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1. Introduction

Despite the best available therapies, heart failure with reduced ejection fraction (HFrEF)

remains one of the leading causes of morbidity and mortality worldwide (1). Dilated

cardiomyopathy (DCM) is one of the leading cause of HFrEF (2). DCM is characterized

by progressive heart enlargement with a rEF that is caused by genetic, ischemic, and

other disorders (3). Neurohumoral imbalances of the sympathetic nervous system, renin-

angiotensin-aldosterone systems (RAAS) and the natriuretic peptide system, are associated

with maladaptive cardiac remodeling in HFrEF (4–8). Corin, a cardiac type II

transmembrane protease, activates pro-atrial natriuretic peptide (pro-ANP) to biologically

active ANP by proteolytic cleavage during pro-ANP secretion from cardiomyocytes

(9–12). Through production of biologically active ANP, corin appears to slow the

progression of DCM to HFrEF and death, which makes it an attractive therapeutic target

in HF management (13–23). Reduced levels of circulating and cardiac corin in patients

with symptomatic HFrEF were reported in numerous studies (14, 15, 24–31). The

biologically active corin-ANP axis blocked the development of systolic/diastolic

dysfunction, low cardiac output, pulmonary and/or systemic fluid retention (edema),

dyspnea and elevated blood HF biomarkers (ANP and B-type natriuretic peptide, BNP)

(15–18, 23, 30, 31). Pre-clinical studies revealed that the biologically active corin-ANP

axis also reduces the development of chronic adverse fibrotic ventricular remodeling

(cardiac fibrosis, diffuse accumulation of collagen I/III fibers) (17, 19, 20, 22). Although

the protective role of pro-fibrotic angiotensin II (Ang II)-AT1 axis blockage in reverse

remodeling in HFrEF is widely accepted, the therapeutic potential of the corin-ANP axis

in preventing fibrosis, are less appreciated. Herein, we present and discuss pre-clinical and

clinical evidence supporting the targeted restoration of biological activity of the corin-

ANP axis as a valuable anti-fibrotic therapeutic strategy in DCM-HFrEF.
2. Role of corin-ANP-cGMP pathway under
physiological conditions

Under physiological conditions, corin is expressed by atrial and ventricular

cardiomyocytes on the external membrane surface as a zymogen and proteolytically active

enzyme (9, 10, 17, 21). In atrial cardiomyocytes, corin is co-expressed with its biological

substrate pro-ANP- (10, 32). Upon secretion, pro-ANP is proteolytically cleaved by corin

and released into circulation as biologically active ANP (11, 12). Circulating biologically

active ANP acts locally in the heart and remotely in the kidneys and vasculature by
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preferentially stimulating the transmembrane natriuretic peptide-A

receptor, which generates the intracellular cyclic guanosine

monophosphate (cGMP) and stimulates protein kinase G-driven

signaling pathways (33, 34). Remotely, the ANP-cGMP axis triggers

natriuresis and vasodilation and inhibits renal renin secretion; this

decreases cardiac volume overload, aldosterone synthesis and Ang II

production in the circulation (11, 35–37). In the heart, the ANP-

cGMP pathway counters hypertrophy and fibrosis through

autocrine/paracrine regulatory mechanisms leading to inhibition of

fibroblast-mediated collagen synthesis (33, 38, 39). Specifically, by

stimulation of cGMP production and protein kinase G activation,

biologically active ANP may transmit extracellular signals and

modulate downstream effector molecules into the same

cardiomyocytes it was secreted from (an autocrine mechanism) or

on neighboring cardiac myocyte and fibroblast cells (a paracrine

mechanism) (33, 39).
3. Impairment of corin-ANP-cGMP
pathway in symptomatic HFrEF

Dysregulation of ANP-cGMP axis by blunted corin has been

shown to contribute to systolic dysfunction, maladaptive cardiac

remodeling and edema, leading to HFrEF development (15–19,
FIGURE 1

Schematic representation of the pathological shift of the cardiac corin-atrial na
—aldosterone] axis in dilated cardiomyopathy, which promotes cardiac fibros
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21, 22, 30, 40, 41). In DCM, the balance between cardiac anti-

fibrotic/pro-fibrotic processes are under control of hemodynamic

and humoral modulators such as corin-ANP-cGMP axis and the

RAAS. The dysregulation of this balance, its pathological shift

and contribution to HFrEF development in DCM are

schematically illustrated in Figure 1 and described below.

