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Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling and

associated with adverse outcomes. In patients with PH, plasma aldosterone levels

are elevated, suggesting that aldosterone and its receptor, the mineralocorticoid

receptor (MR), play an important role in the pathophysiology of PH. The MR plays a

crucial role in adverse cardiac remodeling in left heart failure. A series of experimental

studies from the past few years indicate that MR activation promotes adverse cellular

processes that lead to pulmonary vascular remodeling, including endothelial cell

apoptosis, smooth muscle cell (SMC) proliferation, pulmonary vascular fibrosis, and

inflammation. Accordingly, in vivo studies have demonstrated that pharmacological

inhibition or cell-specific deletion of the MR can prevent disease progression

and partially reverse established PH phenotypes. In this review, we summarize

recent advances in MR signaling in pulmonary vascular remodeling based on

preclinical research and discuss the potential, but also the challenges, in bringing

MR antagonists (MRAs) into clinical application.

KEYWORDS

pulmonary hypertension, aldosterone, finerenone, spironolactone, mineralocorticoid
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Introduction

Pulmonary hypertension (PH) is characterized by increased muscularization and thickening
of the small pulmonary arteries (PAs), resulting in progressive elevation of pulmonary vascular
resistance (PVR) and PA pressure (PAP) (1). With disease progression, increased right
ventricular (RV) afterload leads to RV dysfunction and failure, resulting in markedly reduced
functional capacity, quality of life, and life expectancy (2). PH is defined as a mean PAP
(mPAP) of more than or equal to 20 mmHg and PVR ≥ 3 Wood Units (WU) for pre-capillary
forms of PH, measured by right heart catheterization (3–5). PH combines heterogeneous
pulmonary vascular conditions, classified into five groups as follows: Group 1—pulmonary
arterial hypertension (PAH), including idiopathic, heritable, and drug/toxin-induced PH; Group
2—PH due to left heart disease; Group 3—PH due to lung disease and/or chronic hypoxia;
Group 4—PH due to chronic thromboembolism; and Group 5—PH with unclear multi-
factorial mechanisms.

The pathobiology of pulmonary vascular remodeling is characterized by PA endothelial
cell (PAEC) dysfunction and apoptosis with the subsequent reactive proliferation of PA
smooth muscle cells (PASMCs), increased extracellular matrix (ECM) deposition, and
inflammatory/immune cell infiltration of the pulmonary vascular wall (1). Despite several
decades of research in this field, disease development and progression mechanisms remain
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incompletely defined (6). Alterations of several signaling pathways
have been shown to participate in the pathogenesis of pulmonary
vascular remodeling. This has led to the development and approval
of therapies that primarily target calcium channels, prostaglandin
receptors, endothelin receptors (ETs), phosphodiesterases, and
soluble guanylate cyclase in PAH (5). However, these therapies
provide only partial improvements in hemodynamics and outcome
for PAH patients suggesting there are additional dysregulated
signaling pathways contributing to the disease pathogenesis. In
addition, available therapies are largely restricted to Group 1 PH
patients (5) (except for riociguat in CTEPH) but not efficient or even
detrimental in patients with other PH classes.

Therefore, a number of preclinical and early clinical trials have
been conducted in order to test the ability of pharmacological agents
targeting other signaling pathways to improve the pathophysiology of
PH and patient outcomes (7). Among others, augmented activation
of the mineralocorticoid receptor (MR), an aldosterone receptor
belonging to the nuclear transcription receptor superfamily, has
emerged as one of the underlying mechanisms driving disease
development and progression in PH (8). Aldosterone is a critical
effector hormone of the renin-angiotensin-aldosterone system
(RAAS), which plays an important role in the regulation of
normal cardiovascular homeostasis and the pathogenesis of diverse
cardiovascular diseases. Activation of MR in cardiomyocytes,
endothelial cells, vascular SMCs, or myeloid cells induces
inflammation and adverse remodeling of the heart and the vascular
system (9, 10). MR antagonists (MRAs) such as spironolactone and
eplerenone are considered standard in left heart failure management
and associated with significantly improved outcomes (10).

During the past decade, a series of experimental studies
investigated the role of aldosterone and MR in pulmonary vascular
remodeling and a potential benefit of MRAs for PH patients.
In this review, we discuss mechanisms of MR signaling in
pulmonary vascular cells with a focus on recent findings from
genetically engineered animal models. We compare the impact
of pharmacological MR blockade in different PH animal models
and the association of aldosterone with PH patients’ phenotypes
and outcomes. Lastly, we discuss the translational potential of
MRAs toward clinical application in PH, as well as new research
initiatives that may lead to a better understanding of MR in PH and
further developments.

Mechanisms of aldosterone and
mineralocorticoid receptor signaling

The mineralocorticoid aldosterone is primarily synthesized in
adrenocortical cells of the zona glomerulosa of the adrenal cortex and
functions as one of the effector hormones in the RAAS. The classical
role of aldosterone is to control salt and water balance via binding to
the MR in kidney epithelial cells, however, MR is widely expressed in
extrarenal tissues (11).

