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An integrated signature of
extracellular matrix proteins and
a diastolic function imaging
parameter predicts post-MI
long-term outcomes
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Background: Patients suffering from acute myocardial infarction (AMI) are at risk of
secondary outcomes including major adverse cardiovascular events (MACE) and
heart failure (HF). Comprehensive molecular phenotyping and cardiac imaging
during the post-discharge time window may provide cues for risk stratification
for the outcomes.
Materials and methods: In a prospective AMI cohort in New Zealand (N=464), we
measured plasma proteins and lipids 30 days after hospital discharge and inferred a
unified partial correlation network with echocardiographic variables and established
clinical biomarkers (creatinine, c-reactive protein, cardiac troponin I and natriuretic
peptides). Using a network-based data integration approach (iOmicsPASS+), we
identified predictive signatures of long-term secondary outcomes based on
plasma protein, lipid, imaging markers and clinical biomarkers and assessed the
prognostic potential in an independent cohort from Singapore (N= 190).
Results: The post-discharge levels of plasma proteins and lipids showed strong
correlations within each molecular type, reflecting concerted homeostatic regulation
after primary MI events. However, the two molecular types were largely independent
with distinct correlation structures with established prognostic imaging parameters
and clinical biomarkers. To deal with massively correlated predictive features, we
used iOmicsPASS+ to identify subnetwork signatures of 211 and 189 data features
(nodes) predictive of MACE and HF events, respectively (160 overlapping). The
predictive features were primarily imaging parameters, including left ventricular and
atrial parameters, tissue Doppler parameters, and proteins involved in extracellular
matrix (ECM) organization, cell differentiation, chemotaxis, and inflammation. The
network signatures contained plasma protein pairs with area-under-the-curve (AUC)
values up to 0.74 for HF prediction in the validation cohort, but the pair of NT-
proBNP and fibulin-3 (EFEMP1) was the best predictor (AUC=0.80). This suggests
that there were a handful of plasma proteins with mechanistic and functional roles in
predisposing patients to the secondary outcomes, although they may be weaker
prognostic markers than natriuretic peptides individually. Among those, the diastolic
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function parameter (E/e’ - an indicator of left ventricular filling pressure) and two ECM proteins,
EFEMP1 and follistatin-like 3 (FSTL3) showed comparable performance to NT-proBNP and
outperformed left ventricular measures as benchmark prognostic factors for post-MI HF.
Conclusion: Post-discharge levels of E/e’, EFEMP1 and FSTL3 are promising complementary
markers of secondary adverse outcomes in AMI patients.

KEYWORDS

integrative analysis, multi-omics, echocardiogaphy, major adverse cardiac events (MACE), heart

failure hospitalization
Introduction

Circulating proteins and lipids are clinically useful biomarkers

for the diagnosis and prognosis of cardiovascular diseases (CVD)

(1–3). Historically, prognostic biomarker studies have favored an

analytic framework focusing on one or a few prioritized candidates

within a risk stratification framework to predict specific clinical

events (4–7). Recently, omics-scale technologies such as mass

spectrometry, affinity-based proteomics, and nuclear magnetic

resonance spectroscopy have enabled simultaneous measurement

of hundreds to thousands of analytes including proteins,

metabolites, and lipids in cardiovascular research (8–11).

Despite thearrival ofhigh-throughputplatforms, thenewdiscoveries

have barely challenged the use of imaging parameters to aid detection of

abnormalities in the heart and biomarkers of heart failure (HF) and that

of traditional biomarkers such as NT-proBNP and cardiac troponin-I/T

to evaluate cardiac injury, and these two modalities firmly remain as the

gold standard clinical practice for long-termprognostication. In addition,

although the number of assessable analytes increased with omics scale

assays, few studies have carefully investigated the relationship between

newly measured circulating molecules and the conventional cardiac

markers and imaging parameters.

A possible explanation for this phenomenon is that the emerging

plasma proteomics and metabolomics data sets are often analyzed

from the perspective of the predictive capacity alone in biomarker

studies, and that the natriuretic peptides and troponins often

outperformed most challengers in terms of diagnostic or

prognostic indicators as they represent the most tissue specific

evidence of myocardial damage. As a result, most data analyses

tend to overlook the massive correlation structure underlying the

milieu of measured molecules and neglect the biologically

interpretable, meaningful co-variations in these rich data sets.

We have previously reported an analysis of plasma protein

candidates predicting post-MI heart failure events (HF) in two

independent post-MI cohorts in a similar context, with unique

complementary information from a single cell transcriptomics data

set generated for mouse heart (12). Expanding on this work, we

put together a systems-level data analysis approach to integrate

plasma lipids, acylcarnitines, proteins and multi-parametric cardiac

imaging data, with the express purpose of building an interpretable

prognostic signature of long-term post-MI major adverse

cardiovascular events (MACE) and HF. Our key approach is the

use of network topology information as adjudicating evidence for

biomarker prioritization, in combination with the conventional
02
univariate prognostic potential measured by the area under the

curve (AUC) of the receiver operating characteristic (ROC).

Given the highly correlated nature of multi-dimensional data

across the different modalities, we improved our previously

published data integration approach iOmicsPASS (13) and

present the new toolbox as iOmicsPASS + . Using the new tool,

we first identify an undirected graph, or a partial correlation

network of all data features via estimation of a sparse precision

matrix (14) and then discern subnetwork signatures predictive of

clinical outcomes using a network-based scoring approach. Using

the clinical outcome data collected prospectively and molecular

data profiled at 30 days after hospital discharge, we searched for

the prognostic network signatures of HF as well as other MACE.

To isolate pure predictive signals within the intra- and inter-

modality correlation structures and ensure the compatibility of

information between the training and test/validation cohorts, we

performed the network-level analysis without incorporating other

conventional demographic risk factors such as age and gender.
Materials and methods

The coronary disease cohort study (CDCS)

The CDCS cohort consisted of 2,140 patients recruited from two

tertiary hospitals (Christchurch Hospital and Auckland City Hospital)

in New Zealand (NZ) for an acute coronary syndrome (ACS) event

from 2002 to 2009 (ACTRN 12605000431628). Participants with

angiographically-documented coronary artery disease were invited

to return to the hospital 30 days after discharge for baseline

biometric, echocardiographic and blood-based measurements.

Patients were excluded from the study if their life expectancy was

estimated to be less than 3 years. More information on the study

can be found in Prickett et al. (15). Details of the nested case-

control cohort (N = 741) and supervised analysis on the subcohort

(N = 464) are in the Supplementary Information.
The improving outcomes in myocardial
infarction through reversal of cardiac
remodelling (IMMACULATE) cohort

The IMMACULATE cohort consisted of 859 patients who were

admitted for MI at 3 tertiary hospitals in Singapore (National
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University Heart Centre, Tan Tock Seng Hospital and National

Heart Centre) from 2011 to 2014. The patients were followed up

for a median of 3.9 years (interquartile range IQR: 2.0–4.8 years)

from their hospital discharge date, and biometric,

echocardiographic, and blood-based measurements were collected

at the same post-discharge time point (30 days) as the CDCS.

Detailed information on the nested case-control subset 190

patients used as a validation cohort in this report can be found in

the Supplementary Information.
Proteomics, lipidomics and clinical
biomarker measurements

Protein abundance was measured using Slow Off-rate Modified

Aptamer (SOMAmer)–based capture array, called SOMAscan®

(SomaLogic, Inc, Boulder, CO, United States) (16) and reported as

relative fluorescent units (RFU). Targeted lipidomics experiments

were performed using an Agilent 6495A triple quadrupole (QQQ)

mass spectrometer coupled to an Agilent 1,290 Infinity-II UHPLC

system, with automated data processing and quality control.

Acylcarnitines were also measured as part of this panel. One lipid

standard was used for each lipid class and the ratio of the peak

areas of endogenous lipids to their respective lipid standards was

reported as the lipid measurements (without conversion to molar

concentrations). Please refer to Section 2 of the Supplementary

Information for the details of data acquisition and quality control.

