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Heart failure results from various physiological and pathological stimuli that lead to
cardiac hypertrophy. This pathological process is common in several
cardiovascular diseases and ultimately leads to heart failure. The development of
cardiac hypertrophy and heart failure involves reprogramming of gene
expression, a process that is highly dependent on epigenetic regulation. Histone
acetylation is dynamically regulated by cardiac stress. Histone acetyltransferases
play an important role in epigenetic remodeling in cardiac hypertrophy and
heart failure. The regulation of histone acetyltransferases serves as a bridge
between signal transduction and downstream gene reprogramming.
Investigating the changes in histone acetyltransferases and histone modification
sites in cardiac hypertrophy and heart failure will provide new therapeutic
strategies to treat these diseases. This review summarizes the association of
histone acetylation sites and histone acetylases with cardiac hypertrophy and
heart failure, with emphasis on histone acetylation sites.
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Introduction

Heart failure (HF), which occurs in the late stage of most cardiovascular diseases

(CVDs), has a high mortality rate and worsens the patient life expectancy. The

proportion of the population affected by HF is estimated to increase annually, placing a

significant burden on public health in an aging society (1). Various CVDs can lead to HF

via pathological cardiac hypertrophy. Cardiac hypertrophy is an important process of

cardiac remodeling that is often caused by preload, such as hypertension, or afterload,

such as myocardial infarction (2, 3). Cardiac hypertrophy is a compensatory mechanism

that reduces oxygen consumption, normalizes the ventricular systolic pressure, and

improves the ejection function. However, long-term stress, such as hypertension,

eventually leads to HF and irreversible pathological cardiac remodeling. Cardiac

hypertrophy also causes fibrosis and dysfunction, leading to HF (4, 5). Various biological

regulatory processes are involved in cardiac hypertrophy and remodeling. Particularly,

acetylation and deacetylation of histones via epigenetic modifications have attracted

researchers’ attention (6, 7). Histone acetylation and deacetylation are believed to play

important roles in the regulation of gene expression, leading to cardiac hypertrophy and

HF under stress. Histone acetylation is important for cardiac physiology and

pathophysiology (8). However, the different sites of histone acetylation are not clearly

understood. This review summarizes the potential mechanisms by which the differences
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in histone acetylation sites in the regulation of gene expression may

be involved in the etiology of cardiac hypertrophy and HF. This

review provides a better understanding of the regulatory

mechanisms of histone acetylation in the pathogenesis of HF and

suggests new therapeutic strategies for HF.
Histone acetylation in epigenetics

Epigenetics is currently one of the fastest-growing areas in

biological research. Epigenetics plays an important role in many

cellular processes, including regulation of gene expression and

transcription, cell growth and differentiation, and chromosome

remodeling and inactivation (8, 9). Epigenetics refers to the

regulation of gene expression via reversible chemical modifications

of the DNA, histones, and even chromatin structures, without

changing the DNA sequence. Epigenetic processes primarily

include DNA methylation, non-coding RNAs, and histone

modifications (10). The nucleosome is composed of 147 bp of

DNA wrapped around an octamer containing four histone

proteins: H2A, H2B, H3, and H4 (11). The linker histone protein

H1 mediates interactions between adjacent nucleosomes, resulting

in chromatin formation (12). Histones are characterized by their

direct binding to DNA, and post-translational modifications

(PTMs) of histones alter the chromatin structure and dynamically

regulate the transcriptional state of genes (13). Chromatin is of

two types: heterochromatin, which is closed and compressed, and

euchromatin, which is relaxed and more suitable for transcription.

In general, histone PTMs are controlled by “writers” that add

modifier groups, “erasers” that remove modifier groups, and

“readers” that specifically recognize the modification sites for

downstream transcriptional activation or repression. All these

PTMs are regulated by enzymes, and their enzymatic activity may

be controlled by reactive cofactors, such as substrates and

metabolic intermediates (14). Histone modifications include

acetylation, methylation, butyrylation, propionylation, formylation,

succinylation, malonylation, 2-hydroxyisobutyrylation,

β-hydroxybutyrylation, glutarylation, benzoylation, and

crotonylation (13, 15, 16). Among all histone modifications,

acetylation and methylation are mostly shown to be involved in

the regulation of CVDs, and other modifications, such as

succinylation, have also been extensively studied in various

diseases (15, 16). Histone acetylation is associated with the

upregulation of gene transcription via various mechanisms, some

of which are described below. First, PTMs of histone lysine

residues alter the positive charge of the ϵ-amino group, which

reduces nucleosome folding and affects DNA–histone or histone–

histone interactions, thereby reducing the euchromatin–

nucleosome interactions. However, interactions between enhancers

and their corresponding promoters are strengthened (14, 17–19).