The MR belongs to the family of nuclear receptors of ligand-
dependent transcription factors (12). Unbound MR is together
with its chaperone proteins located in the cytosol. Ligand binding
induces a conformational change of the MR, dissociation from the
chaperone proteins, dimerization, and translocation into the nucleus
to induce the expression of target genes (13). Besides aldosterone,
cortisol acts as a ligand at the MR with similar degree of affinity

as aldosterone (11). Given the high concentration of cortisol in
tissues and circulation, aldosterone binding to the MR requires
the expression of 11β-hydroxysteroid dehydrogenase 2 (HSD11B2),
which inactivates cortisol into cortisone, which has low affinity for the
MR (11, 14). In addition to regulating gene expression, MR also can
promote non-genomic effects by modulating several other signaling
pathways, including different membrane receptors (13).

Pharmacology of the mineralocorticoid
receptor

Mineralocorticoid receptor antagonists comprise a group of
pharmacological agents that antagonize the action of aldosterone at
the MR. Several MRAs including spironolactone, eplerenone, and
finerenone have been studied for their effects in the experimental
models of PH (Tables 1, 2). Despite the similar mechanisms of
action of those agents, they may substantially differ between each
other in term of their pharmacological properties, which may
eventually account for the variability of the observed effects in
humans and animal models. For example, spironolactone exhibits
binding affinity not only to the MR but also to androgen and
progesterone receptors, causing undesirable effects such as painful
gynecomastia (15). This was improved with eplerenone, showing an
improved selectivity for MR and less side effects due to unspecific
binding to androgen and progesterone receptors compared to
spironolactone (15). In addition, eplerenone exhibits lower plasma
protein binding and has a shorter plasma half-life compared with
spironolactone (16). Both, spironolactone and eplerenone are based
on a steroidal backbone. More recently, non-steroidal MRAs such as
finerenone or esaxerenone have been developed, which have specific
pharmacological features that are distinct from steroidal MRAs. So
far, finerenone has been tested in experimental PH. Finerenone is
a dihydronaphthyridine-based compound with high selectivity for
the MR over all other steroid hormone receptors and high binding
affinity (17). Finerenone is excreted to a minor degree (<1%) by
the kidney, has a short plasma half-life (2–3 h), also in patients
with renal failure, and no active metabolites have been identified
(18). These pharmacological features of finerenone may contribute
to a significantly smaller increases in serum potassium levels and
lower incidences of hyperkalemia compared to the steroidal MRA
spironolactone (19). Collectively, the pharmacological characteristics
of the MRAs outlined above should be carefully considered when
interpreting and comparing the observed effects and side effects
of these drugs. The pharmacological characteristics of the different
MRAs outlined above should be taken into account when evaluating
the potential utility of these compounds in preclinical and clinical
studies of PH.

Effects of aldosterone and MR
activation on the course and severity
of PH

Patients with PH with no evidence of left heart dysfunction
display elevated aldosterone levels, which are associated with
a wide range of clinical and hemodynamic indices (20, 21)
(Figure 1). For example, in patients with PAH aldosterone levels
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TABLE 1 Summary of studies evaluating the preventive application of mineralocorticoid receptor antagonists (MRAs) in rodent models of pulmonary
hypertension (PH).

Agent PH model Agent
details

Pulmonary
hemodynamics

Vascular
remodeling

(histo)

RV
remodeling

(echo)

RV
remodeling

(ex-vivo,
histo)

RV
function
(echo)

References

Invasive Non-
invasive

Spironolactone Monocrotaline
rats (3 weeks)

40 mg/kg/day
(implanted

pellet) (3 weeks)

↓ RVSP NA ↓ PA
muscularization

NA ↔ RV/(LV+S),
↓ RV myocyte,
↔ RV fibrosis

NA (44)

Spironolactone Monocrotaline
rats (3 weeks)

25 mg/kg/day
(drinking water)

(3 weeks)

↓ PASP NA ↓ PA
muscularization,
↓ Vessel wall

thickness

NA ↓ RV/(LV+S) NA (46)

Spironolactone Monocrotaline
rats (25 days)

25 mg/kg/day
(drinking water)

(25 days)

↓ PASP ↓ PAAT ↓ PA
muscularization,
↓ PA fibrosis

↓ RVWT NA NA (27)

Spironolactone Hypoxia-
sugen mice
(4 weeks)

15 mg/kg/day
(implanted

pellet)

↓ RVSP NA ↓ PA
muscularization

NA ↔ RV/(LV+S),
↓ RV myocyte, ↓

RV fibrosis

NA (47)

Spironolactone Hypoxia mice
(5 weeks)

15 mg/kg/day
(implanted

pellet) (5 weeks)

↓ RVSP NA ↓ PA
muscularization

NA ↔ RV/(LV+S),
↓ RV fibrosis,↔

RV myocyte

NA (44)

Eplerenone Hypoxia mice
(6 weeks)

200 mg/kg/d
(chow) (5 weeks)

NA ↑

PAAT/PAET
↓ PA vessel
thickness

↓ RVID/LVID ↓ RV myocyte ↑ TAPSE (52)

Eplerenone Hypoxia-
sugen mice
(3 weeks)

200 mg/kg/d
(chow) (3 weeks)

↓ RVSP NA ↓ PA
muscularization,
↓ Vessel wall

thickness

NA ↓ RV/BW NA (51)

Spironolactone Monocrotaline
rats (25 days)

25 mg/kg/day
(drinking water)

(25 days)

NA NA ↓ PA wall
thickness

NA NA NA (54)