Established cardiac markers, including natriuretic peptides

(ANP, BNP, NT-proANP, NT-proBNP), high sensitivity troponin-

I (hsTNI) and creatinine, were measured using clinical-grade

assays. In CDCS, the concentrations of natriuretic peptides were

measured in pmol/l except for NT-proANP (in nmol/L). In

IMMACULATE, the concentrations of ANP, BNP and NT-

proBNP were measured in pg/ml and NT-proANP was not

measured. To allow for comparison between the two studies, we

unified the units of measurements to pg/ml for ANP, BNP and

NT-proBNP and ng/ml for NT-proANP. For ANP and NT-

proANP, we converted 1 pmol/L to 3.081 pg/ml and 1 nmol/l to

12.7 ng/ml, respectively. For BNP and NT-proBNP, we converted

the units using 1 pmol/l to 3.47 pg/ml and 1 pmol/l to 8.475 pg/

ml, respectively. Due to the higher accuracy and sensitivity of the

clinical-grade assays, we removed four corresponding proteins

measured in SOMAscan® (Supplementary Information).
Transthoracic echocardiography

Standard M-mode measurements of left ventricle (LV)

dimensions, wall thickness and left atrial (LA) dimensions were

made according to the recommendations of the American Society

of Echocardiography (ASE) (17). LV volumes and the derived left

ventricular ejection fraction (LVEF) were measured by the Simpson

modified biplane method (18). Pulsed-wave Doppler velocities of

trans-mitral early diastolic (E) and atrial (A) filling were obtained

from the apical 4-chamber view with a 5 mm sample volume

placed between the tips of the mitral leaflets (19), and systolic (S),
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diastolic (D), and atrial reversal (AR) pulmonary vein velocities

were acquired from the apical 4-chamber view with a 5 mm sample

volume placed 1 cm into the right upper pulmonary vein. Early (e’)

and late (a’) diastolic, and systolic (s’) pulsed-wave tissue Doppler

velocities were obtained at both septal and lateral mitral annular

corners, and averaged (20). The ratio of trans-mitral E and annular

e’ velocities (E/e’) was derived as a measure of LV filling pressure.

Only variables with at least 70% of the measurements quantified

were used and missing values in those variables were imputed

together with missing entries from the six cardiac markers using

multiple imputation by chained equations (MICE) (21). All missing

data were assumed to be missing at random (MAR) and the

estimates from the multiple models are pooled using Rubin’s rule (22).
Ascertainment of clinical events

The composite outcome of interest was 5-point MACE (or

MACE including HF), defined as: MI, stroke, unstable angina,

HF and/or a CV-related death. All patients were followed from

the time of their primary hospital discharge to a future major

adverse cardiac event, death or end of study, whichever was

earlier. For both CDCS and IMMACULATE, we defined three

phenotypic outcomes: (1) patients who remained event-free

(Event-free), (2) patients who had any one of the five adverse

cardiac outcomes (MACE), with further stratification by (3)

patients with non-fatal and fatal HF events (HF).
Statistical analysis

For continuous variables, two-sample t-tests were used to

compare the difference in means across groups, whereas for

categorical variables, Chi-squared tests were applied to test for

associations with groups. Fisher-exact test was used where cell-

frequencies were less than five. Clinical variables with missing or

unknown self-reported entries were removed before performing

the statistical test for association. All p-values were adjusted for

multiple-testing correction using the Benjamini-Hochberg’s (BH)

method to control the overall false discovery rates (FDR). The

AUC of the ROC was computed for each marker to evaluate

their predictive performance and presented with a 95%

confidence interval. Cox proportional hazard (PH) models were

used to assess the prognostic value of individual markers from

hospital discharge to MACE or HF, death or end of follow-up,

whichever is earlier. Hazard ratio (HR), p-value, Harrell’s C-

index and its 95% confidence interval were reported for each

marker. Log-rank test was employed to compare the Kaplan-

Meier (KM) survival curves when stratified by risk groups.
Network-level predictive analysis using
iOmicsPASS+

To estimate the Gaussian graphical model (GGM) underlying

the observed data (with a corresponding partial correlation
frontiersin.org
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network), we utilized all markers across 741 patients from CDCS

and computed a covariance matrix using all pairwise complete

observations as an input to the graphical LASSO algorithm (14),

using a module built in iOmicsPASS + . Originally developed as

iOmicsPASS for the integration of DNA, mRNA and protein-level

multi-omics data over biological networks (13), iOmicsPASS + has

been extended to directly infer an undirected graph representing

conditional (in)dependence relationships among all continuously

scaled data features from the multiple data types, through

estimation of GGM (Supplementary Figure S1) (14). Following

the network inference, iOmicsPASS is employed to carry out

dimension reduction of the information from multiple data sets by

using edge-level co-expression scores, taking the direction of the

correlation into account, to identify a sparse set of subnetwork

signatures that separates the phenotypic groups via a supervised

approach (see Supplementary Material).

To prevent potential confounding, we removed the patients

with remodelled heart, medical history of HF, stroke and previous

MI events that occurred within the last five years, leaving 464

CDCS patients for the predictive analysis. We sought to identify

subnetwork signatures that best (1) differentiate patients destined

to incur secondary MACE from those spared such events, and (2)

patients suffering secondary HF from those not, using 10-fold

cross-validation (CV) for parameter optimization. Within the

iOmicsPASS framework, network signatures are characterized by

group-specific centroids of edge-wise co-expression scores. For

every i-th edge with a non-zero partial correlation estimate, co-

expression scores were calculated for individual patients. The sign

of the partial correlation is reflected into the co-expression score

calculation, where the scores for two positively correlated nodes

and two negatively correlated nodes are calculated as products

and ratios of the normalized data in each subject (sums and

differences in logarithmic scale), respectively.

Once subject-level co-expression scores are calculated, test-

statistics contrasting group differences, denoted by dik* (23) (k = 1

for outcome and k = 0 for no outcome), are computed for the

edges. For simplicity, we refer to these network edge-wise test-

statistics as d-scores hereafter, the magnitude of which indicates the

combined discriminative power of a pair of predictors in separating

the phenotypes. The test-statistics were penalized iteratively to select

the optimal sparse network classifiers that minimize the overall

misclassification error in the CV. The final d-scores are visualized in

the networks, incorporating the sign and magnitude, reflected by

the color and thickness of edges in the network respectively (13).

iOmicsPASS + also offers a direct prediction functionality on

external data sets with the same input data types, allowing for

missing data features in the new data set. The prediction module

takes all available variables of the selected classifiers from a data

set, standardizes the variables within the new data, computes the

co-expression scores of predictive edges and derives the

composite discriminant scores and classification probabilities for

individual patients. These discriminant scores or class

probabilities can then be used to stratify patients in the external

data, or within the training data itself if necessary.

Further details of the method and the software can be found in

the Supplementary Information. All analyses were carried out in
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R version 4.2.0 (24) using in-house R-scripts. Network

visualization is done using the Cytoscape software (25).

Throughout this paper, we used the CDCS cohort as the

training dataset to build a network and estimate predictive

network signatures for both MACE and incident HF. Then using

these signatures, we computed the class probabilities on both

CDCS and another independent cohort, IMMACULATE, as a

validation dataset.
Secondary analysis of individual markers in
the network signatures

As these network signatures were derived without any

consideration for time to event, we further assessed if the

predicted class probabilities could predict the risk of future

MACE and incident HF in the presence of other factors

influencing long-term outcomes. We achieved this by fitting three

types of Cox PH models: without any clinical adjustments (Model

A), adjusted for age, gender and BMI (Model B) and further

adjusted for ST-elevation status, history of hypertension and

medications prescribed at discharge (Model C). We first identified

the medications that were directly associated with either MACE

or HF, at both discharge and admission, for adjustment in the

model. In CDCS, we adjusted for beta-blockers, ACE inhibitors,

aspirin, clopidogrel, calcium channel antagonists, long-acting

nitrates, diuretics, statins and warfarin use at hospital discharge.

In IMMACULATE, we adjusted for beta-blockers, ACE inhibitors

and antagonist receptor blockers (ARB). To determine the

usefulness of adding clinical variables to the model, we also

calculated the continuous net reclassification index (cNRI) and

integrated discrimination index (IDI) of the 2-year event

prediction of Model B and Model C, relative to Model A.
Results

Characteristics of the CDCS cohort

Figure 1 illustrates the analysis workflow for the CDCS cohort.

