
TYPE Review
PUBLISHED 22 May 2023| DOI 10.3389/fcvm.2023.1116925
EDITED BY

John Lynn Jefferies,

University of Tennessee Health Science Center

(UTHSC), United States

REVIEWED BY

Paul Cheng,

Stanford Healthcare, United States

Roddy Walsh,

Academic Medical Center, Netherlands

Elena V. Zaklyazminskaya,

Russian National Research Center of Surgery

named after B.V. Petrovsky, Russia

*CORRESPONDENCE

Emmanouil Tampakakis

etampak1@jhmi.edu

†These authors have contributed equally to this

work

RECEIVED 06 December 2022

ACCEPTED 04 May 2023

PUBLISHED 22 May 2023

CITATION

Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M

and Tampakakis E (2023) The role of noncoding

genetic variants in cardiomyopathy.

Front. Cardiovasc. Med. 10:1116925.

doi: 10.3389/fcvm.2023.1116925

COPYRIGHT

© 2023 Htet, Lei, Bajpayi, Zoitou, Chamakioti
and Tampakakis. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Cardiovascular Medicine
The role of noncoding genetic
variants in cardiomyopathy
Myo Htet1†, Shunyao Lei2†, Sheetal Bajpayi1, Asimina Zoitou2,
Myrsini Chamakioti3 and Emmanouil Tampakakis1,2,4*
1Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States,
2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States, 3School
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Cardiomyopathies remain one of the leading causes of morbidity and mortality
worldwide. Environmental risk factors and genetic predisposition account for
most cardiomyopathy cases. As with all complex diseases, there are significant
challenges in the interpretation of the molecular mechanisms underlying
cardiomyopathy-associated genetic variants. Given the technical improvements
and reduced costs of DNA sequence technologies, an increasing number of
patients are now undergoing genetic testing, resulting in a continuously
expanding list of novel mutations. However, many patients carry noncoding
genetic variants, and although emerging evidence supports their contribution to
cardiac disease, their role in cardiomyopathies remains largely understudied. In
this review, we summarize published studies reporting on the association of
different types of noncoding variants with various types of cardiomyopathies.
We focus on variants within transcriptional enhancers, promoters, intronic sites,
and untranslated regions that are likely associated with cardiac disease. Given
the broad nature of this topic, we provide an overview of studies that are
relatively recent and have sufficient evidence to support a significant degree of
causality. We believe that more research with additional validation of noncoding
genetic variants will provide further mechanistic insights on the development of
cardiac disease, and noncoding variants will be increasingly incorporated in
future genetic screening tests.
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Introduction

Cardiomyopathies are disorders of the myocardium caused by genetic and environmental

factors that eventually result in impaired cardiac function and heart failure (15). Depending

on the specific effects in the function and morphology of the heart, and the isolated presence

of arrhythmias, cardiomyopathies are divided into dilated, hypertrophic, restrictive, and

arrhythmogenic (22). Dilated cardiomyopathy (DCM) is the most common cardiomyopathy

affecting 1 in 250 individuals, followed by hypertrophic cardiomyopathy (HCM), which

affects 1 in 500, and arrhythmogenic cardiomyopathy (ACM) encountered 1 in 5,000, while

the prevalence of restrictive cardiomyopathy is even less common (40). About 30%–50% of

cardiomyopathies are heritable, and the different types can have variable phenotypes,

prognosis and causal mutations (16, 40, 70, 72, 81). HCM is primarily a disease of the

sarcomere, as in up to 60% of patients, a pathogenic or likely pathogenic variant is detected

in sarcomeric genes (22, 37). Beta-myosin heavy chain (MYH7) and myosin binding protein

C3 (MYBPC3) are the most frequently affected genes, encoding for proteins of the thick

sarcomeric filaments, and patients tend to exhibit disease onset in their forties. Other
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commonly affected genes in the thin filaments of the sarcomere are

cardiac Troponin I (TNNI3) and cardiac Troponin T (TNNT2)