RVSP, right ventricular systolic pressure; mPAP, mean pulmonary artery pressure; PSAP, pulmonary artery systolic pressure; BW, body weight; RV, right ventricle; LV, left ventricle; S, septum;
PA, pulmonary artery; TAPSE, tricuspid annular plane systolic excursion; RVWT, right ventricular wall thickness; RVID, right ventricular diameter at end-diastole; LVID, left ventricular internal
diameter; NA, not applicable.↔, Measured parameter in the treatment did not change significantly compared to placebo group; ↑, measured parameter in the treatment significantly increased
compared to placebo group; ↓, measured parameter in the treatment significantly decreased compared to placebo group.

showed positive correlations with PVR, mPAP, transpulmonary
pressure gradient, and WHO functional class (22, 23) but negative
correlations with cardiac output (CO) (22). Furthermore, aldosterone
level in PAH patients may differ depending on the underlying
etiology. For example, in contrast to idiopathic PAH (IPAH)
patients, circulating aldosterone levels are not increased in PAH
patients associated with connective tissue diseases (PAH-CTD) (23).
Taken together, these studies indicate that circulating aldosterone
levels are increased in Group 1 PH and its increase may be
associated with adverse functional and hemodynamic alterations.
Available data suggest that both, adrenal and extra-adrenal sources
may contribute to overall circulating levels of aldosterone in
PAH. For example, in PH due to heart failure with preserved
ejection fraction (HFpEF), transpulmonary aldosterone levels are
increased indicating that pulmonary synthesis of aldosterone (24).
In more advanced disease conditions, altered hemodynamics may
contribute to an exaggerated increase of circulating aldosterone.
For example, decompensated stage of PH with pronounced
RV failure may lead to the release of renin secondary to
chronically reduced kidney perfusion resulting in chronically
activated RAAS (25).

Local and systemic aldosterone
synthesis in pulmonary hypertension

The contribution of local aldosterone production in lung tissue
during PH has been assessed in experimental models. In hypoxia-
sugen rat (26) and monocrotaline rat (27) models, PH development
is associated with not only increased circulating aldosterone but also
lung tissue aldosterone content. Two rate-limiting enzymes catalyze
the formation of aldosterone from cholesterol: steroidogenic acute
regulatory protein (StAR), which transports cholesterol to the inner
mitochondrial membrane, and aldosterone synthase (CYP11B2),
which converts 11-deoxycorticosterone into aldosterone. In addition,
aldosterone in PAECs may also be synthesized from other metabolic
intermediates such as pregnenolone, rather than from cholesterol
(28), which can explain the differences in the expression profiles of
enzymes responsible for aldosterone synthesis in PAECs compared
to cells of the adrenal cortex (28). In vitro studies have shown
that stimulation of PAECs with ET-1 induces the binding of the
steroidogenic transcription factors such as steroidogenic factor-1
(SF-1) and peroxisome proliferator-activated receptor-γ coactivator-
1α (PGC-1α) to the CYP11B2 promoter, leading to CYP11B2
expression and aldosterone synthesis (27). Similarly, hypoxia also
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TABLE 2 Summary of studies evaluating the therapeutic application of mineralocorticoid receptor antagonists (MRAs) in rodent models of pulmonary
hypertension (PH).

Agent PH model Agent
details

Pulmonary
hemodynamics

Vascular
remodeling

(histo)

RV
remodeling

(echo)

RV
remodeling

(ex-vivo,
histo)

RV
function
(echo)

References

Invasive Non-
invasive

Spironolactone Monocrotaline
rats (25 days)

25 mg/kg/day
(drinking water)

(10 days)

↓ RVSP NA NA NA NA NA (27)

Spironolactone Monocrotaline
rats (5 weeks)

40 mg/kg/day
(implanted

pellet) (2 weeks)

↓ RVSP NA ↓ PA
muscularization

NA ↔ RV/(LV+S),
↓ RV myocyte,
↔ RV fibrosis

NA (44)

Spironolactone Hypoxia-
sugen rats
(6 weeks)

25 mg/kg/day
(drinking water)

(4 weeks)

↓ PASP NA NA NA ↓ RV/LV NA (26)

Spironolactone Hypoxia-
sugen rats
(6 weeks)

25 mg/kg/day
(drinking water)

(3 weeks)

↓ PASP NA NA NA ↓ RV/(LV+S) NA (46)

Spironolactone Hypoxia-
sugen rats
(10 weeks)

40 mg/kg/day
(chow) (5 weeks)

↔ RVSP NA ↔ PA wall
thickness

↔ LV ECI
(MRI),↔

RVEDV/LVEDV
(MRI)

↔ RV fibrosis ↔ RV EF
(MRI)

(53)

Eplerenone Hypoxia-
sugen rats
(10 weeks)

100 mg/kg/day
(chow) (5 weeks)

↔ RVSP NA ↔ PA wall
thickness

↓ LV ECI (MRI),
↓

RVEDV/LVEDV
(MRI)

↔ RV fibrosis ↔ RV EF
(MRI)

(53)

Eplerenone Pulmonary
artery banding
mice (3 weeks)

200 mg/kg/d
(chow) (3 weeks)

↔ RVSP NA NA ↔ RVID ↔ RV/BW,↔
RV fibrosis,↔

RV
cardiomyocyte

↔ TAPSE (51)

Finerenone Monocrotaline
rats (4 weeks)

1 mg/kg/day
(per os)

(2 weeks)

↓mPAP ↑

PAAT/PAET
↓ PA

muscularization,
↓ PA wall
thickness

NA ↓ RV/(LV+S), ↓
RV fibrosis

NA (43)