Using the implementation in iOmicsPASS+, we integrated the data

for proteins, lipids, clinical biomarkers and echocardiographic

measurements from 741 subjects, and derived a network of

conditionally dependent data features using the graphical LASSO

(26). Given the diversity of data types, we call individual

variables “data features” hereafter. For this network, we

calculated partial correlation for each edge of the network as a

measure of association strength between the two corresponding

data features, accounting for the effects of all other variables (see

Supplemental Information). In the second step, we subsequently

identified predictive subnetwork signatures of secondary adverse

outcomes, namely MACE and HF. This supervised analysis was

conducted using 464 patients meeting the criteria for outcome

data (Supplemental Information), where 185 patients remained

event-free, and 279 patients had a secondary MACE, including

117 patients hospitalized for HF during follow-up. In what
frontiersin.org
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FIGURE 1

Analysis workflow applied to the CDCS cohort. The background network reflecting the conditional dependence structure among the four data types was
inferred using graphical LASSO. From the network, subnetwork signatures of secondary MACE and HF were obtained using the training dataset (CDCS)
using 10-fold cross validation for choosing the optimal regularization parameter.
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follows, we first describe the predictive potential of individual data

features and the overall network structure and present the network-

driven analysis results afterwards.

Table 1 provides the overall characteristics of the 464 patients.

The mean age was 69 years (SD = 10.7 years), with more males

(69.2%) than females (30.8%). The majority were of European
Frontiers in Cardiovascular Medicine 05
descent from New Zealand (56.7%) and other countries (27.8%),

while the rest (7.1%) were Asians, Africans, Maoris, Fijians and

the Pacific Islanders. Most patients either quit smoking (54.5%)

or had never smoked (38.8%). Upon admission for a primary

AMI episode, 29.7% were diagnosed with STEMI and 70.3%

NSTEMI. The median follow-up time from the date of hospital
frontiersin.org
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TABLE 1 Clinical characteristics of post-AMI patients in CDCS study.

CDCS study (New Zealand)

All Event-free MACE P-value

(n = 464) (n = 185) (n = 279)
Follow-up time, median (yrs) 4.88 4.84 4.96

Time to MACE, median (yrs) – 0.74

Age (yrs), mean (SD) 69 (10.7) 66.7 (9.6) 70.6 (11.1) <0.001

BMI (kg/m2), mean (SD) 27.1 (4.9) 27 (3.9) 27.2 (5.5) 0.603

Gender, n (%)
Males 321 (69.2) 126 (68.1) 195 (69.9) 0.760

Females 143 (30.8) 59 (31.9) 84 (30.1)

Ethnicity, n (%)
NZ European 263 (56.7) 102 (55.1) 161 (57.7) 0.485

Other Europeans 129 (27.8) 42 (22.7) 87 (31.2)

Others 33 (7.1) 12 (6.5) 21 (7.5)

Unknown 39 (8.4) 29 (15.7) 10 (3.6)

Smoking status, n (%)
Current Smoker 31 (6.7) 13 (7) 18 (6.5) 0.318

Ex-Smoker 253 (54.5) 93 (50.3) 160 (57.3)

Never Smoked 180 (38.8) 79 (42.7) 101 (36.2)

Alcohol consumption, n (%)
Current drinker 294 (63.4) 127 (68.6) 167 (59.9) 0.070

Ex-drinker 52 (11.2) 14 (7.6) 38 (13.6)

non-drinker 118 (25.4) 44 (23.8) 74 (26.5)

ST-elevation status, n (%)
ST-elevated MI, STEMI 138 (29.7) 67 (36.2) 71 (25.4) 0.017

Non ST-elevated MI, NSTEMI 326 (70.3) 118 (63.8) 208 (74.6)

Family history of CAD, n (%) 185 (39.9) 80 (43.2) 105 (37.6) 0.345

Diabetes Mellitus, n (%) 82 (17.7) 27 (14.6) 55 (19.7) 0.197

Hypertension, n (%) 226 (48.7) 68 (36.8) 158 (56.6) <0.001

Hyperlipidemia, n (%) 209 (45) 82 (44.3) 127 (45.5) 0.687

Medication use at discharge, n (%)
Beta-blockers 412 (88.8) 174 (94.1) 238 (85.3) 0.006

ACE-inhibitors 280 (60.3) 118 (63.8) 162 (58.1) 0.256

Aspirin 456 (98.3) 183 (98.9) 273 (97.8) 0.486

Angiotensin II type 1 receptor 19 (4.1) 4 (2.2) 15 (5.4) 0.099

Clopidogrel 302 (65.1) 140 (75.7) 162 (58.1) <0.001

Calcium channel antagonists 99 (21.3) 23 (12.4) 76 (27.2) <0.001

Long-acting nitrates 87 (18.8) 22 (11.9) 65 (23.3) 0.003

Diuretics 112 (24.2) 27 (14.6) 85 (30.6) <0.001

Warfarin 36 (7.8) 8 (4.3) 28 (10) 0.038

Statins 426 (91.8) 175 (94.6) 251 (90) 0.108

Clinical- biomarkers†, mean (SD)
Creatinine, mg/dl 99.4 (59.7) 90.3 (18.7) 106 (75.2) <0.001

High-sensitive Troponin I (hsTNI), ng/l 57.8 (506.6) 18.3 (51.5) 84.6 (654.0) <0.001

Atrial natriuretic peptide (ANP), pg/ml 146 (98.8) 126 (76.5) 159 (109.4) <0.001

N-terminal pro ANP, ng/ml 18.2 (13) 14.7 (8.8) 20.6 (14.7) <0.001

Brain natriuretic peptide (BNP), pg/ml 107 (116.1) 76.5 (81.4) 127 (130.6) <0.001

N-terminal pro BNP, pg/ml 1,330 (1539.8) 925 (908.6) 1,600 (1795.6) <0.001

†Markers were measured one month from hospital discharge post MI.

CDCS, coronary artery disease cohort study; CAD, coronary artery disease; NZ, New Zealand; BMI, body mass index; MI, myocardial infarction; HF, heart failure; LVEF, left

ventricular ejection fraction; STEMI, ST-elevated myocardial infarction; NSTEMI, non ST-elevated myocardial infarction; LDL, low-density lipoprotein; HDL, high-density

lipoprotein; hsTNI, high-sensitive Troponin I; NT-proANP, N-terminal pro-hormone atrial natriuretic peptide; NT-proBNP, N-terminal pro-hormone brain natriuretic peptide.

Koh et al. 10.3389/fcvm.2023.1123682
discharge was 4.88 years, and the time from discharge to a MACE

ranged from one day to 8.8 years (median 0.74 years). Comparisons

between patients remaining event-free and those incurring

secondary MACE revealed significant differences in age,

diagnosis of ST-segment elevation and hypertension, as well as
Frontiers in Cardiovascular Medicine 06
clinical biomarkers such as serum creatinine and plasma

natriuretic peptides. MACE cases were older (mean age = 70.6

years, SD = 11.1) and more frequently hypertensive (56.6%) than

patients who remained event-free (36.8%). The index events were

also more likely NSTEMI (74.6%) than STEMI (63.8%). Event-
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free patients had lower levels of serum creatinine and plasma

concentrations of natriuretic peptides (ANP, BNP, NT-proANP,

NT-proBNP) than those with MACE on follow-up.

Supplementary Table S1 shows the comparison of the

echocardiographic measurements between event-free patients and

MACE patients, as well as between event-free patients and HF

patients. As expected, more echocardiographic variables differed

between HF patients and event-free patients than between all

MACE patients and event-free patients. Both adverse outcome

groups (MACE and the HF subgroup) had greater baseline LA

and LV dimensions but lower LVEF than event-free patients.

Tissue Doppler parameters of myocardial motion differed

between MACE/HF and event-free cases with e’ and E/e’

differing most sharply between the subgroup with HF and event-

free patients.
Single markers of MACE and HF

We next compared the post-discharge levels of individual

proteins, lipids, echocardiographic parameters and clinical

biomarkers in the patients with MACE and HF to event-free

patients. A total of 184 data features were significantly different

in mean abundance between MACE patients and event-free

patients (FDR < 0.05), where 66.3% were higher in MACE

patients. Comparing the HF patients with the event-free ones,

368 markers were significantly different (FDR < 0.05). Details of

this analysis are reported in Supplementary Table S2.

