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Background: Ischemic Heart Disease (IHD) is the leading cause of death

from cardiovascular disease. Currently, most studies have focused on factors

influencing IDH or mortality risk, while few predictive models have been used for

mortality risk in IHD patients. In this study, we constructed an effective nomogram

prediction model to predict the risk of death in IHD patients by machine learning.

Methods: We conducted a retrospective study of 1,663 patients with IHD. The

data were divided into training and validation sets in a 3:1 ratio. The least

absolute shrinkage and selection operator (LASSO) regression method was used

to screen the variables to test the accuracy of the risk prediction model. Data

from the training and validation sets were used to calculate receiver operating

characteristic (ROC) curves, C-index, calibration plots, and dynamic component

analysis (DCA), respectively.

Results: Using LASSO regression, we selected six representative features, age,

uric acid, serum total bilirubin, albumin, alkaline phosphatase, and left ventricular

ejection fraction, from 31 variables to predict the risk of death at 1, 3, and 5 years

in patients with IHD, and constructed the nomogram model. In the reliability of

the validated model, the C-index at 1, 3, and 5 years was 0.705 (0.658–0.751),

0.705 (0.671–0.739), and 0.694 (0.656–0.733) for the training set, respectively; the

C-index at 1, 3, and 5 years based on the validation set was 0.720 (0.654–0.786),

0.708 (0.650–0.765), and 0.683 (0.613–0.754), respectively. Both the calibration

plot and the DCA curve are well-behaved.

Conclusion: Age, uric acid, total serum bilirubin, serum albumin, alkaline

phosphatase, and left ventricular ejection fraction were significantly associated

with the risk of death in patients with IHD. We constructed a simple nomogram
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model to predict the risk of death at 1, 3, and 5 years for patients with IHD.

Clinicians can use this simple model to assess the prognosis of patients at the

time of admission to make better clinical decisions in tertiary prevention of

the disease.

KEYWORDS

nomogram, ischemic heart disease, LASSO, mortality, machine learning

1. Introduction

In many countries, cardiovascular disease is increasing
annually and poses a serious threat to human life (1). Ischemic
Heart Disease (IHD) is the leading cause of death from
cardiovascular disease (2). IHD is caused by plaque accumulation
along the inner wall of the coronary artery, resulting in partial or
complete occlusion of the coronary artery, thereby reducing blood
flow to the heart (3). Long-term IHD imbalances coronary blood
flow regulatory mechanisms, including ion channels, leading to
the development of hypoxia, fibrosis, and tissue death, which may
determine the loss of myocardial function (4). These mechanisms
will produce serious complications such as heart failure, ventricular
arrhythmias, and myocardial infarction, ultimately leading to the
death of patients (5). IHD mortality remains persistently elevated
in most developing countries worldwide, placing a significant
economic and resource burden on health and public health systems
(6). Therefore, early identification of the risk of mortality in IHD
patients becomes particularly important.

Numerous factors influence the risk of mortality in patients
with IHD, including gender, age, blood pressure, smoking,
alcohol consumption, and the presence of comorbidities, such
as a history of diabetes and hypertension (7). Besides, the
predictive role of leukocytes, neutrophils, lymphocytes, monocytes,
eosinophils, basophils, erythrocytes, hemoglobin, and platelets for
cardiovascular disease has also been reported (8). Furthermore,
there are several recognized risk factors for cardiovascular
disease, such as creatinine, uric acid, fasting blood glucose,
high-density lipoprotein cholesterol, low-density lipoprotein
cholesterol, total bilirubin, albumin, alanine aminotransferase,
AST, lactate dehydrogenase, γ-glutamyl transferase, alkaline
phosphatase, and creatine kinase, all of which play an important
role in the progression of cardiovascular disease (9–12). In
addition, the left ventricular ejection fraction is used to assess
important echocardiographic parameters of cardiac function in
IHD patients (13).

Most of the current research has focused on specific risk factors
affecting death in IDH, and few predictive models have been used
for the risk of death in patients with IHD. In this study, we
constructed an effective nomogram prediction model to predict the
risk of death in IHD patients by machine learning. The nomogram
can be used to accurately predict the risk of disease or complications
in many cases (14), and our study is based on data from the
largest medical center in Xinjiang, China, to more comprehensively
consider the impact of various factors on prognosis to develop and
validate a simple, practical, and accurate risk prediction tool for
IHD patients. The nomograms we developed can be used to assess

the risk of death at 1, 3, and 5 years in patients with IHD, providing
clinicians with a way to identify people at high risk of death from
IDH at admission, and then appropriate interventions to prolong
the survival time of patients.