Finerenone Hypoxia-
sugen rats
(8 weeks)

1 mg/kg/day
(per os)

(3 weeks)

↓mPAP ↑

PAAT/PAET
↓ PA

muscularization,
↓ PA wall
thickness

NA ↓ RV/(LV+S), ↓
RV fibrosis

NA (43)

RVSP, right ventricular systolic pressure; mPAP, mean pulmonary artery pressure; PSAP, pulmonary artery systolic pressure; BW, body weight; RV, right ventricle; LV, left ventricle; S, septum;
PA, pulmonary artery; TAPSE, tricuspid annular plane systolic excursion; RVWT, right ventricular wall thickness; RVID, right ventricular diameter at end-diastole; LVID, left ventricular internal
diameter; NA, not applicable.↔, Measured parameter in the treatment did not change significantly compared to placebo group; ↑, measured parameter in the treatment significantly increased
compared to placebo group; ↓, measured parameter in the treatment significantly decreased compared to placebo group.

promotes PAEC aldosterone synthesis by increasing StAR expression
via hypoxia-induced c-Fos/c-Jun binding to the StAR promoter
(26). Moreover, angiotensin-II (Ang-II) also has been shown to
induce aldosterone synthesis in PAECs (27). Cumulatively, these
studies indicate that various factors, including ET-1, Ang-II, and
hypoxia, which have been known to modulate pulmonary vascular
remodeling, may also directly stimulate de novo aldosterone synthesis
in the pulmonary vasculature.

Aldosterone–MR signaling in
pulmonary vascular cells

Mineralocorticoid receptor is expressed in PAECs and PASMCs
and MR activation induces various cellular processes that contribute
to pulmonary vascular remodeling in PH: in healthy PAECs,

nitric oxide (NO) is produced by endothelial nitric oxide synthase
(eNOS) and diffuses to the underlying PASMCs, where it promotes
pulmonary vascular dilation (29). In addition, NO also acts
locally on PAECs to prevent inflammation and thrombosis. In
PH, this system becomes dysregulated and is considered a key
driver of pulmonary vascular remodeling (30). MR activation
by aldosterone as observed in PH disturbs NO signaling by
promoting reactive oxygen species (ROS) production in pulmonary
vascular cells. Aldosterone activates NADPH oxidase 4 in PAECs
to generate excessive ROS (31, 32), which in turn leads to
NEDD9 oxidation, disabling its association with SMAD3, and
resulting in NEDD9 nuclear translocation (31). In the nucleus
of PAECs, NEDD9 together with NKX2 activates the COL3A1
gene promoter (31). In addition, aldosterone-mediated expression
of profibrotic factors including connective tissue growth factor
(CTGF), collagen 1, matrix metalloprotease 2 (MMP2), and
MMP9 in PAECs (26, 31) has been shown, which is considered
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FIGURE 1

Clinical implications of increased aldosterone levels in pulmonary hypertension (PH). In available studies, aldosterone levels have been measured mostly
in Group 1 PH also referred to as pulmonary arterial hypertension (PAH), while in other forms of PH, circulating levels of aldosterone remained neglected.
The results of those studies revealed that aldosterone levels are increased in PAH patients compared to healthy controls. In addition, there are
differences in PAH subtypes regarding aldosterone levels. For example, compared to idiopathic PAH (IPAH), circulating aldosterone levels are not
increased in PAH patients due to connective tissue diseases (CTD-PAH). Moreover, in PAH patients, aldosterone levels are increased along with
worsening the disease severity. Furthermore, aldosterone levels are correlated with several hemodynamic and functional parameters like mean PA
pressure (mPAP), pulmonary vascular resistance (PVR), transpulmonary pressure gradient (TPPG), cardiac output (CO), right atrial pressure (RAP), and
decreased maximal oxygen uptake (pVO2).

to ultimately result in excessive collagen deposition in the
pulmonary vasculature.

Hydrogen peroxide (H2O2) generation in PAECs due to
aldosterone-mediated NADPH oxidase-4–activity induces a sulfenic
post-translational modification of the ET type-B (ET-B), resulting
in the blockade of ET-B signaling pathway and impaired NO
synthesis and bioavailability in the pulmonary vasculature (27).
It is interesting to note that in the systemic vasculature, MR
signaling also plays a role in promoting ROS formation and
dampening NO signaling that is EC-specific. MR deletion in ECs
prevents the aldosterone-induced increase in superoxide (O2

−)
production (33) and results in enhanced eNOS activity and improved
endothelial function (34). Consequently, MR-mediated decrease in
NO bioavailability within the pulmonary vasculature results in
PASMC contractility, proliferation, and ECM synthesis (27), which
are the main characteristics of the pathobiology of PH. Taken

together, impaired NO signaling and excessive ROS formation in PH
is considered one of the pathological mechanisms underlying PH
development in response to excessive aldosterone.