The differential features of MACE included 166 proteins, seven

lipids, five echocardiographic measurements, and all six clinical

biomarkers. Although all natriuretic peptides, hsTNI and

creatinine levels were higher in MACE patients, BNP and NT-

proBNP attained the AUC of 0.65 (95% CI: 0.60–0.70 for BNP

and 0.59–0.70 for NT-proBNP), indicating modest discrimination

for MACE. Echocardiographic measurements such as LA area,

LV mass, indexed left ventricle internal dimension in diastole

(LVIDDi) and systole (LVIDSi), as well as indices of diastolic

dysfunction (E/e’), were all higher in MACE than in event-free

patients, yet the AUC values were modest at best. When

considering lipids, only a handful of lipids showed statistically

significant differences. Three species (phosphatidylethanolamine

PE 34:1 and PE 34:2, sphingosine-1-phosphate S1P d18:0) were

higher, whereas four species (phosphatidylcholine PC 38:4 and

40:8, LysoPC 20:4, sphingomyelin SM 43:1) were lower in the

MACE patients. Lastly, the top three markers were all plasma

proteins, including macrophage-capping protein (CAPG) with

AUC of 0.68 (95% CI: 0.63–0.73), aspartate aminotransferase

(GOT1) with AUC of 0.65 (95% CI: 0.60–0.70) and follistatin-

related protein 3 (FSTL3) with AUC of 0.64 (95% CI: 0.59–0.69).

The 368 differential features of HF included 298 proteins, 31

lipids, nine echocardiographic variables, and all six clinical

biomarkers. Similar to the differential features of MACE, all six

clinical biomarkers were higher in HF than in event-free patients

as expected: NT-proBNP demonstrated the highest AUC of 0.79

(95% CI: 0.74–0.84), followed by BNP with AUC of 0.78 (95%

CI: 0.73–0.83). In echocardiographic parameters, all five
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measurements significantly altered in MACE also differed in the

HF subgroup. In addition, interventricular septum (IVS), LA

width, LVESVi were also significantly higher, while the early

diastolic mitral annulus velocity e’ was significantly lower. Similar

to the MACE comparison, the differences in the lipid levels were

not pronounced in the HF group, including glycerophospholipids

(8 PEs, 3 PC, 4 phosphatidylinositol PI), four lysophospholipids

(3 LysoPC, 1 LysoPE), eight sphingolipids (SM 38:1, 38:2, 43:1,

44:1, 44:2), S1P d18:0, ceramide d19:1/24:0 and ganglioside GM3

d18:1/16:0, cholesteryl ester CE 20:4 and two glycerolipids

(diacylglycerol DG 38:6 and triacylglycerol TG 58:10). Among

those, LPC 20:4, PE 34:2 and PE 35:2 had the highest AUCs at a

modest value of 0.64 (95% CI: 0.57–0.71).

Of the 298 significant proteins, 61.7% were higher in HF

patients than in event-free patients. CAPG had the highest AUC

of 0.77 (95% CI: 0.72–0.83), followed by FSTL3 with AUC of

0.75 (95% CI: 0.70–0.81) and Cystatin-C (CST3) with AUC of

0.74 (95% CI: 0.68–0.79). The top performing proteins such as

CAPG, CST3, FSTL3, and EGF-containing fibulin-like

extracellular matrix protein 1 (EFEMP1), also known as fibulin3,

were equally predictive of HF as the natriuretic peptides, with

overlapping 95% CIs.
Partial correlation network connecting the
four modalities

Supplementary Figure S1 illustrates the network inference

workflow of iOmicsPASS + . First, each data type was standardized

by mean centering and pareto variance scaling. Then, outlier

observations were filtered out before being concatenated into a

single data matrix using all 741 samples. The network estimation

module produced a network of 27,334 edges in this data set (1.9%

of all possible edges) based on the regularized parameter selected

at the lowest eBIC value, connecting 1,690 data features. To assign

measures of strength to the selected edges, the regularized

precision estimates were converted to partial correlations, denoted

by r, which ranged from −0.43 to 0.66 in this data. We remark

that all correlations reported in this work refer to regularized

partial correlations, and for this reason, the magnitude of partial

correlations may seem small.

Not surprisingly, the intra-modality partial correlations (within

the same data type) were much stronger than the inter-modality

partial correlations (between data types): only 5.4% of the edges

were between proteins and lipids, and as few as 373 edges were

between proteins and echocardiographic parameters and clinical

biomarkers. This result clearly shows that the proteomic

variation is largely independent of the lipidomic variation and

imaging parameter differences, and both types of molecular data

relate differently to the risk of future adverse outcomes.

The core segment of the network connecting

echocardiographic measurements and clinical biomarkers to

proteins, lipids, and acylcarnitines is shown in Figure 2. In this

partial correlation network, the natriuretic peptides and hsTNI

(TNI in purple color) were positively correlated with each other

and BNP, NT-proBNP and hsTNI were negatively correlated
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1123682
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 2

Visualization of the partial correlation network connecting plasma proteins and lipids with echocardiographic imaging variables and cardiac biomarkers.
Plasma proteins and lipids were drawn as nodes in light red and cyan, and echocardiographic variables and cardiac biomarkers in blue and light purple,
respectively. Network edges were colored according to the signs of partial correlations, i.e. positive in red and negative in light purple.
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with LVEF. Among the echocardiographic measurements, LVEDVi

and LVESVi had the highest partial correlation (r = 0.475),

followed by LVIDSi with LVIDDi (r = 0.459) and the negative

correlation between LVEF and LVESVi (r =−0.375). Overall,

only ten echocardiographic parameters (LA area, LA width,

LVEF, LVMi, LVIDDi, LVIDSi, Peak S/D, a’, s’ and E/e’) were

connected with clinical biomarkers in this subnetwork. Among

those, the highest correlations were recorded between NT-

proBNP and E/e’ (r = 0.058), between NT-proBNP and s’

(r =−0.057), between BNP and LVEF (r =−0.053) and between

BNP and a’ (r =−0.050). This finding suggests that myocardial

motion parameters captured by tissue Doppler imaging are

particularly correlated with neurohormonal activation from the

primary MI episodes.

Meanwhile, stronger correlations were observed among

proteins, lipids, and acylcarnitines with clinical biomarkers than

with echocardiographic parameters, suggesting that

morphological and functional features provide orthogonal

information to molecular markers during the early recovery post-

discharge. The highest correlation among the connected proteins
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was between hsTNI and cardiac troponin T (TNNT2) (r = 0.206),

followed by the correlation of creatinine with insulin-like growth

factor binding protein 2 (IGFBP2) (r = 0.142), glycoprotein CD59

(r = 0.118), and cystatin M (CST6) (r = 0.115). Nine proteins were

connected with at least three natriuretic peptides in the network,

including positive correlation with angiopoietin-2 (ANGPT2),

periostin (POSTN), R-spondin 4 (RSPO4), IGFBP2,

thrombospondin 2 (THBS2), Spondin-1 (SPON1), vascular

endothelial growth factor D (VEGFD) (also known as FIGF),

bone morphogenetic protein 10 (BMP10), and negative

correlations with bone morphogenetic protein 1 (BMP1) and

coagulation factor×(F10). See Supplementary Table S3 for the

table of regularized partial correlation estimates among the data

features with the clinical biomarkers from the four modalities.
Predictive subnetwork signature of MACE

Using this estimated network as the background, we next

applied the supervised analysis module of iOmicsPASS + for
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dimension reduction and to obtain subnetwork signatures of

MACE (13). Table 2 reports the number of proteins, lipids,

echocardiographic variables, and clinical biomarkers in the

predictive signatures. The MACE signature included 524 edges

connecting 211 nodes (mean cross-validated error 38.5%).

Figure 3 visualizes the MACE signature, where the edges were

colored by the sign of the d-scores for the MACE group (red if

higher in MACE, blue otherwise). This subnetwork signature

contains 194 proteins, five lipids, eight echo imaging parameters

and all four natriuretic peptides. Although only five lipids were

part of this network, four of them happen to be

phosphatidylethanolamines (PE 34:1, 34:2, 35:2, 37:4).