(37). In contrast to HCM, the causative genes in DCM are

functionally diverse. Titin (TTN) mutations represent 12%–25% of

DCM patients and Lamin (LMNA) genetic variants represent the

second most common mutations in DCM patients (40). Other

genes that are associated with DCM are MYH7, TNNT2,

Tropomyosin 1 (TPM1), Desmoplakin (DSP), RNA binding motif

protein 20 (RBM20), and sodium voltage-gated channel alpha

subunit 5 (SCN5A) (57). In arrhythmogenic cardiomyopathy

(ACM), most pathogenic variants are in genes encoding

desmosomal proteins such as Plakoglobin (JUP) (13, 41), DSP (48),

Plakophilin-2 (PKP2), Desmoglein-2 (DSG2) and Desmocollin-2

(DSC2) (4, 51, 67). Finally, inherited restrictive cardiomyopathies

are caused by mutations in sarcomeric genes such as cardiac

troponin I, and less commonly by mutations in Desmin (DES) and

Filamin C (FLNC) (7). It is worth noting that although

cardiomyopathies are classified based on phenotypes manifested in

the general population, the pathogenic mechanisms and phenotypic

features among the various types of cardiomyopathies can overlap

to a significant degree.

With the advancement of next generation sequencing and genome

wide association studies (GWAS), our understanding of the genetic

basis of cardiomyopathies has significantly improved. Multiple

GWAS have identified susceptibility loci and variants associated with

different types of cardiomyopathies (3, 23, 42, 68, 75). Most rare

disease causal variants have been found within the coding region of

the genome (81). For example, TTN coding variants usually lead to

gene truncations and are viewed as the leading genetic causes in

DCM patients (25). Contrarily, MYBPC3 truncating and MYH7
FIGURE 1

Schematic illustration of noncoding parts in the eukaryotic genome: enhance
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missense variants are the most pathogenic HCM mutations detected

in next generation sequencing research studies (23). Although

definitive causative genetic mutations have been identified for familial

cardiomyopathies, in over half of the cases targeted genetic screening

tests do not identify a contributing variant. This is because most of

the current clinical genetic screening tests and earlier research studies

relied heavily on whole exome sequencing (WES) or targeted

sequencing of coding regions (45, 53, 54). Another explanation

regarding the lack of focus in noncoding variants is that even in large

meta-analyses, the power of variant detection is limited by variant

frequency and penetrance, and lack of systemic interpretation.

However, recent evidence from whole genome sequencing (WGS)

supports a strong association between genetic variants within

noncoding regions and cardiomyopathies (75). Also, emerging

evidence corroborates the role of noncoding regulatory regions,

where disruption of transcription factor binding sites

within enhancers or promoters can alter the 3D chromatin structure

and reduce target gene expression, which can be critical for disease

(9, 34, 62, 64, 69, 74). Similarly, based on other studies variants

within intronic or untranslated regions (UTRs) could also be

involved in the pathogenesis of cardiomyopathies (6, 18, 19, 82).

Furthermore, according to ClinVar, a significant percentage of

non-coding variants in splice sites (∼60%) and UTRs (∼5%), are
classified as pathogenic or likely pathogenic (www.ncbi.nlm.nih.gov/

clinvar). In this review we will provide an overview of the role

of noncoding genetic variants and their association with

cardiomyopathies. We will specifically focus on variants within

promoter, enhancer, untranslated, splice and intronic regions

(Figure 1), where there is sufficient evidence to support a strong

association with cardiac disease.
r, promoter, 5′ UTR, intron, and 3′ UTR.
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Cardiomyopathy-associated genetic
variants in enhancer and promoter
regions

GWAS in heart failure patients have described a strong link with

noncoding variants within transcriptional enhancer regions (3, 27,

38, 50, 60, 78) (Table 1). Enhancers are cis-regulatory DNA elements

of the noncoding genome that recruit transcription factors to the

promoter of target genes for temporal and tissue specific

transcription regulation (10, 21, 76). Enhancers play key roles during

growth and development, and many studies have shown that disease-

associated variants are found within enhancers (52, 56, 74).