Thus, PTMs of histones directly affect the structures of chromatin

and nucleosomes. Second, PTMs of lysine residues on histones

can serve as epigenetic landmarks directly or indirectly by the

presence of transcription factors, and RNA polymerase II, which

directly or indirectly mobilizes the acetylation of histone lysine

residues, serves as an epigenetic landmark that is specifically
Frontiers in Cardiovascular Medicine 02
recognized by transcription factors and chromatin remodeling

factors. The acetylation level of lysine residues depends on the

dynamic regulation of histone acetyltransferases (HATs) and

histone deacetylases (HDACs) (14, 20). Acetylation sites of

histones have mainly been studied for H3 and H4. Acetylation

sites on histones H3 and H4 include H3K4, H3K9, H3K14,

H3K18, H3K23, H3K27, H3K36, H3K56, H4K5, H4K8, H4K12,

H4K16, and H4K20 (13, 21). In this review, we mainly focused on

the acetylation of histones H3 and H4 and their involvement in

cardiac hypertrophy and HF.
Histone acetylation in cardiac
hypertrophy and heart failure

The influence of epigenetics on disease incidence has

drastically increased in the field of cancer, and in recent years, it

has gradually expanded to almost all diseases, including HF (22,

23). Histone acetylation plays an important role in histone

modification and affects heart diseases (22). Many histone

acetylation sites have been suggested to be associated with heart

diseases. Here, we discuss the relationship between histone

acetylation sites and cardiac hypertrophy and HF.

Acetylation of H3K4 by p300 has been suggested to be

important for the expression of the transcription factor, GATA-

binding protein 4 (GATA4), in heart formation (24). Acetylation

of H3K9 and H3K27 has also been suggested to be involved in

the expression of GATA4, as GATA4 is involved in the

development of HF and the fetal gene is reactivated during HF,

suggesting that the acetylation of H3K4 may be involved in

cardiac hypertrophy and HF (25, 26). Many reports have

suggested that the acetylation of H3K9 by p300 causes

cardiomyocyte hypertrophy (3, 4, 27–30). Furthermore, H3K9

acetylation is increased during cardiac hypertrophy and HF in

TAC and Dahl rats (4, 26, 31). Acetylation of H3K9 is reduced

by inhibition of the HAT activity of p300 (31, 32). Although

some studies have suggested an association between H3K14

acetylation and microRNA (miR)-134–5p expression in cardiac

fibroblasts, the specific role of H3K14 remains unknown due to

the lack of comparisons with the normal state (33). Acetylation

of H3K14 at the miR-30a-5p promoter in H9c2 cells is

associated with c-Myc expression (34). However, whether H3K14

acetylation is directly involved in cardiac hypertrophy and HF

remains unclear. Acetylation of H3K27 has been reported to be

associated with cardiac disease, although not to the same extent

as the acetylation of H3K9. Acetylation of H3K27 leads to

cardiac hypertrophy and fibrosis of the heart together with

bromodomain-containing 4 (35). In addition, H3K27 acetylation

is associated with enhancers that are specifically activated in

cardiac hypertrophy, and specific epigenetic signatures have been

shown to regulate gene expression in hypertrophy by controlling

promoter activity (36). Brd4 is a reader protein for H3K27

acetylation in CVDs (37, 38). Acetylation of H3K27 and H3K9

has also been shown to be a therapeutic target for CVDs (39).

These acetylation sites are located in the tail domain of histones

and implicated in cardiac hypertrophy and HF. Moreover,
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H3K122, a globular domain in the body of histones around which

the DNA wraps, has also been reported to be involved in HF. In the

Dahl rat model of hypertension-induced HF, acetylation of H3K9

increases during cardiac hypertrophy when the heart function is

preserved, and acetylation of H3K122 in the globular domain

increases during HF when the heart function is reduced. These

histone acetylations are altered in the hypertrophic response gene

promoter region and the recruitment of p300 remains unchanged

during cardiac hypertrophy and HF. However, the binding of

p300 to BRG1, a chromatin remodeling factor, increases during

HF, and the recruitment of BRG1 to the promoter increases

during cardiac hypertrophy. The mRNA levels of hypertrophic

response genes are greatly increased in HF than in cardiac

hypertrophy. This suggests that the acetylation of H3K122 in the

histone body is involved in the pathogenesis of HF. Moreover,

complex formation between p300 and BRG1 may be important

for this acetylation of H3K122 (40).

