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Fangda Li2, Liqiang Cui2 and Yuehong Zheng2*
1Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2Department of
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Introduction: Varicose veins are a common chronic disease that creates a
significant economic burden on the healthcare system. Current treatment
options, including pharmacological treatments, are not always effective, and
there is a need for more targeted therapies. A Mendelian randomization (MR)
method uses genetic variants as instrumental variables to estimate the causal
effect of an exposure on an outcome, and it has been successful in identifying
therapeutic targets in other diseases. However, few studies have used MR to
explore potential protein drug targets for varicose veins.
Methods: To identify potential drug targets for varicose veins of lower extremities,
we undertook a comprehensive screen of plasma protein with a two-sample MR
method. We used recently reported cis-variants as genetic instruments of 2,004
plasma proteins, then applied MR to a recent meta-analysis of genome-wide
association study on varicose veins (22,037 cases and 437,665 controls).
Furthermore, pleiotropy detection, reverse causality testing, colocalization
analysis, and external replication were utilized to strengthen the causal effects of
prioritized proteins. Phenome-wide MR (PheW-MR) of the prioritized proteins
for the risk of 525 diseases was conducted to screen potential side effects.
Results:We identified eight plasma proteins that are significantly associated with the
risk of varicose veins after Bonferroni correction (P < 2.495 × 10−5), with five being
protective (LUM, POSTN, RPN1, RSPO3, and VAT1) and three harmful (COLEC11,
IRF3, and SARS2). Most identified proteins showed no pleiotropic effects except
for COLLEC11. Bidirectional MR and MR Steiger testing excluded reverse causal
relationship between varicose veins and prioritized proteins. The colocalization
analysis indicated that COLEC11, IRF3, LUM, POSTN, RSPO3, and SARS2 shared
the same causal variant with varicose veins. Finally, seven identified proteins
replicated with alternative instruments except for VAT1. Furthermore, PheW-MR
revealed that only IRF3 had potential harmful adverse side effects.
Conclusions: We identified eight potential causal proteins for varicose veins with
MR. A comprehensive analysis indicated that IRF3, LUM, POSTN, RSPO3, and
SARS2 might be potential drug targets for varicose veins.

KEYWORDS

varicose veins, proteomics, genetics, drug targets, Mendelian randomization

1. Introduction

Varicose veins are one of the most common chronic diseases. In the United States, about

23% of adults suffer from varicose veins, creating a tremendous economic burden on the

healthcare system (1). Patients with varicose veins typically exhibited skin changes and

lower-limb discomfort, including swelling, restlessness, and itching, and up to 20% of the
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patients eventually developed life-threatening ulceration (2, 3). The

current treatment options for varicose veins include conservative

management, such as compression stockings and lifestyle

modifications, as well as more invasive procedures such as

sclerotherapy, endovenous laser therapy, and surgery (4, 5).

Despite these treatment options, there remains a need for more

targeted and effective therapies. Pharmacological treatments

targeting specific molecular pathways have shown promise in

recent years, with some drugs focusing on improving venous

tone and reducing inflammation, such as micronized purified

flavonoid fraction (MPFF) and horse chestnut seed extract

(HCSE) (6, 7). Despite the available treatment options for

varicose veins, there is still a need for more targeted and effective

therapies. Traditional methods of identifying potential drug

targets can be challenging due to confounding and reverse

causality, which can lead to inaccurate results (8). Therefore,

alternative methods are needed to facilitate the identification of

potential drug targets for varicose veins.