Activated aldosterone-MR signaling has been shown to promote
PAEC senescence and inhibit cell proliferation by down-regulating
SIRT1 with consequent p53 and p21 up-regulation (35). Excessive
EC apoptosis and pulmonary vascular remodeling due to secretin
deficiency are at least partially mediated by aldosterone-mediated
down-regulation of vascular endothelial growth factor (VEGF) (36).
MR activation is a well-known driver of vascular inflammation
(37, 38) and this seems to apply to the pulmonary vasculature
as well. In PAECs, MR promotes leukocyte adhesion to ECs
via up-regulating intercellular adhesion molecule-1 (ICAM-1)
expression (39). Similarly, aldosterone-MR signaling also facilitates
tumor necrosis factor alpha (TNFα)-induced proinflammatory gene
expression in PAECs, which can be effectively prevented by the
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application of spironolactone (40). In addition, aldosterone may
promote pulmonary vascular remodeling by inducing endothelial-
to-mesenchymal transition (EndoMT), as it has been demonstrated
that MR activation promotes cardiac and renal fibrosis via activating
EndoMT (41), which is also involved in the pathogenesis of PH (42).
However, the direct effects of aldosterone mediated EndoMT in the
pathogenesis of PH has not been studied and should be investigated in
the future. Finally, MR may interfere with VEGF signaling in PAECs,
however, this remains to be confirmed. Taken together, MR signaling
activation in PAECs alters diverse cellular processes including NO
signaling, ROS formation, cellular apoptosis, ECM synthesis, and
inflammation which in crosstalk with PASMCs, fibroblasts, and
immune cells promotes pulmonary vascular remodeling and PH
development (Figure 2).

Beside indirect signaling via MR in PAECs, it has been shown
that MR activation in PASMCs is involved in PH progression.
A recent study has provided direct experimental evidence that MR
is overexpressed in PASMCs of the remodeled PAs in patients
with PAH as well as in monocrotaline and hypoxia-sugen rats
with established PH (43). In vitro, aldosterone activates MR in
PASMCs in a dose-dependent manner without affecting its expression
level (44). The main effect of activated aldosterone-MR signaling
in PASMCs is an augmented cell proliferation (44, 45), which
can be prevented by MRAs (44, 45) or MR-directed siRNAs
(43). Aldosterone has been shown to modulate various cellular
signaling pathways in PASMCs to promote cell proliferation and
survival (44). For example, in PASMC, aldosterone activates the Akt
signaling pathway, which in turn induces mTOR signaling pathway
activation resulting in cell survival and proliferation (46). In addition,
aldosterone has been shown to promote PASMC proliferation
via the ERK signaling pathway because of BMP2/7-mediated MR
up-regulation (45). Similarly, aldosterone also promotes PASMC
viability via up-regulating aquaporin and b-catenin (35). Moreover,
aldosterone prevents oxidative stress-induced PASMC apoptosis (35).
In addition to increased cell proliferation, aldosterone also promotes
the profibrotic phenotype of PASMCs. For example, hypoxia-exposed
PAECs promote CTGF up-regulation in PASMCs via aldosterone-
mediated mechanisms (26). As outlined above, aldosterone-induced
NEDD9 up-regulation in PAECs can cause exosome-mediated
NEDD9 activation in PASMCs and collagen three up-regulation (31).
MR activation in PASMC is also responsible for the perivascular
inflammation in PH (47), likely through the production of a paracrine
factor that enhances monocyte chemotaxis (48). Pharmacological
MR blockade exerts protective effects against pulmonary vascular
remodeling with decreased PASMC proliferation and reduced
inflammatory cell infiltration (43). Likewise, a lower degree of
perivascular lung inflammation in response to hypoxia-sugen was
observed in mice with SMC-specific deletion of MR compared to
wild type (47). In addition, aldosterone may exert adverse effects
on PASMCs by promoting cell senescence as aldosterone has been
shown as one the strong pro-senescent factors in the pathogenesis
of cardiovascular diseases (49), which also play a crucial role in
the pathobiology of PH (50). However, the evidence directly linking
aldosterone signaling with cellular senescence in the development
of PH is still lacking and should focus of the future investigation.
Taken together, the pathologic effects of aldosterone-MR signaling
in PASMCs are mainly driven due to their effects to promote cell
proliferation, apoptosis resistance, ECM synthesis, and perivascular
inflammation (Figure 2).

Pharmacological targeting of MR in
PH animal models

Several studies have been conducted to evaluate the potential
benefits of MRAs to prevent or reverse pulmonary vascular
remodeling in animal models of PH. Those experimental studies have
employed MRAs spironolactone, eplerenone, or finerenone in several
models of PH (Tables 1, 2). The overall finding of those studies
is that MRAs can prevent and partially reverse pulmonary vascular
remodeling and improve pulmonary hemodynamics in PH (43, 47,
51–53) (Tables 1, 2). Preventive application MRAs attenuated the
development of adverse pulmonary vascular remodeling as assesses
by attenuated PA muscularization and wall thickening along with
decreased PA pressure (27, 44, 46, 47, 51, 52, 54) (Table 1). Initiation
of MRA therapy after the disease phenotype had established was able
to decrease PA muscularization and wall thickening and improve
pulmonary hemodynamics (26, 43, 44, 46, 53) (Table 2). This applied
both to steroidal as well as the novel non-steroidal MRA finerenone
(43). In most of these studies, both preventive and therapeutic
applications of MRAs could improve RV dysfunction and remodeling
induced by monocrotaline, hypoxia, or hypoxia-sugen (43). It has
been questioned whether improved RV function was a direct effect
of MRAs on cardiac cells or indirectly mediated by lowered RV
afterload.

