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Introduction: Artificial intelligence can recognize complex patterns in large 
datasets. It is a promising technology to advance heart failure practice, as many 
decisions rely on expert opinions in the absence of high-quality data-driven 
evidence.

Methods: We searched Embase, Web of Science, and PubMed databases for 
articles containing “artificial intelligence,” “machine learning,” or “deep learning” 
and any of the phrases “heart transplantation,” “ventricular assist device,” or 
“cardiogenic shock” from inception until August 2022. We only included original 
research addressing post heart transplantation (HTx) or mechanical circulatory 
support (MCS) clinical care. Review and data extraction were performed in 
accordance with PRISMA-Scr guidelines.

Results: Of 584 unique publications detected, 31 met the inclusion criteria. 
The majority focused on outcome prediction post HTx (n = 13) and post durable 
MCS (n = 7), as well as post HTx and MCS management (n = 7, n = 3, respectively). 
One study addressed temporary mechanical circulatory support. Most studies 
advocated for rapid integration of AI into clinical practice, acknowledging 
potential improvements in management guidance and reliability of outcomes 
prediction. There was a notable paucity of external data validation and integration 
of multiple data modalities.

Conclusion: Our review showed mounting innovation in AI application in 
management of MCS and HTx, with the largest evidence showing improved 
mortality outcome prediction.
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Introduction

Advanced heart failure therapies are complex interventions, 
including mechanical circulatory support (MCS) and heart 
transplantation (HTx). These treatments can be highly rewarding, 
restoring quality of life and longevity, however, they are associated 
with relatively high adverse risk profile. Additionally, the target 
population is heterogeneous in hemodynamic requirements and risk 
profile for pre- and post-intervention complications. Ethically such 
patients are difficult to randomize to therapies when common practice 
suggests a standard of care. Also, the time lag between innovation, 
scholarly investigation, and clinical practice significantly limits 
evidence to guide patient management. Artificial intelligence (AI) has 
the power and resilience to integrate patient data from several 
domains and help clinicians navigate the care of the advanced heart 
failure therapy patient.

As the fields of AI and heart failure therapy both evolve 
exponentially and in parallel, it remains unclear how AI can integrate 
in clinical practice and whether these methods are mature enough for 
clinical application. This scoping review aims to systematically 
summarize and appraise the literature available in this arena, under 
the following research question: can AI guide clinicians in 
personalizing the practice of HTx and MCS to optimize longevity, 
quality of life, and resource utilization?

Methods

The protocol was performed according to Preferred Reporting 
Items for Systematic Reviews and Meta-Analyzes extension for 
Scoping Reviews (PRISMA-ScR) guidelines (1). We searched Embase, 
Web of Science, and PubMed databases for published articles 
containing any of the phrases “artificial intelligence,” “machine 
learning,” or “deep learning” and any of the phrases “heart 
transplantation,” “ventricular assist device,” or “cardiogenic shock.” 
The latter term was included to target the group on temporary 
mechanical circulatory support. Search criteria included the above 
terms anywhere in the title, abstract, or keywords without any filters. 
We  excluded review articles, meta-analyzes, conference abstracts, 
non-English language, animal and ex-vivo studies, non-AI methods, 
and those whose primary outcome is in the pre-HTx or MCS phase of 
care. Methodology was considered “AI” based if it fell under the main 
categories of supervised learning, unsupervised learning, or 
reinforcement learning (2). The search was not restricted by the year 
of publication. However, the number of publications related to AI in 
medicine has increased exponentially since 2008 (3).

Full text review and data extraction of each article were performed 
by at least one HF and one AI specialist. Conflicts were resolved by a 
HF specialist (MA). Search results were exported to EndNote (version 
20.4.1), where duplicates were automatically identified and removed. 
The Covidence platform was used for title and abstract screening, full 
text screening, and data extraction. As this is a scoping review with 
most studies being first of kind or proof of concept, we  have not 
excluded studies based on quality. Also, the group is heterogenous in 
methodologies, making objective head–head quality assessment 
unfeasible. The strength of recommending the AI algorithm for 
clinical use was categorized based on the message conveyed to the 
reviewer by the article discussion and conclusion sections.

Results

Our search resulted in 584 publications, of which 17.5% were 
included in PubMed as many were published via biomedical 
informatics outlets that are not usually indexed in PubMed. Figure 1 
summarizes study screening and exclusion reasons. A total of 31 
manuscripts were included in our review, of which data were extracted 
and summarized from both clinical and informatics perspectives.