There are no reports of any direct relationships of H3K18,

H3K23, H3K36, H3K56, H4K5, H4K8, H4K12, H4K16, and

H4K20 with cardiac hypertrophy and HF. However, acetylation

of H3K9 and H3K27 has been reported in cardiac hypertrophy

and HF. Other acetylation sites need to be investigated further

based on the affected gene region and stage of the disease.

Furthermore, the detailed role of these histone acetylation sites in

the promoter and enhancer regions in cardiac hypertrophy and

heart failure during transcription remains to be elucidated.

Therefore, the relationship between histone acetylation and the

expression of genes involved in cardiac hypertrophy and heart

failure needs to be studied in detail.
Histone acetyltransferase in heart
disease

Selected lysines are acetylated by specific biological processes,

and the overall histone acetylation level is dynamically regulated

by two enzyme families, HATs and HDACs (41, 42). In histone

acetylation, HATs require acetyl-CoA as cofactors to catalyze the

transfer of the acetyl group to the ϵ-amino group of the lysine

side chain (43). HATs can be divided into five families: p300/CBP,

Basal TF, GNAT, MYST, and NCoA (44). Importantly, changes in

the formation of complexes involving HATs can alter the sites of

acetylated histones. For example, complex formation between p300

and BRG1 increases during cardiac hypertrophy and HF, and the

level of H3K122 acetylation in the globular domain increases (40).

Furthermore, yeast Gcn5 alone acetylates free histones in vitro, but

it must be combined with the Ada2 and Ada3 subunits within

ADA and SAGA complexes to preferentially acetylate H2B in the

nucleosome (45). This increase in histone acetylation levels and

changes in histone acetylation sites are involved in the formation

of HAT complexes and activation of HATs. Therefore,

understanding the transcriptional regulatory mechanisms related

to HATs is important for the treatment of HF. Acetylation of

histones by p300 is involved in cardiac hypertrophy and heart

failure (46, 47). Hypertrophic stress increases HAT activity and

histone acetylation, as p300 is regulated by several proteins,
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including ERK1/2, Akt, and Cdk9 (3). However, for HATs such as

GCN5, CBP, and PCAF, the relationship with histone acetylation

is unclear, although an association between cardiac hypertrophy

and heart failure has been reported (48–50).Curcumin, a natural

product, inhibits histone acetylation by blocking the HAT activity

of p300, thereby improving cardiomyocyte hypertrophy and HF

(32). Curcumin has also been reported to inhibit heart failure with

preserved ejection fraction in Dahl rats (47). Recently, curcumin-

based derivatives and analogs have been shown to have beneficial

effects in HF (3, 4). Anacardic and eicosapentaenoic acids improve

HF by inhibiting the HAT activity of p300. Similar to curcumin,

anacardic acid also inhibits the HAT activity of p300 and

improves the progression of cardiac hypertrophy and HF by

inhibiting the acetylation of H3K9 (31, 51). In addition, direct

inhibition of p300 HAT by eicosatetraenoic acid suppresses

myocardial infarction-induced HF (28). Metformin can inhibit

phenylephrine-induced cardiomyocyte hypertrophy by inhibiting

p300 in cultured cardiomyocytes; therefore, it can potentially be

used for the treatment of patients with diabetes and HF (52). In

contrast, L003 and C646, specific HAT inhibitors of p300, inhibit

angiotensin-induced cardiac hypertrophy and cardiac fibrosis (53).

Compounds, such as resveratrol, also improve cardiac hypertrophy

and HF by activating HDACs, such as sirtuin (54). In summary,

preventing histone acetylation by inhibiting the HAT activity of

p300 or activating HDACs can aid in the treatment of cardiac

hypertrophy and HF. Moreover, drugs targeting various epigenetic

processes can inhibit the HAT activity of p300 or activate HDACs

for the treatment of HF.
Histone deacetylase in heart disease

HDACs reverse histone acetylation by HATs and restore the

original unacetylated state of histone lysine. There are four classes

of HDACs, all of which are complexed with proteins that exhibit

low substrate specificity (55). HDACs are classified into four

major classes: HDAC class I (HDAC 1, 2, 3, and 8), HDAC class

IIa (HDAC 4, 5, 7, and 9), HDAC class IIb (HDAC 6 and 10),

HDAC class III (SIRT1-7), and HDAC class IV (HDAC11)