Furthermore, thousands of cardiac specific enhancers have been

described, and it is hypothesized that enhancers may have critical

roles in cardiac diseases (1, 14, 24). This was also elegantly illustrated

in a recent GWAS, where several regulatory variants in the promoter

and enhancer regions were linked to cardiomyopathy (33).
Dilated cardiomyopathy

A study by Gacita et al. demonstrated a potential association

between a variant upstream of the MYH7 enhancer (rs875908) and

DCM (20). Genetic deletion of this region in human induced

pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) reduced

MYH7 expression and increased the alpha to beta myosin heavy

chain ratio. It is predicted that this region is bound by the

transcription factors GATA4 and T-box transcription factor 5

(TBX5) and that this variant likely disrupts the TBX5 binding motif.

Interestingly, data from the US Northwestern biobank revealed that

the same variant is associated with cardiac function in patients with

heart failure. The authors also identified more than 1,700 putative

enhancer variants in genes important for cardiac function such as

TNNT2, Natriuretic peptide A (NPPA), Gap junction protein alpha 5

(GJA5) and Myocyte enhancer factor 2A (MEF2A) etc. (20).
TABLE 1 Variants in enhancer and overlapping promoter regions of genes as

Disease Genomic
position
(GRCh38)

Enhancer Promoter
overlap

Prom
interac

DCM Chr14:23438399
(rs875908 C > G)

MYH7 – –

DCM Chr6:144216524C > A UTRN, STX11,
SF3B5

– –

DCM Ch17:75784788 T > C UNC13D, WBP2,
SAP30BP and
TRIM65

H3-3B, MIR4738
and UNK

TRIM56 a
TMEM94

HCM Chr20:44116250A > G JPH2 – –

ACM Chr11:67317729C > T GRK2 and RHOD RAD9A –

ACM Chr18:31497935
(-317G > A)

DSG2 –

DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; ACM, arrhythmog
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Recently, a study led by Vadgama and colleagues analyzed WGS data

of 143 parent-offspring trios from the Genomics England 100,000

Genomes project, and found novel noncoding de novo variants in

enhancer and promoter regions associated with cardiomyopathy

(73). Furthermore, this study reported on a DCM patient who

harbored a variant within an enhancer region which was predicted to

regulate multiple genes such as Utrophin (UTRN), Syntaxin 11

(STX11), and Splicing factor 3B subunit 5 (SF3B5). Indeed, animal

studies have shown that UTRN deficient mice develop DCM (12).

Curiously, another DCM patient from the same cohort harbored a

variant in an enhancer region that regulates multiple genes such as

Unc-13 homolog D (UNC13D), WW domain binding protein 2

(WBP2), SAP30 binding protein (SAP30BP) and Tripartite motif

containing 65 (TRIM65). Importantly, this enhancer region interacts

with the distal promoter region of Transmembrane protein 94

(TMEM94), and biallelic TMEM94 truncating mutation is associated

with congenital heart defects (65).
Hypertrophic cardiomyopathy

In the study by Vadgama et al. one HCM patient was reported

to carry a variant within the enhancer of the junctophilin-2 gene

(JPH2) (73). Junctophilin-2 is a major structural protein in

cardiomyocytes, where it also plays a critical role in calcium

handling. Heart failure is commonly associated with

downregulation of JPH2, and mutations in JPH2 can result in

HCM (55, 65, 77). Thus, it is possible that disrupted JPH2 can

alter cytoplasmic calcium signaling leading to cardiomyopathy.
Arrhythmogenic cardiomyopathy

ACM was linked with a variant within the enhancer of G protein

coupled receptor kinase 2 (GRK2) and Ras homology family
sociated with different types of cardiomyopathies.