One such method is the Mendelian randomization (MR). At

conception, single-nucleotide polymorphisms (SNPs) are randomly

assigned and not influenced by environmental factors, making them

ideal instruments for causal inference. MR is a form of

instrumental variable analysis that uses mainly SNPs as genetic

instruments to estimate the causal effect of an exposure (in this

case, circulating protein) on an outcome (varicose veins) (9). When

conducting MR, SNPs that are significantly associated with the

exposure of interest must be identified and used as the instrument

variables. When multiple SNPs are available for a given exposure,

the effects estimated from each single SNP could be synthesized by

various algorithms, such as the inverse variance-weighted (IVW)

method (10) and the Egger regression method (11). By using

genetic variants as instrumental variables, MR can bypass the

influence of confounding and reverse causality, providing more

reliable estimates of causal effects than the traditional observational

studies (12). MR has been used successfully in previous studies to

identify biomarkers and therapeutic targets in a wide range of

diseases, including stroke (13), multiple sclerosis (14), and type 1

diabetes (15). However, few studies established the causation of

circulating protein on varicose veins based on MR.

The present study aimed to identify plasma proteins that could

influence the risk of varicose veins of lower extremities. We utilized

MR to systematically screen plasma proteins of proteomic data to

identify the causal proteins of varicose veins. The primary results

were further validated by colocalization and external replication

to identify potential drug targets. Finally, we conducted a

phenome-wide MR analysis on 525 disorders to predict potential

side effects of identified drug targets (Figure 1).
2. Methods

2.1. Selection of genetic instruments for
proteins

We selected SNPs as genetic instruments for plasma proteins

(pQTLs) from a recent study conducted by Zhang et al. (16),
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which reported 2,004 proteins that showed associations with

common variants in 7,213 European American populations. First,

to satisfy the relevance assumption of MR, we selected SNPs that

are strongly (P < 5 × 10−8, F statistics >10) and independently

(clumping threshold: LD r2 < 0.001) associated with the protein

(17, 18). Second, according to the independence assumption, the

genetic instruments should not be associated with factors

confounding the relationship between the exposure and the

outcome. Using mixed populations of various ancestries in MR

might violate the independence assumption, which is reduced by

ensuring that all the included genome-wide association studies

(GWASs) were conducted in people of European origin (19). The

third MR assumption, known as the exclusion restriction

assumption, requires a null association between the genetic

instrument and outcome unless through its impact on the

exposure. Horizontal pleiotropy of SNP might lead to violation

of exclusion restriction assumption (20). Hence, only cis-acting

SNPs (cis-pQTL) were used for following analysis. We then

computed the proportion of the variance explained (PVE) of the

respective protein according to the formula: PVE = beta2/(beta2 +

N × se2) (21) (Supplementary Table S1).

We also used pQTL determined in the deCODE cohort by

Ferkingstad et al. (22), which reported 4,907 plasma proteins

measured in 35,559 European participants for replication. We

included only the instruments for prioritized proteins that were

identified by primary analysis, and the inclusion criteria were the

same as above (Supplementary Table S2).
2.2. Data sources of varicose veins GWAS

We extracted the genetic instruments for varicose veins from

the meta-analysis of GWASs conducted in two European cohorts:

the UK Biobank and FinnGen Cohort (release 3). The details of

both original GWASs and the meta-analysis have been discussed

previously (23). Briefly, 22,037 participants with varicose veins

and 437,665 controls were enrolled. In both cohorts, the varicose

veins were recorded by the International Classification of

Diseases 10 (ICD-10) diagnosis code I83: Varicose veins of lower

extremities. Then the inverse variance-weighted meta-analysis

was conducted for all variants passed quality control with

METAL software (v.2011-03-25).
2.3. Statistical analysis

In the initial MR analysis, proteins were regarded as

the exposures and varicose veins as the outcome. When only

one pQTL was available, the Wald ratio algorithm was used,

while the inverse variance-weighted (MR-IVW) was applied

when two or more instruments were available (24). We selected

a P-value threshold of 0.05, corrected for the number of

independent tests, as our threshold for prioritizing MR

results for follow-up analyses (P < 0.05/2,004 = 2.495 × 10−5). For

replication, we set P < 0.05 as the criteria for successfully

replicated. Odds ratios were expressed per standard deviation
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FIGURE 1

Study design of Mendelian Randomization study to reveal potential drug targets for varicose veins.
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(SD) increase in genetically determined plasma protein levels. All

Mendelian randomization analyses were conducted with

“TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR).