2. Materials and methods

2.1. Participants

We selected the data of patients who attended the First
Affiliated Hospital of Xinjiang Medical University from 2010 to
2017, and a total of 2,043 patients with ischemic heart disease were
included in this study. According to the Declaration of Helsinki,
informed consent was obtained and the patients’ identities were
completely concealed before including the data in the study. The
inclusion and exclusion criteria were as follows.

2.1.1. Inclusion criteria
Diagnosis on admission was ischemic heart disease: (1) angina

pectoris or equivalent symptoms occurring during exercise, rest,
or nitroglycerin relief. (2) Electrocardiogram showed significant
myocardial ischemia type, and an exercise test revealed myocardial
ischemia. (3) Coronary angiography showed that the degree of
coronary artery stenosis was greater than 50%.

2.1.2. Exclusion criteria
(1) Congenital heart disease. (2) Severe heart valve disease

(mitral stenosis, mitral regurgitation, aortic stenosis, and
aortic insufficiency); (3) Pericardial disease (acute pericarditis,
constrictive pericarditis). (4) Heart failure caused by non-cardiac
factors (severe infection, anemia); (5) Thyroid dysfunction. (6)
Severe liver damage (alanine aminotransferase and aspartate
aminotransferase three times higher than the upper limit of
normal); (7) Severe renal impairment. (8) Malignant tumor.

We followed the patients for 5 years with the endpoint event of
cardiovascular death. After excluding samples with missing follow-
up and other causes of death, we finally included a sample of 1,663
cases (Figure 1).

2.2. Data source

Patient clinical data was derived from information stored in
the Jiahe electronic case system at the time of initial presentation.
Include gender, smoking history, alcohol history, diabetes history,
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FIGURE 1

The flow chart presents the entire process of patient follow-up, data collection, and statistical analysis in this study.

hypertension history, age, systolic blood pressure, diastolic blood
pressure, and other general information. All patients were asked
to fast on the next day and 8 mL of venous blood was collected
at admission, and routine blood data were measured using

an automatic hematology analyzer XN-1000 (Sysmex, Japan).
Biochemical data such as serum creatinine, uric acid, and fasting
blood glucose were measured using an automatic biochemical
analyzer DXC800 (Beckman Coulter, USA). Echocardiography was
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performed within 24 h after admission using a VIVID7 color
Doppler ultrasound diagnostic apparatus (GE, USA) to measure left
ventricular ejection fraction.

2.3. Statistical analysis

Statistical analysis of data from this study was performed
using R software (The R Foundation).1 Two-sided P < 0.05
was considered statistically significant in all analyses. First, the
patients were divided into training and validation sets for external
validation with R software satisfying a 3:1 ratio. A normality
test was performed on both data sets, and the study data were
found to be non-normally distributed. Continuous variables are
therefore presented as medians (quartiles) and categorical variables
as frequencies (percentages). The Mann–Whitney U-test is used
for all continuous variables and the Chi-squared test is used for
all categorical variables. There were no statistically significant
differences between the two groups in the above tests (P > 0.05).
Data from the training set were then analyzed using least absolute
shrinkage and selection operator (LASSO) regression. Variables
with non-zero coefficients in the LASSO regression model were
used to build nomogram prediction models. Multivariate Cox
regression was used to verify whether the variables in the model
were statistically significant. To test the accuracy of the risk
prediction model, receiver operating characteristic (ROC) curves,
C-Index, calibration plot, and dynamic component analysis (DCA)
were calculated using data from the training and validation
sets, respectively.

3. Results

3.1. Baseline characteristics of
participants

Ultimately, 1,663 participants with IHD were enrolled in the
study. During a median follow-up of 42 months, 693 patients died.
The median age of the patients was 47 years, with 1,264 (76%)
males and 399 (24%) females. For external validation, the total
number of cases was divided into a training set (1,247 patients) and
a validation set (416 patients) in a ratio of approximately 3:1. The
median age of the patients in the training set was 74 years, with
950 males and 297 females. During a median follow-up period of
42 months, 511 patients died. The median age of the patients in
the validation set was 73 years, with 314 males and 102 females.
During a median follow-up period of 42 months, 182 patients died.
The two groups had no statistically significant difference in general
information or laboratory test data (Table 1).