In one recent study, MRAs initiated after the onset of significant
RV failure in the hypoxia-sugen rat PH model led to modest, but
consistent beneficial effects on cardiac function and remodeling (53).
Specifically, MRI imaging of the heart in hypoxia-sugen rats, revealed
that MRAs improved cardiac index, the RVEDV/LVEDV ratio, and
the degree of septal displacement although no significant reductions
in either PA pressure or vessel remodeling were observed (53). The
cardioprotective effect of MRAs in this study may be related at
least in part to the attenuated pro-inflammatory gene expression in
the RV (53), which is considered as a crucial mediator of adverse
RV remodeling in response to pressure overload (55). In contrast
to that, application of the MRA eplerenone after 1-week of PAB
surgery in mice did not improve RV function and remodeling at
3 weeks (51). Similarly, in the rat PAB model of RV remodeling,
preventive application of an Ang-II receptor blocker plus eplerenone
for 11 weeks also did improve RV function (56).

Taken together, these findings suggest that MR blockade can exert
beneficial effects on pulmonary vascular remodeling and subsequent
RV failure when applied preventive or in established mild-to-
moderate PH. In more advanced pulmonary vascular remodeling
or in the setting of fixed RV pressure overload, their therapeutic
potential seems to be limited.

Genetic manipulation of MR in PH
animal models

During the past 10 years a series of experimental studies using
transgenic mouse lines with cell type-specific targeting of the MR
in the cardiovascular system have unraveled distinct roles for
MR in SMCs, ECs, cardiomyocytes, and monocytes/macrophages.
As a result of these studies, the specific contribution of in MR
different cell types to hypertension, heart failure, or post-myocardial
infarction remodeling could be defined (9, 10). A recent study
has demonstrated that transgenic mice ubiquitously overexpressing
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FIGURE 2

Mineralocorticoid receptor (MR)-mediated signaling pathways in pulmonary vascular cells. Several factors such as hypoxia, angiotensin-II (Ang-II), and
endothelin-1 (ET-1) have been shown to induce aldosterone synthesis in pulmonary artery endothelial cells (PAECs). Both locally synthesized aldosterone
and circulating aldosterone can activate MR in PAECs and PA smooth muscle cells (PASMCs). Activation of the MR alters several signaling pathways in
pulmonary vascular cells. The effected pathways in PAECs are the following: (1) MR-induced reactive oxygen species (ROS) formation, which in turn
inhibits endothelial nitric oxide synthesis (eNOS) and endothelin receptor B (ET-B) resulting in decreased nitric oxide (NO) formation. The resulting effect
of decreased NO bioavailability is increased pulmonary vascular SMC (PASMC) contractility; (2) MR activation inhibits VEGF and sirtuin 1 (SIRT1) resulting
in PAEC apoptosis; (3) MR leads to the overexpression neural precursor cell expressed developmentally down-regulated protein 9 (NEDD9), connective
tissue growth factor (CTGF), matrix metalloproteinase-2 and 9 (MMP2/9) causing pulmonary vascular fibrosis; (4) MR also induces tumor necrosis factor
alpha (TNFα) and intercellular adhesion molecule-1 (ICAM-1) overexpression, resulting in pulmonary vascular inflammation. While the MR effected
pathways in PASMCs include: (1) MR activation leads to pulmonary vascular inflammation through unknown mechanisms; (2) MR induced neural
precursor cell expressed developmentally down-regulated protein 9 (NEDD9) and CTGF activation cause pulmonary vascular fibrosis; (3) while
MR-mediated activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathways cause increased PASMC proliferation.

human MR (hMR+ mice) spontaneously develop PH, characterized
by increased RV systolic pressures, RV hypertrophy, and remodeling
of small pulmonary vessels and a 2-fold increase in the percentage
of proliferating PASMCs compared with their wall thickness (WT)
littermates (43). This adds to an earlier study reporting that hMR+

mice develop moderate dilated cardiomyopathy without cardiac
fibrosis, with normal blood pressure, tachycardia, and a high
occurrence of arrhythmia (57). Given the many parallels in the
pathophysiology of cardiovascular disease, it seemed plausible that
MR in these cells might also be involved in the development of
PH (Table 3). Indeed, while mice with EC-specific MR deletion
were protected from pulmonary vascular remodeling in response
to hypoxia in a similar manner as seen with eplerenone treatment,
transgenic mouse lines with specific MR deletion in SMCs, fibroblast,

or myeloid cells displayed a similar degree of PH as observed in
WT mice (52). These findings indicate that the beneficial effects of
MRAs on PH may be mainly mediated through the blockade of MR
in ECs with indirect effects on PASMCs. It is important to note that
this finding could not be reproduced in another study using the
hypoxia-sugen model (47). EC-specific MR deletion has been shown
to exert benefits on the RV in the hypoxia-sugen mouse model by
regulating RV E-selectin and collagen III expression and attenuating
RV perivascular fibrosis but did not improve PH (47). This suggests
that the protective effects of MR deletion in PAECs on the pulmonary
vasculature may involve VEGF signaling (as this remains disturbed
in the hypoxia-sugen model due to inhibition of VEGF receptor
2 by SU5416, independent of the MR). In line with this, we had
reported before that MR activation is able to counterregulate VEGF
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TABLE 3 Summary of studies evaluating the effects of genetic manipulation of mineralocorticoid receptor (MR) on the pulmonary vasculature and right
ventricle in rodent models.