Several sensitivity analyses were then employed to assess the

validity of primary MR findings. First, we used “phenoscanner”

(https://github.com/phenoscanner/phenoscanner) to determine

any pleiotropy of SNPs used in primary analysis. Specifically,

phenoscanner searched previous GWASs to identify the reported

SNP-traits association. We considered an SNP as pleiotropic

when the reported SNP-traits association was genome-wide

significant (P < 5 × 10−8) in European population. Second, to

detect reverse causality between varicose veins and plasma

proteins, we conducted both bidirectional MR analysis (25) and

MR Steiger filtering to orient the causal relationship (26). For

bidirectional MR, genetic instruments for varicose veins were

extracted from the meta-analysis of GWASs mentioned above,

and the same inclusion criteria for pQTL were also applied

(Supplementary Table S3), while summary statistics for proteins

were obtained from deCODE cohorts (22) since full summary

statistics were not available in Zhang et al. study. Reverse

causality was confirmed when the bidirectional MR reached

significance (P < 0.05) or MR Steiger filtering failed (P > 0.05 and
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direction is wrong). Finally, colocalization analysis was completed

to further strengthen the reliability of causal inference. We used

a stringent Bayesian model to estimate the posterior probability

of that the genetic associations with both protein and phenotype

shared the same causal variant (posterior probability of

hypothesis 4, PPH4) (27). The PPH4 > 80% supported the

hypothesis that plasma protein and varicose veins were causally

related by the same variant.
2.4. Phenome-wide MR analysis

To further explore the potential side effects associated with

hypothetical interventions that reduce the risk of varicose veins by

targeting identified potential drug targets, we performed an

agnostic phenome-wide MR (PheW-MR) analysis. While MR can

identify causal relationships between an exposure and an outcome,

it is important to consider the potential unintended effects of

targeting a protein for therapeutic intervention. The PheW-MR

method provides a way to assess the potential side effects of

reducing the levels of proteins that were identified as potential

drug targets in the primary MR analysis on a wide range of
frontiersin.org
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disease outcomes (13). The PheW-MR used the same genetic

instruments of prioritized proteins as primary analysis. We

selected genetic instruments for disease traits from IEU Open

GWAS (PheW-MR). The IEU Open GWAS contained more than

40,000 GWASs, and we included GWASs conducted in UK

Biobank with disease traits defined by ICD-10 diagnosis code

(Supplementary Table S4). Then, Mendelian randomization was

conducted with exposure as protein and outcome as any of the

disease traits. The PheW-MR findings were standardized to a

change in protein level corresponding to a 10% reduction in the

risk of varicose veins to identify potential side effects when

proteins are therapeutically targeted for varicose veins.
3. Results

3.1. Screening the proteome for varicose
veins causal proteins

At Bonferroni significance (P < 2.495 × 10−5), MR analysis

revealed eight varicose veins-related proteins, including three

deleterious proteins for varicose vein as collectin-11 (COLEC11),

interferon regulatory factor 3 (IRF3), and mitochondrial serine–

tRNA ligase (SARS2), and five protective proteins as lumican

(LUM), periostin (POSTN), dolichyl-diphosphooligosaccharide–

protein glycosyltransferase subunit 1 (RPN1), R-spondin-3 (RSPO3),

and synaptic vesicle membrane protein VAT-1 homolog (VAT1)

(Table 1, Figure 2A). In detail, genetically increased COLEC11 (OR

= 1.10; 95% CI, 1.06–1.14; P = 1.29 × 10−6), IRF3 (OR = 1.12; 95%

CI, 1.07–1.18; P = 2.50 × 10−6), and SARS2 (OR = 1.61; 95% CI,

1.33–1.95; P = 1.49 × 10−6) were associated with an increased risk of

varicose veins, while LUM (OR= 0.79; 95% CI, 0.72–0.87; P = 4.57 ×

10−6), POSTN (OR = 0.81; 95% CI, 0.74–0.88; P = 2.64 × 10−6),

RPN1 (OR= 0.89; 95% CI, 0.85–0.94; P = 1.08 × 10−5), RSPO3
TABLE 1 Summary of pleiotropy scanning, reverse causality detection, and B