In DCM at pre-HF stage, RAAS plays an adaptive protective role

compensating for impaired cardiac function and structural changes

by stimulating sodium-water retention by the kidney and

increasing arterial vasoconstriction. However, prolonged, persistent

RAAS activation stimulates DCM progression (4–6, 8, 40, 42–44).

In DCM at pre-HF stage, the corin-ANP-cGMP axis, when

biologically functional, counters the outcomes of the pathologically

activated systemic and cardiac classical RAAS by maintaining

cardio-renal homeostasis promoting diuresis, natriuresis, and

vasodilation and anti-fibrotic action (4, 6, 40, 45, 46). However, as

DCM progress in human and mice, cardiac corin expression and

activity are reduced leading to impairment of biological activity of

the corin-ANP-cGMP axis (21, 30). Declines in corin levels

indicate systolic dysfunction as it happened even before the

increases in plasma ANP and BNP levels and the onset of edema

(21, 23, 26, 30), which is a major hallmark of HF and a key driver

of symptoms (3, 47). Consequently, as the natriuretic peptide

system is impaired and becomes insufficient to properly balance
triuretic peptide (ANP) axis and classical RAAS [renin-angiotensin II (Ang II)
is, edema and accelerates HFrEF progression.

frontiersin.org

https://doi.org/10.3389/fcvm.2023.1120487
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Gladysheva et al. 10.3389/fcvm.2023.1120487
RAAS activity, pathologically active RAAS further promotes cardiac

dilation, fibrotic ventricular remodeling, salt-water retention

(edema), and HFrEF development in humans and pre-clinical

models (4, 6, 40, 42, 44, 46, 48, 49). Although HFrEF (stages C-D)

is associated with a boost of pro-ANP expression by the ventricle’s

cardiomyocytes (21, 37), pro-ANP cleavage and production of

biologically active ANP are compromised as the level of corin is

significantly reduced (21).

As DCM progresses to HFrEF (stages C-D), renin is over-

secreted by the kidneys into circulation. It triggers Ang II

activation pathways (systemic and locally within the heart),

cardiac Ang II-independent signaling and stimulates aldosterone

secretion from the adrenal glands, which fosters fibrotic

remodeling (6, 40, 43, 49, 50). Systemic (circulating) Ang II and

aldosterone play an important role in cardiac fibrosis

development, as increased local production of Ang II in the heart

is not enough to induce ventricular hypertrophy or fibrosis (51).

Converging evidence from human and pre-clinical mouse

studies indicate that, as DCM progresses to HF Stages C and D,

the protective action of the corin-ANP-cGMP axis is impaired as

the coordinated relationship between cardiac pro-ANP expression

and enzymes responsible for pro-ANP activation (corin) and

ANP degradation (neprilysin) become imbalanced. In particular,

levels of the ANP degrading enzyme neprilysin begin to rise (30,

34) while levels of ANP activating enzyme corin fall (14, 15–17,

19, 21– 23, 25, 28, 30, 31). Consequently, the blunted ANP

homeostasis contributes to the relative cGMP deficiency in HFrEF.

HFrEF is characterized by elevated pro-ANP expression, which is

due to increased expression by the atria and reprogramming of

cardiac left ventricular gene expression with induction of pro-ANP.

However, levels of cardiac and circulating corin significantly decline

in patients and preclinical models with DCM and HFrEF (15, 17, 19,

21, 25, 28, 30, 31, 41). In patients with HFrEF, decreases in circulating

corin lead to impaired cleavage/activation of pro-ANP and

dysregulated relationships between pro-ANP, ANP and cGMP levels

(15, 30). At the same time, neprilysin levels progressively increase

with severity of clinical HF assessed by Framingham criteria and are

negatively correlated with corin levels (23, 30). In a pre-clinical DCM-

HFrEF model, restoration of suppressed cardiac corin was associated

with normalization of circulating neprilysin and suppression of renin

activity and aldosterone in circulation (41). Low plasma corin was

associated with poor HF-related clinical outcomes: lower NYHA

functional status (increased functional class), increased cardiovascular

mortality and major adverse cardiac events. Depressed cardiac and

plasma corin reflects the progression of systolic dysfunction (severity

of cardiomyopathy), left ventricular remodeling and fibrosis; it

promoted the development of symptomatic HFrEF (17, 21, 30).
4. Restoration of corin-ANP-cGMP
biological activity protects against
cardiac fibrosis and HFrEF
development