3.2. Construction of clinical prediction
models

Least absolute shrinkage and selection operator regression
analysis was performed on the training set data. By selecting

1 http://www.r-project.org; version 4.2.1.

non-zero features in the LASSO regression analysis results, the
number of potential predictor variables was reduced from 18
to 6 (Figures 2A, B). Including age, uric acid, serum total
bilirubin, albumin, alkaline phosphatase, and left ventricular
ejection fraction. Multivariate Cox regression analysis was then
used to verify whether each variable was statistically significant
(Table 2). Finally, the above six risk profile factors were used to
develop a predictive model to predict the risk of death at 1, 3, and
5 years in IHD patients and displayed in the form of nomograms
(Figure 3).

3.3. Validation of clinical prediction
models

To validate the reliability of the prediction model, the model is
tested using data from the training and validation sets. As assessed
by time-dependent receiver operating curve (ROC) analysis, the
time-dependent accuracy of the nomogram model in predicting
mortality risk at 1, 3, and 5 years is shown (Figure 4). C-index
based on the training set 1, 3, and 5 years were 0.705 (0.658–0.751),
0.705 (0.671–0.739), and 0.694 (0.656–0.733), respectively; C-index
based on the validation set 1, 3, and 5 years were 0.720 (0.654–
0.786), 0.708 (0.650–0.765), and 0.683 (0.613–0.754), respectively
(Table 3). In addition, to further validate the model, we analyzed
the data from the training and validation sets using calibration plots
(Figure 5) and decision curve analysis (Figure 6), and the results
show that both calibration plots and DCA curves perform well.

4. Discussion

In this study, variables associated with mortality risk in
IHD patients were screened by LASSO regression, a method
that penalizes complex models with regularized parameters and
identifies parameters that minimize mean square error, penalizing
insignificant coefficients to zero (15). Finally, we screened six
variables, age, uric acid, serum total bilirubin, albumin, alkaline
phosphatase, and left ventricular ejection fraction, which had a
significant impact on the risk of death in IHD patients, and then
we constructed a nomogram prediction model, which is a two-
dimensional graph, which uses approximate graph calculation of
mathematical functions, is friendly in interface, more accurate,
and has easily understood results and has been widely used in the
medical field (16).

Our study showed that if an IHD patient was 65 years old, UA
was 400 mmol/L, TBil was 20 mmol/L, albumin was 25 mmol/L,
ALP was 150 U/L, and LVEF was 45%, the 1-, 3-, and 5-year
survival rates of this patient were approximately 78, 45, and 29%,
respectively (Figure 3B).

Through LASSO regression and Cox regression analysis, we
concluded that the characteristics influencing the risk of death in
IHD patients based on the training group in this study included
age, uric acid, serum total bilirubin, albumin, alkaline phosphatase,
and left ventricular ejection fraction, and the nomograms showed
moderately good predictive ability by time-dependent ROC curve
analysis, C-index, calibration plot, and DCA curve. Therefore, the
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TABLE 1 Characteristics of the participants in different groups.

Characteristic Overall (n = 1,663) Training set (n = 1,247) Validation set (n = 416) P-value

Gender 0.823

Male 1264 (76.0) 950 (76.2) 314 (75.5)

Female 399 (24.0) 297 (23.8) 102 (24.5)