Protein Protein full name UniProt
ID

SNP Previo
a

COLEC11 Collectin-11 Q9BWP8 rs6542680 Impedan

IRF3 Interferon regulatory factor 3 Q14653 rs10415576 N/A

LUM Lumican P51884 rs3741835 N/A

POSTN Periostin Q15063 rs7329947 N/A

RPN1 Dolichyl-diphosphooligosaccharide–
protein glycosyltransferase subunit 1

P04843 rs9880064 Blood ce

RSPO3 R-spondin-3 Q9BXY4 rs1892172 Waist ci
circumfe
fracture,

SARS2 Serine–tRNA ligase, mitochondrial Q9NP81 rs1808661 N/A

VAT1 Synaptic vesicle membrane protein
VAT-1 homolog

Q99536 rs4239148 Age at m

aOdds ratio and 95% confidence interval were estimated with the inverse variance-we
bSNP associated with traits mediated by its proxy.

CI, confidence level; MR, Mendelian randomization; N/A, not available; PPH4, pos

polymorphism; WHR, waist–hip ratio.
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(OR = 0.88; 95% CI, 0.84–0.92; P = 1.57 × 10−9), and VAT1 (OR =

0.60; 95% CI, 0.48–0.75; P = 1.03 × 10−5) could decrease the risk of

varicose veins (Figure 2B).
3.2. Sensitivity analysis for varicose veins
causal proteins

We assessed the stability of our findings in a series of sensitivity

analyses. Five of eight proteins in primary analysis were finally

identified as potential drug targets for varicose veins, including

IRF3, LUM, POSTN, RSPO3, and SARS2. First, pleiotropy

scanning with phenoscanner revealed previously reported

associations of genetic instruments for COLEC11, RPN1, RSPO3,

VAT1, and COLEC11 was excluded as potential drug target since

the genetic instrument for COLEC11 was associated with various

proteins (Table 1, Supplementary Table S5). Second,

bidirectional MR analysis did not reveal any causal effect of

varicose veins on the eight prioritized proteins, and Steiger

filtering also ensured the directionality (Table 1, Supplementary

Table S6 , Figure S1). Third, Bayesian colocalization was utilized

to test whether the proteins and varicose veins shared the same

variant. Six proteins passed the test, including COLEC11 (PPH4

= 0.996), IRF3 (PPH4 = 0.993), LUM (PPH4 = 0.954), POSTN

(PPH4 = 0.819), RSPO3 (PPH4 = 0.904), and SARS2 (PPH4 =

0.970) (Table 1, Supplementary Figures S2–S9).
3.3. PheW-MR analysis of the side effects of
varicose veins causal proteins

Phenome-wide Mendelian randomization on 525 disease traits

revealed that IRF3 and POSTN were associated with skin

disorders, such as malignant neoplasm of skin and residual
ayesian colocalization analysis on the eight prioritized proteins.

usly reported
ssociations

Bidirectional MR
(95% CI)a

Steiger
filtering

Colocalization
PPH4

b

ce, various proteins 0.990 (0.963–1.019) Passed
(2.33 × 10−206)

0.996

0.986 (0.957–1.016) Passed
(3.84 × 10−147)

0.993

1.003 (0.972–1.035) Passed
(1.16 × 10−29)

0.954

0.986 (0.956–1.017) Passed
(4.59 × 10−41)

0.819

lls 0.992 (0.962–1.023) Passed
(8.6 × 10−126)