Post heart transplant outcome prediction

We found 13 studies that used AI to predict post-HTx outcomes 
(Table  1). The most common data sources used for development, 
training, and validation of AI algorithms are the United for Organ 
Sharing (UNOS) and the International Society of Heart and Lung 
Transplantation (ISHLT) registry. Both data souces include massive 
numbers of HTx recipients and donors over four decades with a wide 
range of relevant donor and recipient variables of relatively high 
accuracy. While both data sources overcome limitations of 
generalizability of single center data, special challenges emerged when 
applying AI algorithms. The main challenge with UNOS data is the 
high number of missing values, requiring variable elimination and 
complex data imputation methods (5–7). The ISHLT registry, on the 
other hand, includes the UNOS database plus data from other centers 
worldwide – recently over 350 entities contributing (8). The ISHLT 
registry does not include wait list duration or mortality (9, 10). In 
addition, the data reporting varied between regions, centers, and eras. 
This could introduce systematic difference between training, testing, 
and validation datasets, thus confounding algorithm development (11). 
Algorithms applied to local datasets showed much higher performance 
upon validation, likely due to better data homogeneity (12, 13).

Most studies focused on transplantation survival (n = 10 studies), 
excluding re-transplantation and multiorgan transplantations (n = 9 
studies). This is in recognition that these subgroups inherently have 
low frequency, significant patient heterogeneity, and variable 
management practices. More recent algorithms addressed specific 
post HTx complications, such as renal dysfunction and ICU stay (12, 
14). These tools are key as they provide actionable knowledge that can 
guide multiorgan transplantation, pre-HTx rehabilitation, and 
perioperative practices to optimize outcomes (15).

Post heart transplant management 
guidance

Seven studies were identified utilizing machine learning or AI and 
management of heart transplant patients (Table  2). The clinical 
questions targeted were detection of rejection, cardiac allograft 
vasculopathy, and guidance of immunosuppression dosing. Models 
either attempted to automate the steps normally performed by human 
experts or leverage detailed molecular data to improve sensitivity for 
early rejection. Two groups described promising AI models for 
automatic endomyocardial biopsy interpretation; the CRANE model 
developed by Lipkova and the CACHE-Grader model by Peyster et al., 
where both reported performance similar to human experts with less 
variability (21, 22). The CRANE model offers comprehensive biopsy 
interpretation (rejection type and grade), and it is adaptable to various 
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populations and camera systems allowing for utilization of multicenter 
data for research and quality control. The CACHE-grader model, on the 
other hand, applies transcriptome mapping to identify graft rejection 
earlier than histopathology. Combining automated histopathologic and 
transcriptomic data will likely advance the accuracy and efficiency of 
allograft rejection surveillance to a new level (23).

The study by Chen et al. offered a deep learning algorithm to analyze 
high resolution coronary optical tomography images looking for 
vasculopathic changes (24). Their work offers automatic segmentation 
of all vessel layers, and it can efficiently detect small changes in coronary 
architecture on serial measurements. It is novel as it detects vasculopathy 
early, at a stage where preventative measures might be more effective at 
avoiding frank graft dysfunction. AI application also allows translation 
application of molecular markers of graft vasculopathy in the urine, with 
outcomes nuanced enough to differentiate myocardial injury secondary 
to rejection vs. vasculopathy (25).

As for medical therapy guidance, two studies developed models 
to predict cyclosporin and tacrolimus levels (26, 27). Both models 
used medication history, hepatic and renal functions, infectious status 
and risk factors, and patient demographics. AI allows plotting drug 
pharmacokinetics beyond mere trough level, potentially offering more 
accurate dosing recommendations. While systems demonstrated good 
performance, they faced the challenges of inability to determine which 
factors contributed to the outcome, were overfitted, and missed the 
opportunity to incorporate genomic and transcriptomic variables.

Post mechanical support outcome 
prediction

A total of 8 studies utilizing AI and MCS outcomes were identified 
(Table 3). Of these, one examined VA-ECMO, while all others focused 

FIGURE 1

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only (4). *Consider, if feasible to do so, 
reporting the number of records identified from each database or register searched (rather than the total number across all databases). **Exclusion 
criteria included: review articles, meta-analyzes, conference abstracts, non-English language, animal and ex-vivo studies, non-AI methods, and those 
whose primary outcome is in the phase of care prior to transplantation or mechanical circulatory support.
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TABLE 1 Summary of publications describing artificial intelligence application in predicting heart transplant outcomes.

Author Title Data source used Primary 
outcome

Best model 
performance

Study conclusion

Oztekin (16) Predicting the graft 

survival for heart-lung 

transplantation patients: 

An integrated data mining 

methodology

Unified Network for 

Organ Sharing (UNOS), 

1987–2008

Combined heart-lung 

transplantation 

survival, and methods 

of UNOS database 

mining

The neural network achieved 

the highest accuracy of 0.859.