Cell type PH model Genetic
model

Pulmonary
hemodynamics

Vascular
remodeling

(histo)

RV
remodeling

(echo)

RV
remodeling

(ex-vivo,
histo)

RV
function
(echo)

References

Invasive non-
invasive

SMC MR
deletion

Hypoxia mice
(6 weeks)

Myh11MerCreMer–
MRfl/fl

NA ↔

PAAT/PAET
NA NA NA ↔ TAPSE (52)

Macrophage MR
deletion

Hypoxia mice
(6 weeks)

LysMCre–MRfl/fl NA ↔

PAAT/PAET
NA NA NA ↔ TAPSE (52)

FB MR deletion Hypoxia mice
(6 weeks)

Tcf21CreERT–
MRfl/fl

NA ↔

PAAT/PAET
NA NA NA ↔ TAPSE (52)

EC MR deletion Hypoxia mice
(6 weeks)

Cdh5CreERT–
MRfl/fl

NA ↑

PAAT/PAET
↓ PA thickness ↓ RVID/LVID ↓ RV myocyte ↑ TAPSE (52)

SMC MR
deletion

Hypoxia-
sugen mice
(4 weeks)

Acta2Cre–
MRfl/fl

↔ RVSP NA ↔ PA
muscularization

NA ↔ RV/(LV+S),
↔ RV myocyte,
↔ RV

perivascular
fibrosis,↔ RV

interstitial
fibrosis

NA (47)

EC MR deletion Hypoxia-
sugen mice
(4 weeks)

Cdh5CreERT–
MRfl/fl

↔ RVSP NA ↔ PA
muscularization

NA ↔ RV/(LV+S),
↔ RV myocyte,
↓ RV

perivascular
fibrosis,↔ RV

interstitial
fibrosis

NA (47)

Global MR
overexpression

hMR
expressing

mice

P1 promoter
into the B6D2F1

mouse strain

↑ RVSP ↔

PAAT/PAET
↑ PA

muscularization,
↑ PA wall
thickness

NA ↑ RV/(LV+S) NA (43)

EC, endothelial cells; FB, fibroblasts; SMCs, smooth muscle cells; RVSP, right ventricular systolic pressure; BW, body weight; RV, right ventricle; LV, left ventricle; S, septum; PA, pulmonary artery;
TAPSE, tricuspid annular plane systolic excursion; RVID, right ventricular diameter at end-diastole; LVID, left ventricular internal diameter. NA, not applicable. Parameter ↑ increased, ↓ decreased,
or remains↔ unchanged compared to wild type control.

signaling in cultured endothelial cells (58). SMC-MR deletion did
not improve PH and RV hypertrophy in both, hypoxia and hypoxia-
sugen models of PH, compared to wild type mice (47, 52), although
MR deficient mice displayed attenuated degree of lung perivascular
inflammation (47). This finding suggests that PASMC-MR, activated
in vivo in PH, contributes to the recruitment of inflammatory cells in
the lung perivascular area. This most likely occurs through a yet to be
defined paracrine factor that promotes chemotaxis of inflammatory
cells. However, it is surprising that such anti-inflammatory benefits
of SMC-MR deletion did not translate into the improved pulmonary
hemodynamics and vascular remodeling. Taken together, these
studies using transgenic mouse lines revealed that MR overexpression
can cause the development of spontaneous PH while MR deletion can
prevent the development of PH in response to hypoxia at least in part
due to EC-specific actions.

Clinical application of MR antagonists
in PH patients

Above discussed preclinical studies and the established utility
of MRAs for the management of heart failure have led to
several clinical studies evaluating the potential benefit of MRAs

in patients with PH (59). For example, a retrospective analysis
of spironolactone use in PAH patients in ARIES-1 and ARIES-
2 trials showed a trend toward improved 6-min walking distance
(6-MWD) and circulating B-type natriuretic peptide (BNP) levels
with the combination of spironolactone and ambrisentan (ET-A
antagonist) and compared to ambrisentan alone (22). Interestingly,
spironolactone use was associated with more potent decrease
in circulating inflammatory markers compared to PAH-specific
therapies (40). Another retrospective study revealed that MRA
use indicates disease severity in PH patients (60). This may be
the result of prescribing MRAs only for those PH patients with
more severe conditions. It was documented that a combination of
spironolactone and hydrochlorothiazide almost completely reversed
PH and RV dysfunction within 3 months of treatment initiation
in a preterm infant with bronchopulmonary dysplasia (BPD)
with associated severe PH and RV failure (61). Cumulatively,
the results of these clinical studies suggest that MRAs may be
beneficial for PAH patients, and their use is associated with a
worse clinical condition, likely due to a delayed initiation of
MRAs. In contrast, two recent studies indicated that MRA use
was associated with increased mortality in patients with PH (60,
62). In one of these studies, the association of MRA use with
decreased survival was not evident after adjustment for disease
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severity, suggesting that MRAs were prescribed preferentially for
those PH patients with more advanced disease condition (62).
Another trial showed that spironolactone did not change tissue
fibrosis biomarker levels as the primary end-point nor did it improve
clinical outcomes, although spironolactone was well-tolerated and
did not lead to significant adverse events in PAH patients (63).
Of note, it was possible to analyse the effects of MRAs on PH
patients in above discussed retrospective studies because MRAs are
prescribed for PH patients with fluid overload. Whether MRAs
improve outcomes of patients with PH due to left heart disease
is unknown. The TOPCAT trial failed to demonstrate a benefit
of spironolactone in patients with HFpEF, 36% of them showing
PH (64, 65). However, the study had substantial methodological
problems and must be interpreted with caution (66). Currently,
there are two further prospective, randomized placebo-controlled
trials are ongoing. The STAR-HF trial, assessing the ability of
spironolactone to reduce RV ventricular wall stress (NCT03344159).
Another study is evaluating the effect of spironolactone on exercise
capacity, RV function, inflammatory markers, and potential side
effects in PAH patients (NCT01712620). The results of these trials
are expected to determine whether MR blockade is beneficial in
managing PAH patients.