2.37 × 10−8

rcumference, Hip
rence, WHR,
RBC

0.964 (0.867–1.072) Passed
(1.12 × 10−188)

0.904

0.991 (0.964–1.018) Passed
(2.19 × 10−9)

0.970

enopause 0.998 (0.972–1.026) Passed
(1.15 × 10−6)

0.613

ighted method.

terior probability of hypothesis 4; RBC, red blood cell; SNP, single-nucleotide
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FIGURE 2

Effects of eight proteins with risk of varicose veins. (A) volcano plot; (B) forest plot.
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hemorrhoidal skin tags. In contrast, genetically increased level of

RSPO3 was causally associated with a reduced risk of both

varicose veins and certain fractures (Figure 3, Supplementary

Tables S7–S14). No significant association was observed for the

other five potential proteins.
3.4. External replication of varicose veins
causal proteins

By substituting the data source of prioritized proteins, seven

potential drug targets were replicated except VAT1 due to the

absence of data: increasing COLEC11 (OR = 1.07; 95% CI, 1.04–

1.10; P = 1.29 × 10−6), IRF3 (OR = 2.14; 95% CI, 1.56–1.10;

P = 2.50 × 10−6), and SARS2 (OR = 1.65; 95% CI, 1.35–2.01;

P = 7.23 × 10−7) could increase the risk of varicose veins while

LUM (OR = 0.69; 95% CI, 0.59–0.80; P = 2.33 × 10−6), POSTN

(OR = 0.73; 95% CI, 0.64–0.83; P = 1.73 × 10−6), RPN1 (OR= 0.72;

95% CI, 0.63–0.84; P = 1.04 × 10−5), and RSPO3 (OR = 0.77; 95%
Frontiers in Cardiovascular Medicine 05
CI, 0.70–0.84; P = 8.56 × 10−9) showed a protective causal effect on

varicose veins (Supplementary Figure S10).
4. Discussion

To date, we conducted the first study that systematically

screens plasma proteins for varicose veins utilizing Mendelian

randomization. As a result, eight proteins were found to be

causally associated with varicose veins, including COLEC11, IRF3,

LUM, POSTN, RPN1, RSPO3, SARS2, and VAT1. In addition,

IRF3, LUM, POSTN, RSPO3, and SARS2 were further validated as

potential drug targets by pleiotropy scanning, reverse causality

detection, and colocalization analysis, which were further replicated.

Our study performed widely usedMR to explore potential proteins

for varicose veins, which was a commonmethod for clinical translation

of GWAS studies (28). Still, MR cannot entirely exclude the bias

introduced by reverse causality, horizontal pleiotropy, and linkage

disequilibrium. Therefore, we conducted a series of sensitivity
frontiersin.org
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FIGURE 3

Potential on-target side effects associated with eight prioritized interventions.
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analyses to test theMR assumptions.We used the bidirectionalMR and

Steiger filtering to orient the causal direction between proteins and

varicose veins (26). We did not identify strong evidence for the

reverse effect of varicose veins on surveyed proteins (29). To control

the bias from horizontal pleiotropy, we restricted the instruments to

cis-pQTLs (30). Besides, Bayesian colocalization was conducted to

exclude the bias of linkage disequilibrium with 0.8 as the critical

threshold for posterior probability. The COLEC11, IRF3, LUM,

POSTN, RSPO3, and SARS2 were considered to share the same

variant of varicose veins (27). When it comes to pleiotropy, genetic

instruments for COLEC11, RPN1, RSPO3, and VAT1 were

associated with traits beyond plasma proteins via phenotype

scanning. The SNP rs6542680 as genetic instrument of COLEC11

seemed to be associated with various proteins in a trans-manner.

COLEC11 might act as a hub regulating expression of multiple

proteins, so the role of COLEC11 in varicose veins should be

carefully interpreted. However, none of the other identified pleiotropy

could completely explain the association with varicose veins,

including RPN1, RSPO3, and VAT1.