The subnetwork consists of two segments. The majority (96.4%)

were highly correlated proteins, lipids, imaging parameters and

clinical biomarkers with higher d-scores (in red) for the MACE

group. The other part was a protein-only network with lower

centroids (in blue). Here, the main driver of separation between

the two groups were the edges connecting one protein to another

(90.6%). Twenty-two edges connected natriuretic peptides to

plasma proteins, 13 connected echocardiographic variables to

proteins, and six linked lipids to proteins. The edges with the

highest d-scores for MACE were the joint performance of CAPG

with several proteins including trefoil factor 3 (TFF3), FSTL3 and

ephrin type-A receptor 2 (EPHA2). The top five highest d-scores
TABLE 2 Summary of the predictive subnetwork signatures of lipids, protein
patients from those with a future major adverse cardiac outcome (MACE) an

MACE from
event-free
patients

HF from
event-free
patients

Overlaps

Number of predictive
network edges

524 566 414

Total number of features 211 189 160

Mean cross-validation error 38.5% 26.7%

Proteins 194 164 143

Over-expressed in at least one
tissue

123 109 91

Heart-enriched‡ 4 4 4

Artery-enriched† 7 5 4

Skeletal muscle-enriched 5 5 5

Kidney-enriched# 5 6 4

Liver-enriched 13 9 8

Lung-enriched 12 15 11

Lipids 5 8 5

Phosphatidylethanolamine 4 5 4

Phosphatidylcholine 0 1 0

Acylcarnitines 1 2 1

Echo imaging variables 8 12 8

Clinical- biomarkers 4 5 4

*Plasminogen (PLG) was detected twice; one as the complete plasminogen and the o
#Tissues enriched in the kidney include cortex and medulla.
†Tissues enriched in the artery include aorta and coronary artery.
‡Tissues enriched in the heart include atrial appendage and left ventricle.

Bold values represent the main features part of the network.
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for the event-free group were between mitogen-activated protein

kinase kinase 4 (MAP2K4) with prolyl endopeptidase (FAP),

superoxide dismutase in mitochondria (SOD2), histidine-rich

glycoprotein (HRG) and between plasmin (PLG) and vascular

endothelial growth factor receptor 2 (KDR). Six major hub

proteins, CAPG, FSTL3, EPHA2, TFF3, tumor necrosis factor

receptor superfamily member 19l (RELT) and beta-2-

microglobulin (B2M) were densely connected to many other nodes

(i.e., degree above 30). The detailed subnetwork signature is

reported in Supplementary Table S4.

Incorporating tissue-specific mRNA expression levels of

protein-coding genes in the heart, arteries, kidneys, liver and

lungs (see Methods), we carried out biological pathway

enrichment of the proteins in our signature for each tissue type,

separately. MACE predictive proteins over-expressed in the heart

were related to cell chemotaxis, cell development, ECM

organization, involved in apoptotic signalling pathway, muscle

structure development and homeostatic process (Figure 3B).

Those over-expressed in the arteries largely overlapped with

those expressed in the heart, with enrichment in cell projection

organization, response to hormone, peptidyl-tyrosine

phosphorylation and transmembrane receptor protein tyrosine

kinase signalling pathway. Proteins specifically expressed in the

liver were found to be enriched in inflammatory response and
s and clinical markers in two comparisons, separating event-free post-MI
d from HF patients.

Common features Features
unique to
MACE

Features
unique to HF

BMP10, CSRP3, FABP3, TNNT2 – –

EFEMP1, IGFBP2, TIMP1, THBS2 BGN, CNTN4,
INHBA

POSTN

CA3, CSF3, CSRP3, FABP3, SOD2 – –

GDF15, MMP7, SPP1, TDGF1 TNFSF15 IL1RL1, REN

ASGR1, C4A/C4B, CCL15, CPB2,
HRG, IL27, PLG*

AHSG, EPO,
FABP1, FCN2,

THPO

CLEC4M

CCL18, CD4, CD300C, CHIT1, CSF3,
CST5, CXCL8, CXCL9, CXCL10,

FIGF, RSPO4

ACP5 AGER, CD55,
CD93, IL1RL1

PE 34:1, PE 34:2, PE 35:2, PE 37:4 – PE(O-36:4)

– – PC(P-30:0)

AcylCarnitine C12:0 – AcylCarnitine C14:0

IVS, LVEF, LVMi, LA area, LVESVi,
LVIDSi, E/e’, e’

– LA width, LVEDVi,
LVIDDi, A’

ANP, NT-proANP, BNP, NT-proBNP – hsTNI

ther as angiostatin, a proteolytic fragment.
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FIGURE 3

Subnetwork signature of MACE. (A) Network visualization with plasma proteins, lipids and acylcarnitines, echocardiographic imaging variables, and clinical
biomarkers in different colors. Edges were colored according to the signs of the d-scores computed by iOmicsPASS + and the thickness reflects the
magnitude of the scores representing the discriminatory power. (B) Enrichment of biological functions in the constituent nodes in panel (A),
accounting for tissue-specific expression of genes at the mRNA level (median-normalized TPM > 5 in each tissue). (C) Visualization of the subset of
the network signature illustrating the plasma proteins connected to echocardiographic imaging variables and clinical biomarkers.
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cytokine-mediated signalling pathways, as expected

(Supplementary Table S5).

Using the echocardiographic variables and natriuretic peptides as

endophenotype, the visualization of their first-degree neighbors in

Figure 3C highlights plasma proteins worthy of further investigation,

many of which are known biomarkers in various cardiovascular

diseases. All network edges had positive d-scores (in red), suggesting

that the combined co-expression scores were higher in the MACE

group compared to event-free group. Among the eight

echocardiographic imaging parameters in the signature, E/e’ was
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most connected to plasma proteins, including parathyroid hormone

(PTH), EFEMP1, FSTL3, RSPO4, THBS2 and SPON1. The pair with

the highest discriminatory power and d-score was between the ratio

E/e’ with EFEMP1, followed by LV mass with FSTL3. BNP was

connected to LV mass, LA area, LVEF, LVIDSi and E/e’; ANP was

only connected with LV mass. NT-proBNP was connected to key

proteins such as growth differentiation factor 15 (GDF15), EFEMP1,

BMP10, IGFBP2 and RSPO4; NT-proANP was connected to the

same proteins except RSPO4 and to additional proteins including

B2M, CAPG, TFF3 and FSTL3.
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Predictive subnetwork signature of HF

Next, we repeated the supervised analysis for the subgroup of

patients who developed HF. iOmicsPASS + identified 566 edges

in the HF signature with a lower mean cross-validated error of

26.7%. This subnetwork consists of 164 proteins, 8 lipids, 12

echo imaging parameters and 5 clinical biomarkers, all of which

largely overlapped with the MACE signature (Table 2). Not

surprisingly, echocardiographic variables contributed more to

the signature with higher d-values in the prediction of HF. In

addition to the eight variables in the MACE signature, four
FIGURE 4

Subnetwork signature of HF. (A) The edges were colored by the sign of the d-s
The thickness of edges reflects the magnitude of the scores. (B) Enrichment o
for tissue-specific expression of genes at the mRNA level. (C) A subset of the
variables and clinical biomarkers, with line properties of the edges set accor
negative in dashed).
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additional echocardiographic variables (LA width, LVEDVi,

LVIDDi and a’) were included in the HF signature. hsTNI, seven

proteins including interleukin-1 receptor-like 1 (IL1RL1),

POSTN, CD55 and CD93, two lipids (PE(O-36:4), PC(P-30:0))

and acylcarnitine C14:0 were also unique to this signature.

Similarly, the HF subnetwork signature showed two contrasting

segments, one with higher centroids for HF (red edges) and the

other with lower scores (blue edges) compared to event-free

patients (Figure 4A). Most edges connected one protein to

another (84.1%), 34 edges were between natriuretic peptides and

proteins, 18 were between echo imaging parameters and proteins,
cores for the HF group (positive in red, and negative in blue, respectively).
f biological functions in the constituent nodes in the panel (A) accounting
HF signatures consisting of first-degree neighbors of echocardiographic
ding to the signs of respective partial correlations (positive in solid, and
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and 12 were between lipids and proteins. Interestingly, the edges

with the highest d-values for HF did not involve NT-proBNP.