Model uncovered 

relationships among the 

survival-related variables. 

Domain-expert input 

improved performance.

Delen (7) A machine learning-based 

approach to prognostic 

analysis of thoracic 

transplantations

United Network for 

Organ Sharing (UNOS), 

1987–2009

Survival time The support vector 

machine model with a radial 

basis Kernel function 

produced the best fit with 

anR2value of 0.879 and MSE 

of 0.023.

Integrated machine learning 

is more effective in developing 

the Cox survival models than 

the traditional methods.

Nilsson (10) The international heart 

transplant survival 

algorithm (IHTSA): A 

new model to improve 

organ sharing and 

survival

International Society for 

Heart and Lung 

Transplantation (ISHLT) 

registry, 1994–2010

1-year mortality Artificial neural network 

model had anAUC of 0.650, 

95% CI: 0.640–0.655.

The model predicts mortality 

and also estimates the 

expected benefit to the 

individual patient, and donor-

recipient compatibility.

Medved (17) Improving prediction of 

heart transplantation 

outcome using deep 

learning techniques

United Network for 

Organ Sharing (UNOS), 

1997–2011

1-year mortality International Heart 

Transplantation Survival 

Algorithm (IHTSA), based on 

deep learning, had AUC of 

0.654, 95% CI: 0.629–0.679.

The IHTSA model was 

superior to Donor Risk Index 

(DRI), Risk Stratification 

Score (RSS), and Index for 

Mortality Prediction After 

Cardiac Transplantation 

(IMPACT).

Miller (5) Predictive abilities of 

machine learning 

techniques may be limited 

by dataset characteristics: 

insights from the UNOS 

database

Unified Network for 

Organ Sharing (UNOS), 

1987–2014

1-year mortality The neural network model 

had the highest AUC of 0.66.

The prognostic abilities of 

machine learning techniques 

may be limited by quality of 

the clinical dataset.

Agasthi (11) Machine learning helps 

predict long-term 

mortality and graft failure 

in patients undergoing 

heart transplant

International Society of 

Heart and Lung 

Transplant (ISHLT) 

registry data, 2000–2017

All-cause mortality 

and graft failure at 

5 years after HTx

A gradient-boosted machine 

model had an AUC of 0.717, 

95% CI: 0.696–0.737 for 

5-year mortality and 0.716, 

95% CI: 0.696–0.736 for graft 

failure.

This model would likely 

function as a predictive 

algorithm to estimate the 

risk of 5-year mortality and 

graft failure in each donor–

recipient match.

Hsich (15) Heart transplantation: An 

in-depth survival analysis

Scientific Registry of 

Transplant Recipients 

(SRTR), 2004–2018

Factors that 

determined survival

AI was used to identify 

variables that are associated 

with mortality, classified into 

early, late, and constant 

phases.

Transplantation from ECMO 

should consider end-organ 

function to reduce early post-

transplantation mortality.

Ayers (18) Using machine learning to 

improve survival 

prediction after heart 

transplantation

United Network for 

Organ Sharing (UNOS), 

2000–2019

1-year survival The final ensemble model had 

an AUC of 0.764, 95% CI: 

0.745–0.782

Modern ML techniques can 

improve risk prediction in 

OHT compared to traditional 

approaches.

Zhou (13) Prediction of 1-year 

mortality after heart 

transplantation using 

machine learning 

approaches: A single-

center study from China

Local dataset from 

Wuhan union hospital, 

2015–2018

1-year mortality Random Forest model 

achieved the best AUC of 

0.801 and gradient boosting 

machine showed the best 

sensitivity of 0.271

The model identifies high-risk 

HTx recipients, informs a 

personalized therapeutic plan, 

and reduces organ wastage

(Continued)
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on durable MCS with left ventricular assist devices (LVADs) (28). All 
studies evaluated survival or adverse events. Two studies utilized AI 
to identify adverse event profiles, time sensitive analyzes of adverse 
events, and phenomapping of patient profiles as it relates to the former 
in the LVAD population (29, 30). Grouping of patients facilitates 
streamlining evaluation and perioperative care pathways that are 
closely tailored to the patient’s particular risk profile.

The remaining five LVAD studies all evaluated various methods 
of predicting survival and adverse events post implantation. 
Consistently, these were determined to have better discriminatory 
power than human experts given the same task, or conventional risk 
scoring systems. Collectively, these data suggest that AI techniques 
can allow for better understanding of patient profiles, timing of MCS 
related adverse events and can be  additive to presently available 
methods of estimating the risk of post implant mortality. AI also 
opens new horizons for innovation in device development and 
surgical techniques, as we can now systematically homogenize study 
populations to assess the efficacy of each support platform. Ideally, this 
can then assist in preimplant patient selection as well as post implant 
monitoring and management to optimize MCS outcomes.

