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1. Introduction

Symptomatic mitral valve (MV) regurgitation is a common cause of morbidity amongst
cardiovascular disease patients, with a 1.3-fold increase in prevalence per decade of life
past 60 years of age (1). More specifically, secondary mitral regurgitation (SMR) remains a
troubling sequela of ischemic heart disease, dilated cardiomyopathy, and atrial myopathy. The
mechanisms of SMR are complex, interrelated, and centered on left ventricular (LV) dilatation
and abnormal geometry, papillary muscle displacement, MV leaflet tethering, and altered
annular shape and mechanics (2, 3). Surgical mitral valve repair (MV repair) has resulted in
disappointing long-term outcomes in the SMR population, while replacement predisposes to
continued adverse LV remodeling, peri-operative morbidity, and prosthetic valve complications
(4, 5).

Conversely, the Cardiovascular Outcomes Assessment of the MitraClip Percutaneous
Therapy for Heart Failure Patients with Functional Mitral Regurgitation (COAPT) trial showed
that in carefully selected patients with moderate-to-severe SMR, MV transcatheter edge-to-
edge repair (TEER) improves heart failure symptoms and survival, and decreases heart failure
hospitalizations at 2-year follow-up when compared with medical therapy alone (6). In a recent
post-hoc analysis the COAPT investigators analyzed risk of death or heart failure hospitalization
according to baseline LV global longitudinal strain (GLS), which is a robust, reproducible, and
sensitive marker of myocardial function. Between 10 and 24 months of follow-up, patients with
a GLS <−13.2% had a lower risk of death or heart failure hospitalization when compared
with those having a GLS >−10.8%, although all patients receiving TEER garnered clinical
benefit when compared with medical therapy alone (7). Herein we discuss the importance of LV
remodeling and mechanics assessed by 2D and speckle-tracking echocardiography in patients
with cardiomyopathy, and its application in the SMR and TEER population.

2. Left ventricular deformation, shape, and
mechanics

The ventricular myocardium is composed of a surrounding basal loop with circumferential
fibers in a transverse orientation, and an inner apical loop helix with oblique fibers oriented
at approximately 60◦ angles (8). The interaction between the basal and apical loops results in
systolic ejection, diastolic relaxation, and ventricular torsion. Essential to proper mechanics is
the elliptical shape of the LV, which supports the oblique orientation of the apical loop limbs. In
this state, a normal 15% myofiber shortening results in a LV ejection fraction of 60% through
efficient myocardial contraction, shortening, and dispersed shearing forces. Conversely, in the
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FIGURE 1

Illustrative representations of left ventricular remodeling and alteration in chamber shape and myofiber orientation. (A) Depicted is a left ventricle with a
normal elliptical shape forming an apical cap (dashed arrows) with preserved papillary muscle orientation. (B) The basal ventricular loop is depicted open
with circumferential fibers in a transverse orientation (black arrow) which surround an inner apical loop helix. The descending limb of the apical loop (red
arrow) converges into a vortex at the apical cap which then crosses superficially to form the ascending limb (blue arrow). The myofibers of the apical
loop limbs are oriented obliquely at approximately 60◦ angles, and their normal shortening of 15% produces an ejection fraction of 60%. (C) Depicted is a
remodeled left ventricle with a spherical shape and lack of a true apex (dashed arrows). The chamber is markedly dilated and there is papillary muscle
displacement. (D) In the setting of left ventricular dilatation and sphericity, the apical loop myofibers are stretched and adapt a transverse orientation
similar to the basal loop. Transverse, or circumferential, fiber shortening generates an LV ejection fraction closer to 30%. Figures are adapted with
permission from Buckberg et al. (19). Ao, aorta; LV, left ventricle; PA, pulmonary artery.

setting of LV dilatation and sphericity, the myofibers are stretched
and adapt a transverse orientation similar to the basal loop;
transverse, or circumferential, fiber shortening generates an LV
ejection fraction closer to 30% (9). This latter LV remodeling provides
the substrate for papillary muscle displacement, incomplete MV
systolic closure, and SMR (Figure 1).