Instead, d-scores between CAPG and FSTL3, TFF3, B2M and

EPHA2 (d-scores between 1.60 to 1.89) and between EFEMP1 and

FSTL3, GDF15, B2M, RSPO4, BMP10 and E/e’ (d-scores between

1.60 to 1.85) were higher than that between NT-proBNP and

EFEMP1 (d-score = 1.32). The ratio E/e’, a validated indicator of

LV filling pressures, was also connected with other proteins such

as FSTL3, RSPO4, THBS1, PTH, SPON1 and the four natriuretic

peptides, illustrating its joint prognostic value in predicting future

HF. Full results are reported in Supplementary Table S6.

Proteins in the signature with respective mRNA over-

expression in the arteries and the heart were enriched for ECM

organization, external encapsulating structure organization and

an additional cell chemotaxis in the heart only. Proteins over-

expressed in kidney were pro-inflammatory response, lipid

response, cytokine production and chemical homeostasis,

whereas the proteins of hepatic origin were related to adaptive

immune response and cell-growth (Figure 4B). The results of the

tissue-specific enrichment analyses are reported in

Supplementary Table S7.

Focusing on the subnetwork signature involving the

echocardiographic variables, natriuretic peptides and hsTNI, we

visualized the important proteins connected with each marker

(Figure 4C). Both ANP and NT-proANP were connected to

BMP10; both BNP and NT-proBNP were connected to THBS2,

RSPO4, IGFBP2, VEGFD/FIGF and SPON1. Only one protein

IGFBP2 was strongly connected to all four natriuretic peptides.

Among the echocardiographic measurements, other than E/e’, LV

mass connected with all four natriuretic peptides and two

proteins (FSTL3, RELT). On the other hand, the ratio of LVEF to

BNP, LV mass and TNNT2 (i.e., negative correlation) yielded

higher d-scores for the HF group when compared to the event-

free group.
Characterization of plasma protein markers
by potential tissues of origin

To delineate the proteins directly associated with cardiac

assault and tissue damage post-MI and those representing other

systematic responses, we mapped the proteins to the tissue-

enriched genes in the transcriptomic data provided by the

Genotype-Tissue Expression (GTEx) database. Based on our

definition of tissue-enriched genes (see Methods), 63.4% of the

proteins in the secondary MACE signature and 66.5% of

the proteins in the HF signature were enriched in at least one of

the 54 tissues catalogued in the GTEx. Figure 5 shows the

median normalized gene expression (in transcripts per million,

TPM) of the tissue-enriched markers from the two signatures,

illustrating the specificity of hub proteins to the five tissues

related to the heart, arteries, kidneys, liver and skeletal muscle.

In the MACE signature, 10.6% of proteins were specifically of

hepatic origin, followed by lungs (9.8%) and arteries (5.7%). In

the HF subnetwork signature, the majority were enriched in

lungs (13.8%), followed by liver (8.3%) and kidney (5.5%)
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(Table 2). In both signatures, only four proteins were enriched

in the heart tissues: BMP10, TNNT2, cysteine and glycine rich

protein 3 (CSRP3) and hFABP (FABP3). Among the proteins

enriched in the aortic and coronary arteries, EFEMP1, IGFBP2,

THBS2, metalloproteinase inhibitor 1 (TIMP1), were shared

between both signatures; biglycan (BGN), contactin-4 (CNTN4)

and inhibin beta A chain (INHBA) were unique to the MACE

signature, while POSTN was unique to HF signature. The table of

tissue-enriched proteins is reported in Supplementary Table S8.
Predictive performance of subnetwork
signatures in IMMACULATE cohort

Next, we assessed the predictive value of the two subnetwork

signatures in 190 post-MI patients from the IMMACULATE

registry, applying the same inclusion criteria. In IMMACULATE,

we did not remove any patients with self-reported history of MI

due to the small number of MACE cases and the information

regarding how long ago the episode took place was not available.

This cohort was recruited between 2011 and 2014 in Singapore

(median follow-up period 4.2 years). The patients in

IMMACULATE were substantially younger (mean = 53.3 ± 8

years) than those in CDCS, with a much larger proportion of

current smokers (63.2%) compared to only 6.7% in CDCS and,

majority of the patients were STEMI in IMMACULATE (53.5%)

and NSTEMI in CDCS (70.3%). Thus, both cohorts represent

post-MI patient populations from two different time periods with

substantially different ethnic and genetic background and more

contemporary clinical management during the follow-up in the

latter. More details of the characteristics of IMMACULATE

patients are provided in Table 3 and the comparison of the

echocardiographic variables between event-free group and MACE

group as well as HF group in IMMACULATE study is reported

in Supplementary Table S9.

In IMMACULATE, 38 patients had secondary MACE events,

of which 23 were HF, representing a lower frequency of

secondary MACE than CDCS, although there may be under-

reporting of MACE as hospitalizations as unstable angina status

was not collected. Despite these differences and in the absence of

NT-proANP and ANP, the prognostic value of NT-proBNP as a

single marker of MACE and HF remained exceptionally high.

Supplementary Figure S2 clearly shows that NT-proBNP

stratifies post-MI patients into three groups of well-separated

risks (log-rank test P-values < 0.01) based on tertiles in both

studies.

To see whether the incorporation of all other correlated

molecular markers improves the predictive performance, we used

the subnetwork signatures derived in the CDCS study to

calculate the classification probability scores of MACE and HF

for the IMMACULATE subjects. While we observed that the

survival curves of high and low risk groups were well separated

for MACE (P = 0.014) and HF (P = 0.036), the separation of

survival curves showed at most a comparable separation of

outcome groups to the results using NT-proBNP (Figure 6A).

This observation was a direct testament to why natriuretic
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FIGURE 5

Tissue specific gene expression (median-normalized TPM values) of 36 plasma proteins in the MACE and HF signatures with specific enrichment in heart,
arteries, kidneys, liver, and skeletal muscle according to the GTEx database.
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peptides have long overruled the discovery of new circulating

biomarkers for incident cardiovascular events.

However, our predictive analysis approach to this data was to

discover what other molecular and imaging parameters underlie

the variable risk strata beyond NT-proBNP and what other

biological processes are reflected in the circulation. Since

iOmicsPASS + reports edge-wise co-expression values for pairs of

data features in every patient, we were able to dissect the

prognostic signals into network edges and examined their

individual contributions to the prediction. In particular, we

examined 41 pairs of data features with d-scores above 1.2 in

absolute value (arbitrarily chosen threshold) and compared the

AUC values in both CDCS and IMMACULATE. Of these,

Table 4 shows that the top ten pairs of data features that had the

highest AUC values above 0.73 without natriuretic peptides and

up to 0.80 with NT-proBNP. All 11 proteins involved in these

connections were network hub features: ECM-associated proteins

EFEMP1, CAPG, FSTL3, and imaging parameter E/e’. Similar to

the CDCS cohort, we discovered that the joint predictive powers

of most of these pairs, as measured by the AUC value, were

comparable to that of NT-proBNP in IMMACULATE. However,
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a few others such as the pair of FSTL3 and CAPG were not as

reproducible between the two populations (Figure 6B), which

explains the lack of improvement of the subnetwork signature in

AUC values over the dominant NT-proBNP as a single marker.

Taken together, NT-proBNP remains the most predictive

biomarker of secondary MACE and HF in this study. However, a

combination of two ECM proteins (EFEMP1 and FSTL3) and E/

e’ proved to be powerful predictors of MACE and HF risk, and

both protein markers can be explored as potential therapeutic

targets in post-MI patients given the emerging evidence (27–30).
Prognostic value of the network signatures
by adjusting for clinical variables

Our network-based supervised method constructs a binary

classifier without considering the event times and censored

outcomes, and we purposefully ruled out other clinical variables in

the main analysis. Nonetheless, we were able to demonstrate that the

classification probability scores of MACE and incident HF using

molecular data and echo imaging information showed significant
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TABLE 3 Clinical characteristics of post-AMI patients in IMMACULATE
study.