Summary

Mineralocorticoid receptor is an important and highly versatile
transcription factor that regulates various key signaling pathways
in the pathogenesis of PH. MR activation in PAECs promotes
aberrant redox signaling through augmented expression of pro-
oxidant enzymes, increased ROS production, and reduced NO
bioavailability, resulting in PAEC senescence and apoptosis. In
addition, MR activation drives pro-inflammatory and pro-fibrotic
phenotypes of PAECs. In PASMCs, MR activation causes cell
hyperproliferation and excessive ECM synthesis and perivascular
inflammation. Cumulatively, these effects of MR activation in
pulmonary vascular cells promote PH development and progression.
Abundant evidence from preclinical studies demonstrates the
therapeutic promise of MR blockade to prevent and reverse many
pathobiological features underlying PH. Considering that MRAs are
available as approved treatment for left heart failure, repurposing
those agents for the treatment of PH patients appears a promising
strategy. Indeed, based on the available evidence on the regulation
of aldosterone in PH patients and the results of retrospective clinical
studies, subpopulations of PAH patients can be identified that
may benefit from MRA treatment. Experimental studies may help
to identify suitable biomarkers to closer define patients that are
responsive to MRA treatment. However, data from a prospective
randomized trial with MRAs in addition to established PH therapy
is warranted to make definitive conclusions about the efficacy of MR
blockade in the management of PH.

Challenges and future directions

The use of animal models has proven to be a valuable tool in
revealing the molecular mechanisms of PH and to test potential
new therapeutic approaches. The available data from experimental
studies have provided key insights into the role of MR signaling

in the pathogenesis of PH and its potential as a therapeutic
target. They indicate that increased MR activity leads to pulmonary
vascular remodeling, ultimately resulting in the development of PH.
MR activation modulates complex signaling pathways during PH
pathogenesis, as a result of its cell-, tissue-, and organ-specific effects.
In this regard, these multitude roles of MR signaling may also pose
many challenges in the field of research because it makes it difficult
to interpret and generalize the results obtained. A common problem
encountered during preclinical research is the controversial results
across available studies. For example, the effects of MRAs tested in
rodent models of PH may differ substantially between studies. It
is likely that the different methodological approaches employed in
those studies account for the majority of controversial results and
heterogeneous conclusions. Therefore, it is important to consider
the following points in interpreting the results of already available
studies or in designing new studies: (1) choosing the model that fits
best with the PH class and severity of disease of the target patient
collective (for example, hypoxia model leading to moderate PH, while
hypoxia-sugen causes more severe PH phenotypes and interferes with
specific signaling pathways); (2) whether studies include animals of
both sexes (to take into account for the sex-specific features of MR
signaling); (3) phenotyping the disease severity in a rodent model
with state-of-the-art imaging methods such as echocardiography,
MRI, and cardiac catheterization (for example MRI can help to detect
subtle cardiac changes of MRAs more precisely, which may be missed
by other imaging modality); (4) whether doses, durations, and routes
of administration of MRAs are comparable across studies.

Majority of available studies evaluating the effects of MRAs
in PH model, used only male animals. This makes it challenging
to extrapolate the results obtained from male animals to their
female counterparts due to several sex-specific differences in the
cardiovascular physiology. For example, sex differences play an
important role not only in the development of PH (67), but also in
responses to MRAs (34, 68) and in vascular role of the MR (69, 70).
A recent study demonstrated that increased aldosterone production
in response to physiologic and pathophysiological stimuli, increased
EC MR expression and increased susceptibility to aldosterone-
induced EC dysfunction in females compared with males (71). In
addition, there is evidence to suggest that therapeutic responses
to MRAs may be greater in females compared to males (72,
73). Cumulatively, the results of these studies dictate that it is
crucial to consider the sex-specific features in MR research in
PH. Although, cell-specific roles of MR in PH models have been
studied in major vascular cells including SMC, ECs, fibroblasts,
and macrophages, the contribution of other cell type MRs in
PH pathogenesis cannot be ruled out. For example, the MR in
cardiomyocytes or T cells may also play a role in the pathogenesis
of PH. In addition, differing dosages and routes of administration
of MRAs may also account for some of the conflicting results
obtained from the experimental studies. For example, MRAs were
administered with chow (26, 27, 51, 52), from a subcutaneous
continuously releasing pellet (44, 47), or with a drinking water
(26, 27, 46, 54). Similarly, the dosages of MRAs differed by up
to factor three between studies (51–53). Whether there is a dose-
dependent effect of MRAs in PH has not been systematically
assessed yet. In the end, well-designed prospective clinical trials will
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be needed to properly assess a potential benefit of MRAs in PH.
Considering the insights and challenges outlined above may help us
to design future clinical studies that evaluate the effects of (1) different
MRA compounds in (2) patients from different groups of PH at (3)
different stages of disease.
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