oter
tion

Validation method Proposed pathogenic
mechanism

Reference

Functional: in vitro;
phenotype correlation:
biobank data

Disrupted TBX-5 binding to
MYH7 enhancer

(20)

Case-control analysis;
functional:
computational tools

Disrupted UTRN enhancer
function

(12, 73)

nd Trio analysis Disrupted interaction with
TMEM94 promoter

(65, 73)

Case-control study Disrupted JPH2 enhancer
function and altered
intracellular Ca2+ signaling

(73)

Trio analysis Gain of function of GRK2
enhancer leading to increased
GRK2 kinase activity

(73)

Case-control study,
pedigree analysis;
functional: in vitro

Reduced AP-1 binding to DSG2
promoter

(11)

enic cardiomyopathy.
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member D (RHOD) (73). Furthermore, it was shown that this

enhancer region overlaps with the promoter of RAD9 checkpoint

clamp component A (RAD9A). Importantly, GRK2 expression is

upregulated in heart failure and GRK2 inhibition improves cardiac

remodeling (59). Recently, a rare noncoding variant (DSG2-317G

> A) in the DSG2 promoter, was also associated with ACM. This

heterozygous variant segregated in two daughters of the proband

and experimental validation showed a disrupted binding site for

the transcription factor AP-1 (11).
Cardiomyopathy-associated genetic
variants in untranslated regions

5′ and 3′ UTRs are key mediators of post-transcriptional gene

regulation. They impact mRNA processing, localization and stability

(30, 44, 61). They also regulate downstream translation through

elements including upstream open reading frames (ORFs), internal

ribosome entry sites (IRES), m7G cap, polyadenylation signals,

microRNA binding sites and secondary structures (26, 30, 39, 44).

With WGS and the advancement of global RNA structure probing

in vivo (46), an increasing number of UTR variants have been

discovered and studied for their association with diseases (32, 63,

80) (Table 2). In addition, several UTR variants appear to increase

the risk for disease because of differential microRNA binding

affinity to altered alleles and subsequent changes in gene expression

regulation (47, 66). Interestingly, more than 45,000 microRNA

binding sites in 3′ UTRs of human genes had been discovered by

2009 (17), and these regulate nearly half of the transcriptome (58).
Dilated cardiomyopathy

In a study of 159 DCM patients and 215 control subjects, Zhou

et al. showed an association of DCM with TATC and CAA insertion/

deletion polymorphisms in 3′ UTR of Reticulon 4 (RTN4) gene (82).

The gene codes for NOGO isoforms that have been previously linked

with heart failure. (TATC)2 allele and (TATC)2/(TATC)2 genotypes

were reported to be associated with an increased risk for DCM.

However, there are still limited insights on the functional role of

this mutation as it could not be matched with any known 3′ UTR
functional motifs. In the Han Chinese population, a 3′ UTR

variant in the TBX5 gene, increased the risk for congenital heart

disease such as atrial and ventricular septal defects by nearly two-
TABLE 2 Variants in 5′ and 3′ UTR of genes that are associated with differen

Disease Variant location Gene
regulated

Validation

DCM (TATC)2 and (TATC)2/(CAA)2
in 3′ UTR

RTN4 Case-control study;

DCM 3′ UTR (rs6489956 C > T) TBX5 Case-control study;
and in vivo

ACM 5′ UTR (rs770828281 −36G > A) TGFβ3 Case control study;

ACM 3′ UTR (1723C→T) TGFβ3 Case control study;

DCM, dilated cardiomyopathy; ACM, arrhythmogenic cardiomyopathy.
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fold (79). The mutant allele has increased binding affinity to

microRNAs-9 and 30a which decreases TBX5 expression.

CTG repeat expansion in the 3′ UTR of the myotonic

dystrophy protein kinase (DMPK) gene has been linked to

myotonic dystrophy type 1, a neuromuscular disease that can

cause cardiac conduction disorders and cardiomyopathy (8).