Finally, we further conducted PheW-MR to explore potential side

effects when proteins-targeted therapies were applied to varicose

veins. Overall, per 10% reduction in the risk of varicose veins, we

only found that IRF3 usage might be harmful to induce malignant

neoplasms of skin, which has no relationship with varicose veins

formation to date. Therefore, IRF3, LUM, POSTN, RSPO3, and

SARS2 might be potential drug targets for varicose veins.

Varicose vein, characterized by a loss of vessel wall homeostasis,

was considered related to degradation of extracellular matrix

(ECM), activation of the endothelium, and apoptosis of smooth

muscle cells (31, 32). Lumican, encoded by LUM, belonged to the

family of small leucine-rich proteoglycans, which is an important

part of non-collagenous ECM proteins (33). One research group

explored the differences in the ECM composition between normal
Frontiers in Cardiovascular Medicine 06
saphenous veins and varicose saphenous veins in which significant

lower expression of lumican in diseased tissue (34). This

proteoglycan could help maintain appropriate caliber, shape, and

disposition of collagen fibers due to its horseshoe shapes (35).

Therefore, we speculated that lumican could prevent the occurrence

of varicose veins by its maintenance role in ECM structure.

Furthermore, RSPO3 was the WNT signaling enhancer

predominantly expressed within the vasculature (36). In RSPO3-

deficient mice, micro-vessel density was reduced due to endothelial

cell apoptosis and vascular pruning, indicating a crucial critical role

in the vascular remodeling of endothelial RSPO3/WNT/Ca2+/NFAT

signaling pathways (37). A recent GWAS identified RSPO3 as a risk

locus for varicose veins, which was in consistent with our finding (38).

Of the three remaining proteins, IRF3 and POSTN were related to

dysfunction of vascular smooth muscle cells (VSMCs). IRF3 is an

important transcriptional regulator of the antiviral immune response

(39). One study found that C-reactive protein could stimulate IL-6

production and inhibit peroxisome proliferator-activated receptor γ

(PPARγ) expression, a negative regulator of inflammatory responses,

in rat VSMCs via the TLR4/IRF3/NF-κB signaling pathway (40, 41).

IRF3 might increase the risk of varicose veins through inflammation,

which is consistent with our findings (42). Moreover, we identified

another protein related to the function of VSMCs, POSTN. Periostin

is a heparin-binding N-glycosylated protein mediating cell adhesion

(43). Further research revealed its role in vascular cell differentiation

and migration during the repair of vascular injury. In vitro, periostin

expression was proven to be associated with smooth muscle cell

differentiation and cell migration, which might explain the protective

role in varicose veins (44).

Lastly, SARS2 encodes mitochondrial seryl-tRNA synthetase with

the primary function of charging tRNASer with aminoacylated

serine, which further participates in mitochondrial protein synthesis

(45). In other words, SARS2 is related to the normal function of
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the mitochondrial respiratory chain and energy conversion (46). In

our study, we identified its protective role in varicose veins, while

the evidence is limited. Further research is needed to clarify the

mechanisms.
5. Limitation

First, we used genetic data from the Britain and Finland, and it

was known that the genetic data from the Finnish population differs

from other European populations given their genetic makeup (47).

Second, although we explored the association between the

prioritized proteins and 525 disease traits, more side effects might

be neglected since the 525 disorders only covered a small range of

clinical conditions. Lastly, we did not explore the pharmaceutical

mechanisms of identified proteins and did not investigate the

predictive value of previous markers in external longitudinal case-

control cohorts. Further studies and clinical trials are warranted to

justify the feasibility of our findings.
6. Conclusion

To sum up, the present MR analysis of plasma proteome identified

eight plasma proteins causally related to the varicose vein. Five proteins

finally passed the sensitivity analyses and external replication including

IRF3, LUM, POSTN, RSPO3, and SARS2, which might be more

valuable in the clinical application. Hopefully, our study could

predict a few meaningful drug targets for varicose veins.
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