Post mechanical support management 
guidance

Guidance of post MCS care has been targeted by only three 
algorithms (Table 4). The InDetector project successfully implemented 
deep learning to segment driveline pictures for objective detection and 
grading of driveline infection (36). This can also be used to follow up 

response to therapy in the outpatient setting. The algorithm by Maw 
et al. utilized LVAD log data to diagnose suction events with high 
success, despite the model overfitting (see below in AI methods) (37). 
Such physiologic control systems are likely to become more common 
in the LVAD world, akin to the case of pacemakers, as the large 
amount of data generated by these devices facilitate AI model training.

One study used patient clinical data to guide post-LVAD medical 
therapy aiming for myocardial recovery (38). The paucity of similar 
studies is likely due to the lack of large databanks suitable for AI model 
development, that follows post MCS management practices along with 
outcomes. The Interagency Registry for Mechanically Assisted 
Circulatory Support (INTERMACS) lacks enough granularity on post 
LVAD care that would be needed for reliable training of AI models to 
guide medical therapy.

Summary of AI methods

We noticed a prevalence of utilizing supervised machine 
learning techniques over unsupervised learning 
(Supplementary Table 1). A major difference between supervised 
and unsupervised learning is the availability of labels. Only three 
studies applied unsupervised ML techniques, while the remaining 
used supervised ML techniques (7, 29, 30). Each one of these 
learning techniques encompasses a set of ML algorithms. The 
choice of the algorithm is governed mostly by the type of data 
[structured (e.g., medical history), images (e.g., pathology 
images), longitudinal (e.g., repeated lab measurements), and 
clinical notes]. The common ML models used to analyze 

TABLE 1 (Continued)

Author Title Data source used Primary 
outcome

Best model 
performance

Study conclusion

Kainuma (19) Predictors of 1-year 

outcome after cardiac 

re-transplantation: 

Machine learning analysis

United Network for 

Organ Sharing (UNOS), 

2000–2009

1-year survival 

predictors post heart 

re-transplantation

Random survival forests-

ranked variable importance to 

evaluate the association with 

mortality

Short-term survival was 

related to liver function, and 

long-term survival was related 

to obesity and mechanical 

ventilation.

Mete (14) Predicting post-heart 

transplant composite 

renal outcome risk in 

adults: A machine 

learning decision tool

Organ Procurement and 

Transplantation Network 

(OPTN), 2000–2019

Dependence on 

chronic dialysis, 

GFR < 20 ml/min per 

1.73 m2, or having 

received a kidney 

transplant

The Random Forest model 

had AUC of 0.70, 95% CI 

0.67–0.74 for the composite 

primary outcome.

The Model was used to create 

a validated web-based 

decision tool for assessing 

renal outcomes post HTx.

Miller (20) Temporal shift and 

predictive performance of 

machine learning for 

heart transplant outcomes

United Network of Organ 

Sharing (UNOS), 1994–

2016

1-year all-cause 

mortality

Random Forest model had an 

AUC of 0.893, CI: 0.889–

0.897.

While AI models can predict 

transplant mortality, they are 

limited by temporal shifts in 

patient and donor selection.

Wang (12) Comparison of four 

machine learning 

techniques for prediction 

of intensive care unit 

length of stay in heart 

transplantation patients

Local data from Wuhan 

Union Hospital, 2017–

2020

Length of ICU stay 

post heart 

transplantation

The eXtreme Gradient 

Boosting (XGBoost) 

algorithm presented 

significantly better predictive 

performance (AUC 0.88).

Using the XGBoost classifier 

with HTx patients can 

facilitate precision medicine 

and best allocation of medical 

resources.

 strong recommendation,  weak recommendation/promising but not ready to implement, and  recommended against AI usage, as suggested by the respective paper.
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structured data in the reviewed papers were logistic regression, 
random forest, and eXtreme gradient boosting (XGBoost), likely 
due to their superior clinical interpretability (see below) (39). 
There is a notable underutilization of the treasure trove of clinical 

notes; none of the reviewed papers analyzed clinical notes. Also, 
we  have not yet seen multidomain data integration, such as 
combining histopathology, echocardiography, and proteomics to 
diagnose rejection. These models are expected to emerge in the 

TABLE 2 Summary of publications describing artificial intelligence application in practicing post heart transplant care.