Transcription of this expansion results in CUG repeats that fold

into hairpin loops, and sequestration of the nuclear protein

muscleblind like (MBNL) and heterogeneous nuclear riboprotein 1

(hnRNPH1) splicing regulators leading to aberrant alternative

splicing of numerous pre-mRNAs (35).
Arrhythmogenic cardiomyopathy

Through targeted genomic DNA sequencing in a small cohort in

ACM patients, Beffagna et al. described two mutations in the 5′ and
3′ UTR regions of the transforming growth factor-beta3 (TGFβ3)

gene (6). They reported a 5′UTR variant (c.−36G >A) in all

clinically affected individuals of the family and in 3 asymptomatic

relatives. TGFβ3 has 11 upstream open reading frames (uORFs).

ATG at position -142 translates to a truncated 88 amino acid

peptide that has been shown to inhibit the translation of full

length TGFβ3 (2). It was also hypothesized that the 5′UTR
variant may result in loss of function of the inhibitory truncated

peptide isoform leading to increased TGFβ signaling and fibrosis.

The disease mechanism for the 3′ UTR mutation found in one

patient with ACM, has not been well studied (6).
Cardiomyopathy-associated genetic
variants at deep intronic sites

Deep intronic variants are defined as those located more than

20 bp away from exons, and function to introduce aberrant

splicing, distort transcription regulatory motifs, alter non-coding

RNA activities, etc. (31). The identification and interpretation of

these variants remains challenging due to the large size of

introns and lack of consensus sequences (Table 3).
Hypertrophic cardiomyopathy

Variants found in deep intronic regions of Vinculin (VCL) and

protein kinase AMP-activated non-catalytic subunit gamma 2
t types of cardiomyopathies.

method Proposed pathogenic mechanism Reference

TATC insertion and altered Nogo isoform
expression

(82)

functional: in vitro Increased miR9 and miR30a mediated
downregulation of TBX5

(79)

functional: in vitro Loss of auto-inhibitory truncated TGFβ3
isoform

(6)

functional: in vitro Unknown, likely involved altered miRNA
mediated regulation

(6)
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TABLE 3 Deep-intronic variants related to different cardiomyopathies and their proposed pathogenic mechanism.

Disease Genomic position Affected
gene

Validation method Proposed pathogenic
mechanism

Reference

HCM c.499+367T > C VCL Pedigree analysis;
functional: computational
tools

Disruption of transcriptional motif
bindings

(43)

HCM c.1234−317T > G PRKAG2 Pedigree analysis;
functional: computational
tools

Disruption of transcriptional motif
bindings

(43)

HCM c.1224−52G > A, c.1224−80G > A, c.1224−21A > G,
c.906−36G > A, c.1898−23A > G, c.1090+453C > T,
c.1091−575A > C, c.1928−569G > T, c.3331−26T > G

MYBPC3 Pedigree analysis;
functional: in vitro,
computational tools

Cryptic splice site, branchpoint
disruption and intron retention, leading
to haploinsufficiency

(5, 28, 36, 71)

All variants listed according to their reported sequence. HCM, hypertrophic cardiomyopathy; ACM, arrhythmogenic cardiomyopathy.
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(PRKAG2) were associated with HCM (43). In this study, both VCL

(c.499 + 367T > C) and PRKAG2 variants (c.1234−317T >G) are

predicted to be deleterious based on computational algorithms,

and have a higher prevalence in patients with cardiomyopathy

compared to the general population. Additionally, it has been

demonstrated through pedigree analysis that the splice site

mutation in MYBPC3 needs to co-exist with the VCL variant for

disease manifestation. Moreover, these deep intronic variants

appear to be enriched in binding sites for specific transcription

factors such as FOS, JUN and EP300, and thus they may disturb

the transcriptional regulation of cardiomyocytes.