In experimental DCM, ANP was a critical protective modulator

of aldosterone-Ang II-induced interstitial/perivascular fibrosis in
Frontiers in Cardiovascular Medicine 03
the left atrium and ventricle (38). ANP also protected against

systolic dysfunction, symptomatic HF, and survival in mice with

normal renal function (38). Cardiac pro-ANP deficiency in mice

with DCM was associated with significant reduction of cGMP

levels in circulation. In these mice, cardiac pro-ANP deficiency

was not compensated by cardiac expression of pro-BNP, but was

associated with a decline in cardiac transcripts for pro-C-type

NP (38), a potent anti-fibrotic modulator that inhibits cardiac

fibroblast proliferation and collagen synthesis (34, 38). Consistent

with these findings, the survival benefits of neprilysin inhibitors

within ARNI therapy (combined Ang II receptor, AT1 and

neprilysin inhibitors sacubitril/valsartan) have been attributed in

part to its effect on blunting cardiac ventricular remodeling and

fibrosis (a risk factor for sudden cardiac death), by preserving

biologically active levels of ANP. Thus, ANP circulating levels

were elevated after treatment with ARNI therapy, the difference

in BNP levels was inconsistent, NT-pro-BNP levels decreased

and CNP levels were not affected by treatment (34, 52–54).

Increases in ANP plasma levels in patients with ARNI therapy

for chronic HFrEF were associated with increased urinary cGMP

levels (55). Another study demonstrated that in patients with

acute decompensated HFrEF, ARNI therapy was associated with

higher urinary cGMP levels (56). However, in both these studies

(55, 56), corin levels were not analyzed.

Similar to ANP, genetic restoration of both proteolytically

active or inactive cardiac corin in mice with DCM improved

systolic function, delayed symptomatic HFrEF progression and

prolonged survival (17, 18, 41). However, only proteolytically

active (ANP-cleaving) cardiac corin has protective anti-fibrotic

action (17, 41). Cardiac restoration of proteolytically active corin

led to a significant reduction in cardiac collagen I/III transcripts

and a trend towards reduction of TGFβ transcripts, and overall

suppression of interstitial and perivascular ventricular fibrosis

(17). Restoration of cardiac corin significantly increased pro-ANP

cleavage to ANP and cGMP production, both of which are

potent inhibitors of cardiac fibroblast proliferation and collagen

synthesis (17). Cardiac-specific overexpression of proteolytically

active corin reduced myocardial infarct size 24 h post-

experimental myocardial infarction (MI) induced by left coronary

artery ligation in mice. Corin overexpression prevented these

mice from development of severe systolic dysfunction, cardiac

remodeling and edema 4 weeks post-MI (57). However, this

study did not assess the impact of cardiac corin overexpression

on the pro-ANP-cGMP axis and cardiac fibrosis. In mouse HF

models induced by left coronary artery ligation and transverse

aortic constriction, intraperitoneal injection of a recombinant

extracellular fragment of human corin with an engineered

activation site lowered Ang II and aldosterone plasma levels,

boosted cGMP levels, improved cardiac function and attenuated

cardiac remodeling and fibrosis (22). The analysis of pro-ANP

metabolism in the plasma of patients with stable chronic HFrEF,

indicated that ARNI therapy increased pro-ANP cleavage, which

was linked to an increase in corin activity (58).

Considering the above knowledge, we hypothesize that

enhancing cardiac corin expression by ARNI therapy might

contribute to improved cardiac remodeling in HFrEF. Thus,
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ARNI therapy could provide beneficial antifibrotic outcomes by

suppressing the profibrotic action of angiotensin II and boosting

antifibrotic ANP activity. Increased ANP activity may be

achieved not only through reduced degradation of biologically

active ANP by neprilysin, but also through a feedback

mechanism of improved systolic function stimulating cardiac

corin expression, which in turn improves pro-ANP cleavage and

increases biologically active ANP levels. It is worth testing the

hypothesis that in HFrEF patients, ARNI therapy is associated

with increased corin levels in circulation and cardiac left

ventricle and reduced impairment of pro-ANP cleavage, which

contribute to reverse cardiac remodeling.
5. Conclusions and translational value

Available experimental and clinical evidence suggests that in

DCM, dysregulation of the biological effects of ANP, at least in part

by insufficient corin expression and/or activity, promotes cardiac

fibrosis associated with relative cGMP deficiency and contributes to

the progression of systolic dysfunction and symptomatic HFrEF.

These insights may suggest a new therapeutic paradigm to prevent

DCM from becoming a relentless, progressive and fatal form of

HFrEF. Preserving or boosting the biological activity of the corin-

ANP-cGMP axis by corin targeted interventions may offer

potential therapeutic strategies for preventing or blocking

progressive cardiac fibrosis in DCM-HFrEF.
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