and cfPWV (r varied from 0.35 to 0.66) (15, 40, 41).

Currently, CfPWV remains the gold standard for the

assessment of arterial stiffness. Assessment of the cfPWV still

requires relatively sophisticated technical skills and equipment.

ePWV is more affordable and simpler to operate than cfPWV.

Because of these advantages, ePWV may be applied more,

particularly in community hospitals without equipment, in rural

areas, and for a bigger population, especially in developing

countries. ePWV could be a screening tool and “gatekeeper” for

magnetic resonance imaging of aortic stiffness (42). ePWV

predicts cardiovascular and cerebrovascular events and all-cause

mortality independent of traditional CVD risk factors (15, 19–21,

40, 42–47). Furthermore, they revealed that ePWV is linked to

recognized indicators of vascular aging and could serve as a

valuable tool for advancing research on vascular aging in their

recent study by Heffernan KS et al. (48). Therefore, ePWV could

be a candidate for the initial assessment of arterial stiffness and

the early identification of those at high risk. This will help this

population to be evaluated and treated for arterial stiffness as

early as possible to reduce the risk of mortality.
Strengths and limitations

The Strengths of our study include the large, community-based

cohort with high retention, the standardized and over whole data

collection database, and the inclusion of potential confounders
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such as BMI, Race, Marital Status, Education Levels Gender,

household income, health behaviors, and serum concentrations

of glucose and blood lipids into the multivariable analysis.

Our study had the following limitations: (1) Due to the design

of this observational study, a causal relationship between ePWV

and mortality risk cannot be inferred. (2) The influence of other

covariates. (3) The research population is a stroke population

from the United States, and may not apply to other populations.

(4) Due to a lack of relevant data, we did not investigate BP

variability and changes in BP-lowering treatment. (5) We did not

categorize the stroke population in detail and evaluated the

associations between ePWV and all-cause and CCD mortality

risk in different stroke subtypes.
Conclusion

ePWV is an independent risk factor for all-cause and CCD

mortality in stroke patients. Higher levels of ePWV are

associated with higher all-cause mortality and CCD mortality in

stroke patients.
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