Smoking history 731 (44.0) 537 (43.1) 194 (46.6) 0.225

Drinking history 463 (27.8) 343 (27.5) 120 (28.8) 0.642

Hypertension history 1009 (60.7) 763 (61.2) 246 (59.1) 0.494

Diabetes history 708 (42.6) 525 (42.1) 183 (44) 0.537

Age, years 67 (57, 75) 68 (57, 75) 67 (57, 75) 0.889

SBP, mmHg 122 (110, 138) 121 (110, 137) 123.5 (110, 140) 0.309

DBP, mmHg 73 (65, 80) 74 (65, 80) 73 (65, 80) 0.634

WBC, 109/L 6.88 (5.73, 8.225) 6.83 (5.74, 8.17) 7.02 (5.73, 8.48) 0.250

Neutrophil, 109/L 4.36 (3.45, 5.56) 4.35 (3.45, 5.53) 4.38 (3.48, 5.63) 0.536

Lymphocyte, 109/L 1.62 (1.24, 2.05) 1.60 (1.23, 2.05) 1.67 (1.27, 2.04) 0.406

Monocyte, 109/L 0.55 (0.43, 0.69) 0.54 (0.43, 0.68) 0.56 (0.45, 0.71) 0.023

Eosinophils, 109/L 0.12 (0.07, 0.20) 0.12 (0.07, 0.20) 0.13 (0.07, 0.20) 0.854

Basophils,109/L 0.03 (0.02, 0.04) 0.03 (0.01, 0.04) 0.03 (0.02, 0.04) 0.196

RBC,109/L 4.49 (4.04, 4.87) 4.49 (4.04, 4.86) 4.49 (4.05, 4.97) 0.218

Hemoglobin, g/L 135 (123, 147) 135 (122.5, 147) 136 (125, 148) 0.171

PLT, 109/L 201 (162, 245) 201 (164, 246) 199 (157.75, 243) 0.177

Cr, umol/L 85 (70, 105) 85 (70, 104) 85.44 (70, 108) 0.316

UA, umol/L 378 (309.65, 466.505) 377 (309.65, 459.75) 381.5 (309.46, 482.31) 0.335

Glu, mmol/L 6.1 (4.92, 8.43) 6.04 (4.89, 8.29) 6.46 (5.03, 8.70) 0.067

HDL-C, mmol/L 0.92 (0.76, 1.11) 0.92 (0.77, 1.10) 0.92 (0.75, 1.12) 0.765

LDL-C, mmol/L 2.13 (1.65, 2.73) 2.13 (1.65, 2.71) 2.16 (1.65, 2.77) 0.823

TBil, umol/L 13.78 (9.90, 19.48) 13.7 (9.70, 19.3) 14.09 (10.33, 20.01) 0.091

Albumin, g/L 38.1 (34.5, 41.1) 38.0 (34.3, 40.9) 38.4 (34.5, 41.7) 0.086

ALT, U/L 20.7 (16.3, 28.9) 20.5 (16.3, 28.4) 21.1 (16.4, 31.0) 0.330

AST, U/L 20.67 (14.17, 32.365) 20.72 (14, 31.65) 20.55 (14.6, 34.69) 0.348

LDH, U/L 190 (160.105, 232.24) 190 (160.1, 231.2) 190.09 (161.56, 237) 0.480

GGT, U/L 32.0 (20.8, 54.0) 31.5 (20.5, 52.7) 32.0 (21.4, 56.0) 0.183

ALP, U/L 72.9 (59.0, 90.5) 73.0 (59.0, 90.3) 72.0 (59.0, 90.56) 0.883

CK, U/L 69.9 (47.3, 102.1) 68.6 (47.0, 100.8) 72.2 (50.0, 110.3) 0.074

LVEF, % 42 (37, 48) 42 (37, 48) 42 (36, 48) 0.375

Data are expressed as medians with interquartile ranges or percentage. SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell count; PLT, blood platelet count;
RBC, red blood cell count; Cr, creatinine; UA, uric acid; Glu, glucose; TBil, total bilirubin; LDL, low-density lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol; AST, aspartate
aminotransferase; ALT, alanine transaminase; LDH, lactic dehydrogenase; GGT, glutamyl transferase; ALP, alkaline phosphatase; CK, creatine kinase; LVEF, left ventricular ejection fraction.

impact of six factors cannot be ignored, and they are all strongly
associated with the risk of mortality in IHD patients.

Our study suggests that age is one of the most important
contributing factors to mortality risk in IHD patients. It has been
shown that there is an exponential rise in mortality with increasing
age in patients with IHD in both developed and developing
countries (6). Increasing age is a major cause of vascular endothelial
dysfunction, and aging endothelial cells accelerate the course of
cardiovascular disease (17, 18). The mechanism may be that
aging decreases circulating CD31 + T cell numbers and migration

capacity, which leads to increased susceptibility to endothelial cell
apoptosis, shortened telomere length, and decreased telomerase
activity (19). In addition, aging leads to reduced cardiomyocyte
turnover, increased levels of reactive oxygen species, DNA damage,
organelle dysfunction, and accumulation of oxidized proteins and
lipids, which leads to decreased cell quality control and accelerates
the aging of the heart (20–22).