Author Title Data source used Primary outcome Best model 
performance

Study conclusion

Hoda (26) Prediction of cyclosporine 

blood levels in heart 

transplantation patients 

using a pharmacokinetic 

model identified by 

evolutionary algorithms

Local institutional data 

from the Heart and Lung 

Transplantation Center, 

University of Vienna 

Medical School

Cyclosporin blood level Evolutionary algorithms 

model had a mean percent 

error of 8.0 ± 6.7%.

AI model accurately 

predicted cyclosporine 

whole blood levels in heart 

transplant recipients.

Chen (24) Quantitative 3D analysis 

of coronary wall 

morphology in heart 

transplant patients: OCT-

assessed cardiac allograft 

vasculopathy progression

Local patients at 

Transplant Center at 

Institute of Clinical and 

Experimental Medicine 

and the Center for 

Cardiovascular and 

Transplantation Surgery, 

Brno, Czech

Coronary artery intimal 

thickness

Exclusion regions determined 

by transfer learning using 

ImageNet network achieved 

an accuracy of 81.2%.

AI allows quantification of 

location-specific 

alterations of coronary 

wall morphology over 

time and is sensitive even 

to very small changes of 

wall layer thicknesses.

Peyster (22) An automated 

computational image 

analysis pipeline for 

histological grading of 

cardiac allograft rejection

Local institutional data at 

Hospital of the University 

of Pennsylvania, 

Cleveland Medical 

Center, and the Ohio 

State University Wexner 

Medical Center

Histopathologic rejection 

detection

A support vector machine 

classification model had an 

AUC of 0.92.

The grader pipeline, 

derived using intuitive 

morphological features, 

can provide expert-quality 

rejection grading.

Woillard (27) Tacrolimus exposure 

prediction using machine 

learning

local institutional data Blood concentration of 

tacrolimus (TAC) 

following twice daily vs. 

daily dosing

XBBoost models to estimate 

TAC blood AUC based on 2 

measurements showed mean 

prediction error close to 0; 

and root mean square 

error < 10%.

AI allows accurate 

estimation of TAC 

interdose AUC and can 

be used for routine TAC 

exposure estimation and 

dose adjustment.

Lipkova (21) Deep learning-enabled 

assessment of cardiac 

allograft rejection from 

endomyocardial biopsies

local institutional data 

from the Brigham and 

Women’s Hospital

Histopathologic rejection 

detection, classification, 

and grading

A neural network (transfer 

learning from ResNet50 and 

attention-based multiple 

instance learning) model had 

an AUC of 0.962 for detecting 

allograft rejection.

The AI system showed 

non-inferior performance 

to experts and reduced 

interobserver variability 

and assessment time.

Piening (23) Whole transcriptome 

profiling of prospective 

endomyocardial biopsies 

reveals prognostic and 

diagnostic signatures of 

cardiac allograft rejection

Local data from the 

CTOT-03 trial 

(NCT:0053192) 

population from 

University of 

Pennsylvania and the 

University of Wisconsin

A gene expression 

classifier for 0R/1R vs. 2R 

acute rejection

Random Forest model had an 

AUC of 0.947.

RNA-seq-based molecular 

characterization of EMBs 

shows significant promise 

for the early detection of 

cardiac allograft rejection.

Wei (25) The novel proteomic 

signature for cardiac 

allograft vasculopathy

Local patients at 

University Hospitals 

Leuven, Belgium

Detection of cardiac 

allograft vasculopathy 

(CAV)

XgBoost model showed an 

AUC 0.71, 95% CI 0.60–0.81.

The proteomic signature 

might provide insights 

into CAV pathological 

processes and help study 

personalized treatment 

targets.

 strong recommendation,  weak recommendation/promising but not ready to implement, as suggested by the respective paper.
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near future via transferring AI methods being used in other fields 
into heart failure cardiology. Of note, the clinical natural language 
processing methods have been increasingly recognized and 

matured in healthcare over the past years. Utilizing these methods 
in heart transplant research may provide insightful information 
beyond the structured electronic health records.

TABLE 3 Summary of publications describing artificial intelligence application in predicting mechanical circulatory support outcomes.

Author Title Data source used Primary 
outcome

Best model 
performance

Study conclusion

Kourou (31) Prediction of time 

dependent survival in HF 

patients after VAD 

implantation using pre- 

and post-operative data

Local institutional data at 

the university of Leuven, 

Belgium

Time dependent 

survival

Artificial neural network 

model had an accuracy of 

84.5%, sensitivity of 87%, 

specificity of 82%.

Application of feature 

selection and prediction 

algorithms for variable 

selection significantly 

improved prediction 

ability.