IMMACULATE (Singapore)

All Event-free MACE P-
value

(n = 190) (n = 152) (n = 38)

Follow-up time, median (yrs) 4.19 4.32 2.07

Time to MACE, median (yrs) – 0.98

Age (yrs), mean (SD) 53.3 (8) 53 (7.7) 54.7 (9.1) 0.258

BMI (kg/m2), mean (SD) 25.6 (4) 25.6 (3.7) 25.5 (4.7) 0.949

Ethnicity, n (%)
Chinese 105 (55.3) 88 (57.9) 17 (44.7) 0.082

Malay 44 (23.2) 30 (19.7) 14 (36.8)

Indians 41 (21.6) 34 (22.4) 7 (18.4)

Smoking status, n (%)
Current Smoker 120 (63.2) 90 (59.2) 30 (78.9) 0.077

Ex-Smoker 19 (10) 16 (10.5) 3 (7.9)

Never Smoked 51 (26.8) 46 (30.3) 5 (13.2)

ST-elevation status, n (%)
ST-elevated MI, STEMI 105 (55.3) 81 (53.3) 24 (63.2) 0.362

Non ST-elevated MI, NSTEMI 85 (44.7) 71 (46.7) 14 (36.8)

Family history of CAD, n (%) 37 (19.5) 33 (21.7) 4 (10.5) 0.169

Diabetes Mellitus, n (%) 32 (16.8) 25 (16.4) 7 (18.4) 0.961

Hypertension, n (%) 75 (39.5) 61 (40.1) 14 (36.8) 0.853

Hyperlipidemia, n (%) 77 (40.5) 64 (42.1) 13 (34.2) 0.483

Medication use at discharge, n (%)
Beta-blockers 155 (81.6) 123 (80.9) 32 (84.2) 0.815

ACE-inhibitors 106 (55.8) 87 (57.2) 19 (50) 0.535

Aspirin 186 (97.9) 148 (97.4) 38 (100) 0.585

Angiotensin receptor blockers 17 (8.9) 14 (9.2) 3 (7.9) 1.00

Statins 189 (99.5) 151 (99.3) 38 (100) 1.00

Clinical biomarkers†, mean (SD)
High-sensitive Troponin I (hs-
TNI), ng/l

55.9 (235.4) 35.6 (163) 137 (407.7) 0.0173

Atrial natriuretic peptide
(ANP), pg/ml

9.73 (0.7) 9.65 (0.7) 10.1 (0.7) <0.001

Brain natriuretic peptide
(BNP), pg/ml

14.1 (1.3) 13.9 (1.2) 14.7 (1.2) <0.001

N-terminal pro BNP, pg/ml 701 (712.7) 591
(551.4)

1,140
(1052.4)

<0.001

†Markers were measured one month from hospital discharge post MI.
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differences in the Kaplan-Meier curves among the three risk groups.

We next sought to determine if the prognostic value of the

classification probability scores could be further improved by

adjusting for clinical variables. We calculated the HRs per 10%

increase in the probability scores for MACE and HF and evaluated if

adding clinical variables improves the overall cNRI and IDI (Table 5).

In CDCS, the HR per 10% increase in the probability score is

associated with a HR of 1.09 (95% CI: 1.06–1.12) and 1.19 (95%

CI: 1.14–1.24) times increase in risk of MACE and HF,

respectively. After adjusting for age, gender and BMI, the HR

becomes 1.10 (95% CI: 1.07–1.13) and 1.15 (95% CI: 1.10–1.21)

for MACE and HF, respectively. The adjusted models did not

improve the model’s performance with low values of cNRI and

IDI (p-value≥ 0.05) for both outcomes. However, after further

adjusting for ST-elevation status, hypertension and medication

use at discharge, the adjusted HRs became 1.07 (95% CI: 1.04–

1.10) for MACE and 1.12 (95% CI: 1.06–1.18) for HF, with

significant improvement in reclassification for both outcomes (p-
Frontiers in Cardiovascular Medicine 14
value < 0.05). Similarly for IMMACULATE, the fully adjusted

HRs were 1.13 (95% CI: 1.04–1.22) for MACE and 1.11 (95% CI:

1.01–1.22) for HF and only the fully adjusted model showed

significant improvement from the unadjusted model with

significance for IDI (p-value < 0.05) and marginal significance for

cNRI (p-value < 0.10). The results are summarized in Table 5.
Discussion

We used interpretable machine learning to connect the global

landscape of plasma proteins and lipids with echocardiographic

imaging variables and established circulating biomarkers in two

independent patient cohorts hospitalized for AMI with

heterogeneous and contrasting ethnic and genetic background.

Plasma proteins carried stronger prognostic signals than lipids in

both cohorts, and communities of plasma proteins were associated

with increased risks of long-term secondary MACE and HF.

However, we strongly suspect that the lower prognostic potential of

lipids is largely affected by the nearly universal prescription of

statins at hospital discharge. Notably, we identified new prognostic

plasma proteins and echocardiographic variables with equivalent

classification performance to existing biomarkers, with different

biological and mechanical interpretation. The diastolic parameter E/

e’ outperformed LVEF as a prognostic variable, while two network

hub proteins EFEMP1 and FSTL3 maintained their prognostic

significance similar to NT-proBNP and other established circulating

biomarkers. As blood is frequently the only available reporter tissue

in CVD biomarker discovery, we also annotated individual proteins

in terms of their potential tissue(s) of origin. Interestingly, the

number of prognostic proteins of liver, lung and kidney origin

outperformed those specific to the heart and arteries.

The network hub proteins with reproducible signals in the

predictive subnetworks were EFEMP1 and FSTL3. EFEMP1, also

known as fibulin-3, is an ECM glycoprotein implicated in vascular

endothelium remodeling (31). It plays an important role in

reducing vascular calcification and inhibiting metalloproteinases in

oxidative stress (32–34). FSTL3, an extracellular regulator of TGF-β

family cytokines such as activin A, is involved in various biological

functions including cell proliferation and inflammation, and altered

transcriptomic regulation of the gene with another follistatin family

member FSTL1 in myocardium has been associated with HF

severity (30). FSTL3 has also been characterized as a stress-induced

regulator of cardiac hypertrophy through Smad signalling pathway

modulation in a mouse model (35), opening an opportunity for

investigation of the follistatin family of proteins as a therapeutic

target for the protection against HF.

Despite the lower prognostic power of lipids, both subnetwork

signatures included four lipid transport proteins, namely APOL1,

APOE, APOA1 and FABP3. FABP3 encodes hFABP, a marker of

myocardial injury. hFABP was connected to a multitude of

acylcarnitine species in both subnetwork signatures. It has

previously been implicated in HF, where reduced fatty acid

utilization in the heart leads to the progression of chronic HF, left

ventricular hypertrophy and remodelling (36, 37). Intriguingly,

here we found that circulating levels of hFABP and acylcarnitines
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FIGURE 6

Risk stratification by the iOmicsPASS probability scores of future MACE and HF events in the cohorts. (A) Kaplan-Meier curves with stratification of patients
by three categories based on the probability scores of MACE and HF in the training dataset (CDCS) and the validation dataset (IMMACULATE). (B) Boxplots
of the co-expression scores of the four top scoring feature pairs predictive of HF and their respective ROC curves.
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(C12:0, C14:0, C14:1, C14:2, C16:1) were jointly increased in MACE

and HF patients, suggesting that the circulating levels may have a

dual role in both ischemic and HF events.
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One of the most challenging issues in analyzing plasma

molecular profile, especially among patients with predisposed

conditions, is the use of medications and combination of drugs
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TABLE 4 The predictive performance and hazard ratios of the top ten pairs of data features with the highest AUC and largest magnitude of d-scores for
HF in the CDCS and IMMACULATE cohorts.