Uric acid is the end product of purine metabolism, and most
scholars believe that the increase of uric acid will significantly
increase the risk of cardiovascular disease, promote cardiovascular
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FIGURE 2

Risk factors contributing to death within 5 years in patients with IHD were selected using LASSO regression models. (A) LASSO coefficient profiles of
the 31 features. A coefficient profile plot was generated against the log(lambda) sequence. (B) Optimal parameter (lambda) selection in the LASSO
model used five-fold cross-validation based on minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted vs.
log(lambda). Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 SE of the minimum criteria (the 1-SE
criteria). LASSO coefficient profiles of the six features.

TABLE 2 Based on the coefficients and Lambda.1se values of the LASSO regression of the training set, multifactorial COX regression to validate the
validity of each variable.

Characteristic LASSO regression Multifactorial COX regression

Coefficients Lambda.1se HR 95% CI P-value

Age 0.018116 0.06137 1.034 (1.034–1.025) <0.001

UA 0.000054 1.001 (1.001–1.000) 0.023

TBil 0.000141 1.009 (1.009–1.001) 0.032

Albumin −0.039768 0.945 (0.945–0.930) <0.001

ALP 0.002561 1.006 (1.006–1.004) <0.001

LVEF −0.008666 0.981 (0.981–0.972) <0.001

Coefficients, coefficients of each variable in LASSO regression; Lambda.1se, among all lambda values, the lambda value of the simplest model within a variance of the mean value of the
minimum target parameter is obtained; HR, hazard ratios from multifactorial COX regressions performed to verify the validity of each variable; 95% CI, 95% confidence interval of the hazard
ratio; UA, uric acid; TBil, total bilirubin; ALP, alkaline phosphatase; LVEF, left ventricular ejection fraction.

damage, and increase cardiovascular morbidity and mortality
(23). In this study, uric acid was a risk factor for mortality in
IHD patients. It has been shown that long-term hyperuricemia
may lead to increased vascular sodium deposition and associated
inflammatory burden (24). In addition, uric acid can lead to
increased autophagy and cardiac hypertrophy in cardiomyocytes by
increasing AMPK-ULK1 signaling pathway activity (25).

Previous studies have shown that mild increases in bilirubin
protect against cardiovascular morbidity and mortality (26).
Nevertheless, our study found that increased serum total bilirubin
levels increased the risk of death in patients with IHD. However,
several meta-analyzes have shown an L- or U-shaped association
between serum bilirubin and the prognosis of coronary artery
disease (27–29). In this study, the median bilirubin concentration
in patients was 13.78 (9.90, 19.48), and one study demonstrated
that the protective effect of bilirubin in patients with coronary
heart disease increased with increasing bilirubin levels when
bilirubin levels ranged from 3.42 to 13 mmol/L. When the
bilirubin level exceeded 13 mmol/L, the protective effect of
bilirubin was weakened, and the risk effect gradually emerged
as the bilirubin level further increased (30). There is no specific

mechanism to explain this phenomenon, but some studies suggest
that stress-induced increases in heme oxygenase-1 activity may be
exacerbating the process of coronary artery disease (29).

Serum albumin accounts for about 50% of the total plasma
protein concentration and is one of the most abundant circulating
proteins in the human body and an important indicator of
nutritional status (31). Our study suggests an association between
albumin and the risk of death in patients with IHD. Albumin
has many physiological properties, including anti-inflammatory,
antioxidant, and antiplatelet aggregation activities, and it also plays
an important role in fluid exchange through capillary membranes
(32, 33). Maintaining normal albumin levels can reduce the
risk of death from ischemic heart disease (34). Low albumin
levels decrease intravascular colloid osmotic pressure and increase
inflammation and infectivity (35). This may accelerate the process
of vascular atherosclerosis in patients with IHD, which in turn leads
to serious complications such as myocardial infarction and heart
failure (36, 37).

In this study, ALP was a risk factor for mortality risk in IHD
patients. ALP is an enzyme responsible for hydrolyzing phosphates
and releasing inorganic phosphates. Several studies have shown a
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FIGURE 3

Nomogram for assessing the risk of death within 1, 3, 5 years in IHD patients. (A) Complete nomogram. (B) How to use the nomogram. Blue triangles
show clinical indicators for a hypothetical IHD patient and blue dashed lines show the corresponding scores. Red triangles show the total scores and
the red dashed lines show the corresponding survival rates.