Ayers (28) Predicting survival after 

extracorporeal membrane 

oxygenation by using 

machine learning

Local institutional data at 

the University of 

Rochester, NY

Survival A deep neural network model 

had an AUC of 0.92.

Improved prediction of 

survival to discharge for 

VA-ECMO with ML versus 

SAVE score.

Bellavia (32) Usefulness of regional 

right ventricular and 

right atrial strain for 

prediction of early and 

late right ventricular 

failure following a LVAD 

implant: A machine 

learning approach

Local data from ISMETT 

center and Papa Giovanni 

XXIII Hospital, Italy, 

2010–2017

Right ventricular failure 

post LVAD

Naïve Bayes achieved an AUC 

of 0.78 in predicting Acute 

RVF, 0.86 in predicting 

Chronic RVF, and 0.92 in 

predicting Acute and Chronic 

RVF.

No single parameter is 

capable of predicting post 

LVAD RVF and the 

combination of risk scores, 

clinical, imaging and 

hemodynamic profiles 

provides the best risk 

assessment.

Kilic (33) Using machine learning 

to improve risk 

prediction in durable left 

ventricular assist devices

(INTERMACS), 2006–

2016

90-day and 1-year 

survival

XGBoost algorithm had an 

AUC of 0.74 for 90 -day 

mortality, and 0.714 for 1-year 

mortality.

Machine learning 

modeling had 

discriminatory 

performance, alone or as 

an adjunct to logistic 

regression.

Kilic (30) Machine learning 

approaches to analyzing 

adverse events following 

durable LVAD 

implantation

ENDURANCE Trial (post-

hoc analysis of a 

prospective, randomized 

controlled trial)

Adverse events Hierarchical clustering was 

used to categorize adverse 

events.

Machine learning can 

identify distinct time 

patterns of post LVAD 

complications, facilitating 

research and quality 

improvement.

Misumi (34) Prediction of aortic valve 

regurgitation after 

continuous-flow LVAD 

implantation using 

artificial intelligence 

trained on acoustic 

spectra

Local institutional data, 

Osaka University Hospital, 

Osaka, Japan, 2015–2017

Development of aortic 

insufficiency

The ensemble model had an 

accuracy of 0.91 and AUC of 

0.73.

Machine learning trained 

on acoustic spectra is 

promising in diagnosing 

LVAD complications.

Shad (35) Predicting post-operative 

right ventricular failure 

using video-based deep 

learning

Multicenter (3) registry, 

United states

Development of post 

LVAD RV failure

A convolutional neural 

network model had an AUC 

of 0.729, 95% CI: 0.623–0.835.

Machine learning can 

outperform a team of 

human experts.

Hendren (29) Phenomapping a novel 

classification system for 

patients with destination 

therapy LVAD

INTERMACS, 2008–2017 survival, adverse events Unsupervised machine 

learning clustering analysis.

Machine learning can help 

identify phenogroups who 

have differing survival and 

rates of adverse events post 

LVAD implantation.

INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support. LVAD, left ventricular assist device.  strong recommendation,  weak recommendation/
promising but not ready to implement, as suggested by the respective paper.
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Deep learning models are more common with unstructured data 
types such as images and videos, due to their superior abilities in 
automatically extracting important features from raw data that can 
help in predicting the outcome. Four of the reviewed papers used 
transfer learning with convolutional neural networks (CNN). For 
longitudinal data (e.g., lab measurements collected over time and 
snapshots of pump data), all the reviewed studies manually extracted 
fixed-dimensional summary statistics (e.g., minimum, maximum, and 
standard deviation of the laboratory values in each time frame) from 
the temporal time series before building the ML model.

Despite the intuitive need for interpretable AI (explanation of 
why the decision was made) in medical applications, it is relatively 
underexplored. Only 15 manuscripts described model interpretability. 
Two of these papers (Shad et al., Lipkova et al.) used saliency maps 
to highlight the most contributing region of an image to the predicted 
outcomes (21, 35, 40). Zhou et  al. and Wang et  al. used Shapely 
Additive exPlanations (SHAP), which quantifies the contribution of 
each feature (variable) to the predicted outcome related to a specific 
instance (12, 13). The rest of the papers used feature importance to 
explain the outcome of their ML models. Feature importance 
derivation is done by calculating the model’s performance following 
the permutation of that feature. If the model performance decreases, 
then the permutated feature is important. While feature importance 
and SHAP might look similar, the main difference is that feature 
importance is centered around the decrease in model performance. 
In contrast, SHAP confers the magnitude contribution of the feature 
toward the predicted outcome.