The electromechanical activation of the apical loop results
in longitudinal ventricular shortening, which can be assessed
by measuring GLS using speckle-tracking echocardiography.
Importantly, full wall GLS takes into account the pivotal transmural
mechanical interaction between the subendocardial, mid-wall, and
subepicardial myofibers (10). GLS is useful in detecting subclinical
myocardial dysfunction in the setting of preserved LVEF, while
in dilated and ischemic cardiomyopathy it can provide insight
into the degree of myocardial impairment (11). In a large study
by Namazi et al. (12) of 650 patients with moderate or greater
SMR, a GLS >−7% was independently associated with increased
all-cause mortality (HR 1.34, 95% CI 1.04–1.72, p = 0.02) at a
median follow-up of 56 months. When compared with patients who
had a GLS <−7%, those with GLS >−7% had more extensive LV
remodeling with larger end-diastolic (124 vs. 92 ml/m2, p < 0.001)
and end-systolic volume (96 vs. 63 ml/m2, p < 0.001) indices, and
higher filling pressures (12).

3. The COAPT study and LV
remodeling

The impact of LV remodeling on the performance of TEER
is critical in interpreting the results of the COAPT study, and in
translating its success to clinical practice. The inclusion criteria
for enrollment in COAPT were: (1) symptomatic heart failure and
moderate to severe SMR despite optimal guideline-directed medical
therapy; (2) LVEF 20–50%; (3) LV end-systolic diameter <70 mm;
(4) pulmonary artery systolic pressure <70 mmHg; and, (5) no
evidence of significant right ventricular dysfunction. The 614 patients
enrolled in COAPT had a mean LV end-diastolic volume index,
LVEF, and GLS of 101 ml/m2, 31%, and −11.9%, respectively.
These characteristics are in sharp contrast to the Multicentre Study
of Percutaneous Mitral Valve Repair MitraClip Device in Patients
with Severe Secondary Mitral Regurgitation (MITRA-FR) trial,
which showed no benefit of TEER in 307 patients randomized to
percutaneous MR correction vs. medical therapy (13). The main
inclusion criteria for MITRA-FR were: (1) symptomatic heart failure
and severe SMR with guideline-directed medical therapy per “real-
world” practice; and, (2) LVEF 15–40%. The mean LV end-diastolic
volume index and LVEF in MITRA-FR were 135 ml/m2 and 33%,
with no data on GLS reported.
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It is hypothesized that the discrepancy between COAPT and
MITRA-FR regarding the benefits of TEER in patients with SMR
was influenced by the extent of LV remodeling and alteration of
mechanics. An important caveat to consider when interpreting
the study results and emphasizing LV remodeling is that different
echocardiography core labs were utilized by the respective trialists,
which could potentially introduce uncontrollable confounding.
Nevertheless, the patients in COAPT were reported to have a
significantly smaller LV size and had to meet a specific cut-off
for inclusion based on the maximum systolic chamber dimension,
despite a similar LVEF when compared with MITRA-FR patients.
It is well established in the surgical literature that the extent of pre-
operative LV remodeling is one of the most powerful predictors of a
durable MV repair and that there is a threshold beyond which the LV
damage and fibrosis is irreversible (14). Important echocardiographic
LV parameters that predict MV repair failure include an LV end-
diastolic diameter >65 mm or a systolic sphericity index ≥0.7 (15,
16). GLS has been shown to perform well as surrogate marker for LV
replacement fibrosis detected by cardiac magnetic resonance imaging
in patients with dilated cardiomyopathy, with a value of >−7.9%
having an area under the curve of 0.74 (p < 0.05) (17). In patients
undergoing TEER, a baseline GLS >−9.3% predicts lack of LV reverse
remodeling and persistent LV dilatation and sphericity at 2-year
follow-up (AUC 0.84, p < 0.001) (18). A fair interpretation of this
data within the context of the GLS observations from COAPT and
the study by Namazi et al. (12), is that similar to patients undergoing
surgical MV repair, TEER in the setting of advanced LV remodeling
and fibrosis provides minimal clinical benefit at the expense of
procedural risk and healthcare-related costs.

4. Conclusion

While the aforementioned hypothesis regarding LV remodeling
and GLS in patients with SMR undergoing TEER requires
prospective and external validation, it provides important insights
into appropriate patient selection and factors contributing to the
success and application of this relatively new therapy. Pure SMR

is primarily a ventricular disease with concomitant histopathologic
mitral leaflet remodeling, and as such, it is advisable that our
inclusion criteria when selecting candidates for TEER be modeled
strictly after those applied in the COAPT trial. Significant GLS
impairment may be considered as a risk factor for a lack of LV
reverse remodeling and suboptimal outcomes after TEER, with
specific cut-off values for clinical use to be determined. Additionally,
maximally tolerated guideline-directed medical therapy, as well
as cardiac resynchronization therapy when appropriate, are of
paramount importance. Taking these factors into account may allow
for appropriate risk stratification, expectant management, and a
pathway to improved patient outcomes.
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