(6, 56). HDACs cause chromatin enrichment by deacetylating

histones, blocking access to DNA, and inhibiting transcription

(57). The relationship between non-histone proteins and HDACs

has been studied in cardiovascular disease. HDAC class I

promotes cardiac hypertrophy and heart failure in many cases,

whereas HDAC1 and HDAC2 inhibit cardioprotective and anti-

hypertrophic genes (58, 59). Increased expression of HDAC8 in

the heart increases p38 phosphorylation and expression, inducing

cardiac hypertrophy and fibrosis (60). Trichostatin A and valproic

acid have been shown to inhibit cardiac hypertrophy by inhibiting

HDAC class I, making HDAC inhibition an attractive therapeutic

target for heart failure (61). While HDAC class II plays a role in

suppressing cardiac hypertrophy and heart failure, HDAC class IIa

(HDAC 4, 5, and 9) suppresses cardiac hypertrophy by forming a

complex with the transcription factor Mef2 (6). Phosphorylation

of HDAC class IIa by phosphatases such as calcium/calmodulin-

dependent protein kinase 2 prevents its binding to Mef2 and
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FIGURE 1

Roles of histone acetylation sites in cardiac hypertrophy and heart failure. Ac, acetylation; HATs, histone acetyltransferases; P, phosphorylation.
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activates gene transcription (62). In addition, HDAC6 is involved in

tubulin acetylation, myofibril stiffness and skeletal muscle wasting in

cardiac disease (63–65). However, few reports on cardiac

hypertrophy and heart failure associated with HDAC class IIb and

IV are available, and he role of these HDACs in the heart needs

to be clarified in the future. HDAC class III, also known as the

SIRT protein family, plays a role in cardiac homeostasis; SIRT1

and SIRT3 promote the deacetylation of PGC-1α and reduce

cardiac hypertrophy by reducing oxidative stress (66–68). SIRT2

exerts cardioprotective effect by promoting AMPK activation

through deacetylation of LKB1 (69). SIRT6 inhibits cardiac

hypertrophy by suppressing NFATc4 expression and activation

(70). In contrast, a direct association between histone acetylation

and HDACs in the heart has been reported. SIRT3 is involved in

H3K27 deacetylation and regulates inflammation and fibrosis in

the heart via modulation of the FOS/AP-1 pathway (71). SIRT6

binds to and represses the promoters of IGF signaling-related

genes by deacetylating H3K9 through interaction with c-Jun.
Frontiers in Cardiovascular Medicine 04
SIRT6 expression is downregulated in human heart failure,

indicating that SIRT6 is involved in the pathogenesis of cardiac

hypertrophy and heart failure (72). As mentioned above, few

studies have demonstrated a direct relationship between HDACs

and histone deacetylation in cardiac hypertrophy and heart failure.

Therefore, the relationship between histone acetylation sites and

HDACs should be studied in detail. It is also necessary to

determine whether HDACs are negative or positive regulators of

cardiac hypertrophy and heart failure.
Conclusions and perspectives

Histone acetylation and HAT are therapeutic targets, and their

proper regulation is a promising therapeutic strategy for HF;

however, some problems should be mentioned. Currently, only a

limited number of histone acetylation sites have been implicated in

HF (Figure 1). Therefore, future studies should investigate other
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histone acetylation sites throughout the genome. As the sites of

histone acetylation are not similar in all gene regions, the overall

map of histone acetylation sites in HF and the related HAT-

centered transcriptional regulatory mechanisms need to be clarified.

Since histone acetylation is regulated by the balance between HATs

and HDACs, it is necessary to develop therapeutic agents targeting

HDACs (9, 73). Although histone acetylation has been associated

with gene expression during heart failure, there are also genes

whose expression is altered independently of histone acetylation

(9, 36, 40). Histone acetylation is associated with other epigenetic

mechanisms such as histone methylation and DNA methylation

(35). Therefore, the relationship between histone acetylation and

other epigenetic mechanisms in cardiac hypertrophy and heart

failure should be further investigated. In addition, post-translational

modifications of histones, such as acetylation, in patients with heart

failure have rarely been examined. Increased HAT activation of

p300 has been reported in patients with heart failure (74); however,

the association between histone acetylation and the development of

heart failure in humans needs to be clarified.

In summary, epigenetic regulation by histone modifiers is

critical in the pathogenesis of cardiac hypertrophy. Identifying

the molecular mechanisms underlying the roles of histone

modifiers in normal and disease states is essential for the

development of novel “epigenetic” drugs to treat cardiac

hypertrophy. Furthermore, as different histone acetylation sites

have different effects on transcription, identifying time-specific

acetylation sites in disease states is also important for the

development of novel therapeutic agents for HF.
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