Summary of model evaluation methods

The area under the receiver operating characteristic curve (AUC) 
was the primary performance metric used for model evaluation. 
Accuracy, sensitivity, and specificity were reported inconsistently 
between studies. Root mean square error (RMSE), mean percent 
error, and R2 were commonly reported when evaluating regression 
models (e.g., continuous outcome). Overall, moderate to high 
performance was achieved in the studies for survival prediction after 
heart transplant, likely due to the availability of large training datasets 
(UNOS and ISHLT registry). That said, biases (e.g., racial and gender 
bias) in clinical ML is a key constraint and must be addressed to 
ensure fairness (41–43). However, only the study conducted by 
Nilsson et al. investigated the potential bias of the developed model 
(10). The other studies did not have any bias assessment of the 
developed AI models.

Model validation enhances confidence in model generalizability 
and scalability to other medical systems. K-fold cross-validation was 
used to evaluate and enhance model performance, in which the 
dataset is split into K subsets (folds) and the model is trained on K-1 
folds and tested on the remaining validation fold. The process is 
repeated until the algorithm is tested on all folds, and the average 
performance across all test folds is reported (44). Three studies, in 
which sample size was less than 60, used leave-one-out cross-
validation in evaluating the model’s performance; evaluating the 
model on one instance / case and training the model using the rest of 
the cases, iteratively (32, 34, 37). External validation was only used in 

TABLE 4 Summary of publications describing artificial intelligence application in guiding mechanical circulatory support practice.

Author Title Data source used Primary 
outcome

Best model 
performance

Study conclusion

Aras (36) InDetector – Automatic 

detection of infected 

driveline regions

Local institutional data 

– University of Arizona, 

United states

Diagnosis of LVAD 

driveline infections

The convolution neural 

network with image 

augmentation had 93.75% 

accuracy.

InDetector, a smartphone-

based application, allows 

at-home patients to send 

images of their driveline to 

a remote server which used 

an AI model to classify the 

driveline region as clean or 

infected.

Maw (37) Development of a 

suction detection 

algorithm from patient 

pump data

Local Institutional Data, 

Medical University of 

Vienna

Detection of HVAD 

suction events

The supervised learning 

algorithm had 92.5% 

sensitivity and 100% 

specificity.

The proposed algorithm for 

suction detection may 

be used as diagnostic 

marker, or as a component 

of an automatic physiologic 

controller in patients with 

HVAD pumps.

Topkara (38) Machine learning-based 

prediction of myocardial 

recovery in patients with 

left ventricular assist 

device support

INTERMACS, 2008–

2017

LVAD explant 

specifically due to 

myocardial recovery

Bayesian logistic regression 

model achieved the highest 

AUC of 0.824.

Machine learning can be a 

valuable tool to identify 

subsets of LVAD patients 

who may be more likely to 

respond to myocardial 

recovery protocols.

HVAD, heartware ventricular assist device. LVAD, left ventricular assist device. INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support.  strong 

recommendation,  weak recommendation/promising but not ready to implement, as suggested by the respective paper.
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the study conducted by Lipkova et  al. (21). ML predictive 
performance varies across settings, populations, regions, time, 
potential biases, and practice patterns, and therefore, there is a need 
of validating on external sources (45).

Discussion

In this scoping review, we identified 31 studies addressing the 
implementation of artificial intelligence in the clinical practice of MCS 
and heart transplantation published between 2005 and 2022. Most 
publications focused on outcome prediction using large existing 
databases. However, there is a rising wave of innovation in AI methods 
to tackle challenging care aspects that currently consume most post-
intervention resources. We found the most mature AI applications in 
this field: the prediction of survival and significant complications, as 
well as HTx rejection identification. Moreover, early work is being 
conducted to further leverage AI power by introducing practical 
concepts (the art of medicine) into AI systems and integrating 
multiple biodomains (laboratory data, ultrasound, histopathology) 
into model conclusions. An important area of active investigation is 
post HTx graft vasculopathy detection, a highly morbid complication. 
The capabilities of AI methods demonstrated in the current review 
have the potential to incorporate medical literature into predictive 
algorithms, providing personalized guidance to medical management 
and complication surveillance of HTx and MCS (Figure 2).

Electronic health records contain rich sources of historical and 
current information that span multiple domains (procedures, 

diagnoses, medication, and demographics). When harnessed 
appropriately, it is expected to reveal hidden insights that traditional 
methods are unable to discover (46). Machine learning (ML) offers 
flexibility and scalability in assimilating and evaluating large amounts 
of complex healthcare data. Unlike the traditional statistical methods 
that focus on inference, ML methods concentrate on prediction by 
finding patterns in rich and unwieldy data (46). This is evident in 
complex data formats such as images, time-resolved data series (e.g., 
LVAD data logs) or wide data matrices (e.g., genomic array). Even 
though ML can demonstrate superior capabilities in predict patients’ 
clinical outcomes and risk-stratifying patients according to their 
clinical and physiological data, it is challenged by the (1) 
non-explainability of complex algorithms; (2) lack of randomized 
controlled trials (RCTs) of AI systems, which may not always 
be  feasible; (3) robust evaluation, validation and generalization to 
various healthcare systems; and (4) identification of biases and 
unfairness in algorithms. All these factors can hinder the 
implementation of AI systems in the clinical practice (47, 48).