Feature
A

Feature B DataType
A

DataType
B

d-score for
Event-free

d-score
for HF

CDCS study IMMACULATE study

AUC (95% CI) HR P-
value

Harrell’s
C-index

AUC (95% CI) HR P-
value

Harrell’s
C-index

EFEMP1 NT-proBNP Protein Biomarker −1.538 1.319 0.80 (0.75–0.85) 1.78 <0.001 0.764 0.80 (0.73–0.88) 1.92 <0.001 0.785

CAPG FSTL3 Protein Protein −2.206 1.891 0.79 (0.74–0.84) 1.49 <0.001 0.734 0.69 (0.59–0.79) 1.38 0.001 0.679

FSTL3 E/e’ Protein Imaging −1.690 1.449 0.78 (0.73–0.83) 1.49 <0.001 0.727 0.73 (0.61–0.85) 1.62 <0.001 0.734

EFEMP1 E/e’ Protein Imaging −2.129 1.825 0.78 (0.72–0.83) 1.58 <0.001 0.732 0.71 (0.60–0.83) 1.52 0.001 0.718

CAPG TFF3 Protein Protein −2.179 1.868 0.78 (0.72–0.83) 1.45 <0.001 0.721 0.68 (0.57–0.79) 1.34 0.002 0.659

EFEMP1 FSTL3 Protein Protein −2.161 1.853 0.77 (0.72–0.83) 1.52 <0.001 0.734 0.74 (0.64–0.84) 1.47 <0.001 0.725

RSPO4 BNP Protein Biomarker −1.469 1.259 0.77 (0.72–0.83) 1.60 <0.001 0.723 0.77 (0.68–0.87) 1.70 <0.001 0.768

CAPG CST3 Protein Protein −1.539 1.320 0.77 (0.72–0.83) 1.46 <0.001 0.721 0.59 (0.47–0.71) 1.20 0.106 0.577

EFEMP1 GDF15 Protein Protein −1.981 1.698 0.77 (0.71–0.82) 1.57 <0.001 0.736 0.72 (0.61–0.83) 1.45 0.001 0.695

CAPG B2M Protein Protein −1.963 1.683 0.77 (0.71–0.82) 1.44 <0.001 0.720 0.61 (0.49–0.74) 1.27 0.029 0.595

TABLE 5 The hazard ratios (HR), C-index, continuous net reclassification index (cNRI) and the integrated discrimination index (IDI) of classification
probability scores from MACE and HF network signatures, adjusting for clinical variables and medication use at hospital discharge.

Hazard Ratio HR (95% CI) Harrel’s C-index (95% CI) cNRI# p-value IDI# p-value

Major adverse cardiovascular events (MACE)

CDCS
Unadjusted Model A† 1.09 (1.06–1.12) 0.60 (0.56–0.64) – –

Adjusted Model B‡ 1.10 (1.07–1.13) 0.50 (0.46–0.54) 0.013 0.37 0.002 0.10

Adjusted Model C§ 1.07 (1.04–1.10) 0.49 (0.46–0.53) 0.098 0.01 0.017 <0.01

IMMACULATE
Unadjusted Model A† 1.11 (1.03–1.20) 0.63 (0.54–0.71) – –

Adjusted Model B‡ 1.12 (1.03–1.21) 0.62 (0.53–0.70) 0.021 0.43 0.004 0.27

Adjusted Model C§§ 1.13 (1.04–1.22) 0.66 (0.57–0.74) 0.234 0.08 0.017 0.03

Incident heart failure (HF)

CDCS
Unadjusted Model A† 1.19 (1.14–1.24) 0.74 (0.69–0.79) – –

Adjusted Model B‡ 1.15 (1.10–1.21) 0.43 (0.37–0.48) 0.131 0.13 0.028 0.05

Adjusted Model C§ 1.12 (1.06–1.18) 0.55 (0.49–0.60) 0.22 0.02 0.043 <0.01

IMMACULATE
Unadjusted Model A† 1.12 (1.03–1.22) 0.70 (0.62–0.77) – –

Adjusted Model B‡ 1.12 (1.02–1.22) 0.69 (0.59–0.78) 0.073 0.50 0.006 0.23

Adjusted Model C§§ 1.11 (1.01–1.22) 0.73 (0.63–0.81) 0.394 0.06 0.115 <0.01

†Model is not adjusted for any other factors.
‡Model is adjusted for age, gender and BMI. For IMMACULATE, gender is omitted since all patients are male.
§Model is further adjusted for ST elevation status at admission, medical history of hypertension and use of beta-blockers, ACE inhibitor, aspirin, clopidogrel, calcium channel

antagonist, long-acting nitrate, diuretics, statin and warfarin at hospital discharge.
§§Model is further adjusted for ST elevation status at admission, medical history of hypertension and use of beta-blockers, ACE inhibitor and antagonist receptor blocker at

hospital discharge.
#cNRI and IDI are calculated based on 2-year survival and the unadjusted model A is used as the base model.
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prescribed during the treatment of the primary episode, which could

potentially confound the outcomes of interest and/or affect the

protein or lipid levels in the blood. In both our studies, all

patients were prescribed at least one type of medications at

hospital discharge for the treatment of the primary AMI and most

patients were on beta-blockers, aspirins and statins in both CDCS

and IMMACULATE study. Thus, it is difficult to truly evaluate if

the medication use to blood collection at baseline could potentially

mediate the outcomes or affect the molecular profile. To this end,

we investigated the medication use by the patients during hospital

admission and discharge in both cohorts.

We first identified the types of medications directly associated

with secondary MACE and HF. In CDCS, the use of beta-blockers,
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antiplatelet therapy (clopidogrel), calcium channel antagonists,

long-acting nitrates, diuretics, statins and warfarin at hospital

discharge were associated with both MACE and HF. Similarly,

the same medications, except clopidogrel, and two additional

medications (ACE inhibitors and aspirin use) at admission were

associated with both outcomes. In IMMACULATE, medication

information was collected for fewer drugs, but none were

associated with MACE or HF. This is likely due to the small

number of secondary outcomes and the resulting lack of

statistical power. Then, we fitted separate Cox PH models on

individual markers to obtain the unadjusted HR and HR

adjusted for the medication use at discharge. Supplementary

Figure S3 shows the scatter plot of the unadjusted and adjusted
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HR and data features that were part of the network signatures for

MACE and HF are colored as blue (protein), green (lipid), salmon

(clinical biomarker) and purple (echo imaging). The plots show

that the HRs before and after adjusting for medication use

remain unchanged and this observation suggests that the

associations we reported are unlikely to be altered by medication

use. The full statistical summary can be found in Supplementary

Table S10.

Overall, our study had several limitations. First, the

IMMACULATE cohort had a smaller size and fewer MACE and

HF events compared to the CDCS cohort, leading to borderline

statistical significance of several associations in the

IMMACULATE cohort. Second, the acute phase of AMI and

various interventions including pharmacotherapies and

revascularization may have confounded the association between

data features and events; we deliberately performed the proteomic

and lipidomic analysis using blood samples collected at the 30-day

post-MI timepoint instead of close to the time index AMI event in

order to reflect a more “steady-state” after initial treatment and

stabilization, yet we acknowledge that this sampling scheme may

have introduced bias from heterogeneous treatment courses of the

primary AMI events across the patients. Third, the number of

proteomic targets measured was larger than that of the lipid

targets by almost four-fold; this might partially explain the greater

prognostic signals from proteins than lipids in our study, in

addition to the effects from the medications with immediate

impact on circulating lipid levels. Fourth, higher resolution

imaging tools including cardiac magnetic resonance could have

contributed a much richer set of imaging features to the networks.

Last but not least, the proteomic assay platform could have

suffered from the potential cross-reactivity of the SOMAmer

reagents (e.g., across multiple member proteins of the same family

such as follistatin and fibulin) as cautioned by an increasing

number of publications (38–40).

These shortcomings notwithstanding, our work is to the best of

our knowledge the first network-based multivariate analysis of

large-scale cohorts of post-MI patients to explore the interplay

between gold-standard natriuretic peptides with

echocardiographic imaging variables and circulating plasma

proteins, lipids and acylcarnitine. With potential caveats in the

choice of sampling points and the proteomic assay in mind, our

analysis highlighted that there exist a plethora of under-

recognized data features that not only jointly modulate the risk

of post-MI HF but also open the potential for therapeutic

intervention through modulation of ECM. In this study we

highlighted two ECM proteins FSTL3 and EFEMP1, both

elevated in response to the primary AMI event. According to our

inference of tissue gene expression data, it is highly likely that

they are secreted from the myocardium and the microvasculature

and the aorta and they participate in key cell fate decisions and

damaged myocardial tissue repair during the response. Overall,

with the increasing throughput of proteomic assays and the

power of interpretable machine learning techniques, we are

confident that more promising cues for improved risk

stratification and therapeutic intervention can be discovered to

mitigate HF after AMI.
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