As predicted by comprehensive computational analyses

(SpliceAI - prediction tool for cryptic sites, and LabBranchoR -

prediction tool for branch point at the splice site (49), the study

found MYBPC3 harbors four splicing-site variants (three in

intron 13: c.1224−52G > A, c.1224−80G > A, and c.1224−21A >

G; one in intron 9: c.906−36G > A) which result in cryptic splice

sites, while one variant (c.1898v23A > G) is likely disrupting a

branchpoint in intron 19 and results in nonsense mediated

decay-led haploinsufficiency in HCM patients (36). Moreover, an

earlier report in two South Asian HCM cohorts revealed a rare

pathogenic intronic MYBPC3 variant (c.1224−52G > A) where

the mutation introduces a cryptic splice acceptor site in intron

13 and 50 nucleotide inclusion, which led to altered reading

frame and premature termination codon at position 438

(p.Ser408fs*31) (23). Furthermore, a different study in a French

HCM patient cohort suggested that deep intronic pathogenic

MYBPC3 variants account for about 6% of HCM highlighting

the need for routine MYBPC3 intronic NGS (29). Moreover,

WGS and transcriptomic analysis identified three other MYBPC3

deep intronic variants (c.1090 + 453C > T, c.1091−575A > C,

c.1928−569G > T) in HCM patients (5, 28). RNA analyses were

performed to confirm aberrant splicing through the inclusion of

cryptic exons in cardiomyocytes from patient-derived induced

pluripotent stem cells (iPSC-CMs) and in a myectomy sample

from one affected relative of the proband (c.1928−569G > T

only). In addition, the role of one MYBPC3 intronic variant

(c.3331−26T > G) was found to account for a genotype-negative

proband in a family with a history of HCM (71). This variant

segregates with two diseased descendants of the proband and it

was found in unrelated HCM patients. Through splicing assays

using minigene and patient’s blood, the authors confirmed that
Frontiers in Cardiovascular Medicine 05
the variant leads to the retention of intron 30 and thus protein

haploinsufficiency.
Conclusions

Over the last two decades, numerous novel genetic variants have

been linked with different types of cardiomyopathies. However, with

more information comes greater responsibility, and given the

variable penetrance of genetic mutations and lack of in-depth

validation studies, attributing causality to most genetic variants has

been challenging. Unsurprisingly, this becomes even more

complicated when assessing noncoding genetic variants.

Nevertheless, analysis of noncoding variants has witnessed

tremendous advancements in sequencing techniques and the

booming of artificial intelligence. The transition of common

methodologies from traditional WES and pedigree analysis to

more advanced sequencing incorporated with in silico studies and

prediction algorithms, fuels the discovery of de novo noncoding

variants with a potential disease-causing or modifying role in

cardiomyopathies. In this review, we provided an overview of the

progress in uncovering noncoding variants and their potential

pathogenic mechanisms linked with different cardiomyopathies.

Given the accumulation of more genetic information and

computational tools, the role of some noncoding variants in key

genes can be explored further leading to a better understanding of

cardiomyopathy mechanisms. Additionally, it is now more obvious

that further validation of noncoding genetic variants is missing.

Both in silico analyses and prediction tools are limited by the

population base of rare cardiomyopathies and the

oversimplification of disease mechanisms, which result in

discrepancies and inaccurate classifications. This supports the

development and optimization of more research protocols such as

standardized high-throughput in vitro testing platforms. Moreover,

patient-derived iPSCs serve as an invaluable tool in studying or

modeling disease mechanisms and thus could be exploited to

functionally annotate and validate the causal roles of certain

noncoding variants. In addition, the rapidly evolving field of gene

editing with CRISPR technologies, would further accelerate the

deeper interrogation of non-coding genetic variants.

Protein coding genes comprise only a small percentage of the

entire human genome and frequently their mutations cannot fully
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account for the observed clinical phenotypes. Noncoding genetic

variants have been previously overlooked and it is gradually

becoming more obvious that they have more meaningful

contributions to cardiac diseases. Therefore, incorporating

noncoding variants in genetic screening and demonstrating a

potential association with clinical prognosis is foreseeable and could

be established as part of personalized medicine in the near future.
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