The domain of Explainable AI (XAI) has emerged as a natural 
progression to the recent AI developments to increase users’ trust 
and understanding of the ML black-box systems (49, 50). While 
some ML models like decision trees, linear models, and attention 
models are intrinsically explainable, they have lower model 
accuracies compared to more complex ML models like neural 
network models (51). However, complex ML models require 
creating another model to construct explanations, such as using 
SHAP. The trade-off between intrinsic models and post-hoc 
models lies between model accuracy and explanation fidelity. 

FIGURE 2

Landscape overview of artificial intelligence applications in advanced heart failure practice, with annotations indicative the level of maturity of the 
available literature of each application; 1Promising, but not yet mature for clinical use. 2Good support, ready for prospective testing. 3Theoretical 
potential, but no/negligible support.
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Deploying ML in the medical practice requires researchers to put 
more effort into investigating and evaluating these different 
explanation techniques to identify which one can best serve health 
care providers to assess risks and make better decisions.

We cannot overlook the demand to improve the trust and 
transparency of AI systems used in advanced heart failure, as these 
decisions affect patients’ quality of life and longevity. Requiring ML 
systems to (1) justify their decisions/output, (2) enable healthcare 
providers to take control to identify errors and correct them, and 
(3) integrate human expert knowledge into models, can contribute 
to achieving these demands (16). In this scoping review, we found 
several models that, if validated and implemented, can address vital 
clinical needs. However, validation was limited by the database 
availability. The UNOS, INTERMACS, and the ISHLT registry 
databases are the largest databases available. There is a critical need 
for data sharing infrastructure that is inclusive of multiple 
biodomains (imaging, clinical text, electronic heart care system 
entries, and vital outcomes) to enable generation of accurate ML 
models that can be  validated, meet user’s expectations, and 
continuously updated to remain current with the clinical 
practice (52).

As individual systems emerge and become publicly available, 
pragmatic evaluation for accuracy, gender and ethnic bias and 
fairness, and safety for medical application becomes challenging. AI 
programs are recognized as medical devices by the food and drug 
administration (FDA), with ongoing efforts to govern their clinical 
application (53). As experts specializing in each particular AI method 
and application are scarce, unbiased external oversight becomes 
challenging (54). We have noticed that only one study has external 
validation. The latter process assures that AI model remain accurate 
in various settings and are not specifically fitting the population used 
in the model derivation. “Model waste” can occur where excellent AI 
models are not clinically applied due to lack of validation (55). Also, 
there is possibly a publication bias as there is only one manuscript 
that suggested limited AI benefit (5).

Limitations

Our scoping review has some limitations. Our search included the 3 
major medical databases for feasibility, however, there are many studies 
published in engineering and bioinformatics journals that may not 
be indexed in the searched databases. Our results are only up to date as 
of August 15th, 2022. The search criteria may have missed related studies 
focusing on cardiogenic shock, cardiac imaging, or heart failure patients 
not on MCS or post HTx, however, with models transferrable to such 
populations. Second, the strength of recommending the AI algorithm for 
clinical use was categorized based on the message conveyed to the 
reviewer by the article discussion and conclusion, which can 
be subjective. Despite that papers were reviewed by a multidisciplinary 
team; a more refined approach could be adopted in the future. Lastly, the 
outcomes of ML algorithms are subject to systematic errors such as 
biases. Data sources, mathematical approaches, and results interpretation 
could introduce these biases into the ML pipeline (56). Given that the 
nature of this review is to highlight the utilization of AI in the field of 
heart transplantation, the publication bias assessment was not feasible. 
However, researchers who aim to implement AI applications in the 
medical field are warranted to assess these biases.

Conclusion

Our scoping review showed mounting innovation in AI 
application in MCS and HTx, with largest evidence being for mortality 
outcome prediction. The past 2 years have witnessed promising 
models that can guide heart failure cardiologists in HTx donor-
recipient matching, allograft surveillance, immunosuppression 
dosing, and MCS complication screening. While still in infancy, the 
rate of development and motivation in the community will likely bring 
AI into heart failure practice in the upcoming 3–5 years.
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