FIGURE 4

Time-dependent receiver operating curve (ROC) analysis of nomogram model. (A) Training set. (B) Validation set.

significant linear association between ALP and the development
of cardiovascular disease and death (38, 39). The mechanism may
be that high serum phosphate levels lead to extracellular matrix
degradation, osteochondrocyte changes, and increased production
of reactive oxygen species, and stimulate osteoblast transcriptional
programs in the vascular system in vascular smooth muscle (40).

TABLE 3 Time-dependent receiver operating curves (ROC) for training
and validation sets.

Training set Validation set

Time C-Index 95% CI C-Index 95% CI

1 year 0.705 (0.658–0.751) 0.720 (0.654–0.786)

3 years 0.705 (0.671–0.739) 0.708 (0.650–0.765)

5 years 0.694 (0.656–0.733) 0.683 (0.613–0.754)

Calcification of vascular smooth muscle may therefore establish an
association between ALP and the risk of death in IHD patients (41).

Left ventricular ejection fraction is the ratio of ventricular
volume ejected during systole (stroke volume) to ventricular blood
volume at the end of diastole (end-diastolic volume) and is widely
used by clinicians as an important indicator for assessing cardiac
function (42). Our study showed that LVEF was significantly
associated with IHD mortality risk. LVEF is a powerful predictor
of serious cardiovascular diseases such as heart failure, myocardial
infarction, and arrhythmia (43, 44). In addition, it has been shown
that ischemic heart disease patients with severe LVEF reduction will
have a significantly increased risk of death (45).

Overall, we created a nomogram model to predict the 1-, 3-, and
5-year risk of death in patients with IHD, which helps clinicians
understand the important risk factors affecting the development
of death at the time of admission in patients with IHD, thereby

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1115463
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-10-1115463 February 10, 2023 Time: 15:42 # 8

Yang et al. 10.3389/fcvm.2023.1115463

FIGURE 5

Calibration curve for IHD 1-, 3-, and 5-year mortality risk prediction in the array. (A) Training set 1 year. (B) Training set 3 years. (C) Training set
5 years. (D) Validation set 1 year. (E) Validation set 3 years. (F) Validation set 5 years. The x-axis represents the predicted incidence risk. The y-axis
represents the actual diagnosed CHD. The diagonal dotted line represents a perfect prediction by an ideal model. The solid line represents the
performance of the nomogram; a closer fit to the diagonal dotted line represents a better prediction.

taking reasonable tertiary preventive measures, which in turn
reduces mortality and improves patient survival. In addition, the six
indicators in the model are economical, non-invasive, simple, easily
available, and the operation is not limited by hospital conditions.

5. Advantages and limitations

The key strength of this study is that machine learning was
used to screen out several important factors affecting the risk

of death in a wide range of indicators, and these parameters
were relatively easy to obtain. However, there are still some
limitations in this study, first, this study is a retrospective study
and there may be unknown confounding factors. Second, this
study only collected the data of patients at admission and did
not evaluate the way patients were treated for the disease such
as through medication and surgery. Finally, this study is a
single-center cohort evaluation, and multi-center, large-sample
studies are still needed to optimize and validate the model in
the future.
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FIGURE 6

Decision curve analysis of a nomogram of mortality risk at 1, 3, and 5 years in patients with IHD. (A) Training set 1 year. (B) Training set 3 years.
(C) Training set 5 years. (D) Validation set 1 year. (E) Validation set 3 years. (F) Validation set 5 years. The y-axis represents the net benefit. Dashed
lines represent the IHD mortality risk nomogram. The thin solid line represents the hypothesis that all patients died. Thin solid lines represent the
hypothesis of no patient death.

6. Conclusion

This study showed that age, uric acid, serum total bilirubin,
albumin, alkaline phosphatase, and left ventricular ejection fraction
were significantly associated with the risk of death in patients with

IHD, and we constructed a simple nomogram model to predict the
risk of death in patients with IHD at 1, 3, and 5 years, and clinicians
could assess the prognosis of patients through this simple model at
the time of patient admission to make better clinical decisions in
the tertiary prevention of the disease.
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