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Introduction: Cardiomyopathies are complex heart diseases with significant
prevalence around the world. Among these, primary forms are the major
contributors to heart failure and sudden cardiac death. As a high-energy
demanding engine, the heart utilizes fatty acids, glucose, amino acid, lactate and
ketone bodies for energy to meet its requirement. However, continuous
myocardial stress and cardiomyopathies drive towards metabolic impairment
that advances heart failure (HF) pathogenesis. So far, metabolic profile
correlation across different cardiomyopathies remains poorly understood.
Methods: In this study, we systematically explore metabolic differences amongst
primary cardiomyopathies. By assessing the metabolic gene expression of all
primary cardiomyopathies, we highlight the significantly shared and distinct
metabolic pathways that may represent specialized adaptations to unique cellular
demands. We utilized publicly available RNA-seq datasets to profile global changes
in the above diseases (|log2FC| ≥ 0.28 and BH adjusted p-val 0.1) and performed
gene set analysis (GSA) using the PAGE statistics on KEGG pathways.
Results: Our analysis demonstrates that genes in arachidonic acid metabolism (AA)
are significantly perturbed across cardiomyopathies. In particular, the arachidonic
acid metabolism gene PLA2G2A interacts with fibroblast marker genes and can
potentially influence fibrosis during cardiomyopathy.
Conclusion: The profound significance of AA metabolism within the cardiovascular
system renders it a key player in modulating the phenotypes of cardiomyopathies.
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1. Introduction

Primary cardiomyopathies, predominantly hypertrophic cardiomyopathy (HCM), dilated

cardiomyopathy (DCM), restrictive cardiomyopathy (RCM) and arrhythmogenic

cardiomyopathy (ACM) are a growing global burden on public health (1–6). Primary

cardiomyopathies, on the whole, are genetic but tend to be influenced by environment and

lifestyle (6–12). These heterogeneous heart muscle diseases lead to heart failure and sudden

cardiac death (1, 6). Notably, metabolic impairment is vital in heart failure (13, 14).

Generally, the heart meets its energy demand by utilizing fatty acids, glucose, amino acid,

lactate and ketone bodies, but cardiomyopathies lead to severe metabolic perturbations (15–

17). In cardiovascular research, metabolic explorations have provided new insights (18, 19).

The role of metabolic genes and pathways has been explored in several cardiomyopathy

studies to understand the pathophysiological changes involved in the progression of
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cardiomyopathy (15–17, 20–22). These studies have reported a

metabolic shift in energy sources during disease progression.

HCM-focused transcriptome analysis showed down-regulated fatty

acid metabolism (23). Similarly, in a DCM transcriptome analysis,

mitochondrial dysfunction and oxidative phosphorylation pathways

were significantly altered (24). Concurrently, multi-omics

technologies have provided an opportunity to explore metabolic

disruptions at a large scale. RNA-seq technique allows rapid

measurement of global gene expression in the disease of interest.

Further, it provides an indirect mechanism to assess metabolic

alterations (25–27). Several computational algorithms incorporating

transcriptome data and metabolic networks have been developed to

assess the perturbation of biological pathways (28–30).

Over the years, oxidative phosphorylation, glucose and fatty acid

metabolism have been highlighted exhibiting disturbances in

individual cardiomyopathy studies. Albeit being important,

individual cardiomyopathy-focused metabolic studies miss overall

molecular patterns across cardiomyopathies. A comparative

interpretation of the primary cardiomyopathies’ metabolic

alterations is crucial for a comprehensive understanding of the

mechanisms of metabolic shifts. To the best of our knowledge, our

study is the first to systematically explore metabolic correlations

amongst primary cardiomyopathies (ACM, DCM, HCM and RCM).

This study aimed to identify shared metabolic perturbations

across cardiomyopathies. We utilized gene expression profiles of

primary cardiomyopathies: ACM, DCM, HCM and RCM, and

donor samples. We carried out differential gene expression

analysis of cardiomyopathy datasets. Further, we performed GSA

on each dataset to investigate the metabolic alterations

comprehensively. Apart from glycolysis and oxidative

phosphorylation, the arachidonic acid (AA) metabolism pathway

was significantly altered in all cardiomyopathy sets. Subsequently,

we inferred the potential cell types in the candidate pathway

using the snRNA-seq dataset. This analysis helped in the

identification of marker genes for each cell type and the potential

link between AA metabolism genes and cell type marker genes.

Earlier studies did not account for cross-comparison nor focused

on arachidonic acid metabolism in depth. Arachidonic acid (AA) is a

free fatty acid metabolized by cyclooxygenase (COX), lipoxygenase

(LOX), and cytochrome P450 (CYP450) epoxygenase enzymes into

biologically active fatty acid mediators (31). Through these

mediators, AA participates in complex cardiovascular functions,

including fibrosis (32, 33). COX, called Prostaglandin G/H

synthases (PGHS), is attributed to synthesizing autoregulatory and

homeostatic prostanoids. COX has two subtypes: COX-1 and COX-

2, which convert AA to prostaglandin (PG)G2 and PGH2,

respectively. These prostaglandins are further processed to various

PGs such as PGD2, PGE2, PGF2α, and prostacyclin (PGI2) (34).

PGD2 protects against atherosclerosis and thrombosis by increasing

vascular permeability and blood flow (35). LOXs, such as 5-LOX,

12-LOX, and 15-LOX, catalyze the dioxygenation of AA to their

respective hydroperoxyeicosatetraenoic acids (HPETEs), such as 5-

HPETE, 12-HPETE, and 15-HPETE. These HPETEs are then

transformed into hydroxyeicosatetraenoic acids (HETEs),

leukotrienes (LTs), and lipoxins (LXs). The 15-LOX pathway is

reported to be involved in the development of atherosclerosis (36).
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Epoxyeicosatrienoic acids (EETs) are metabolites produced from

arachidonic acid (AA) through the action of CYP epoxygenases.

These EETs are synthesized primarily by CYP2J2, CYP2C8, and

CYP2C9 enzymes in the human heart, liver, and endothelial

cells (37). Among these enzymes, CYP2J2 is noteworthy since it is

the only human CYP2J2 epoxygenase and is highly expressed in the

heart and endothelium in particular (38). CYP2J2 converts AA into

four regioisomeric EETs, including 5,6-, 8,9-, 11,12-, and 14,15-EET

(39). The 14,15-EET is released by the endothelium in BK-induced

cardiodepression (40). Once formed, EETs are transformed into less

active dihydroxyeicosatrienoic acids (DHETs) by the action of

soluble epoxide hydrolase (sEH). Research has shown that EETs

protect the heart against inflammation, endothelial dysfunction,

cardiac remodeling, and fibrosis (41, 42). Our analysis indicates

that AA enzymes are expressed in various cell types within the

heart tissue, including fibroblasts, cardiomyocytes, smooth

muscle cells, monocytes, macrophages, and mast cells. As a

cardioprotective mechanism, the CYP2J2 gene expression was

upregulated in HCM and DCM phenotypes. Further PLA2G2A

gene among genes coding for enzymes of the phospholipase A2

(PLA2) superfamily was dysregulated in most cardiomyopathies

under analysis. The phospholipase A2 enzymes catalyze the

endogenous production of AA mainly from cell membrane

phospholipids (43). These findings highlight the importance of

investigating the role of AA metabolism in cardiomyopathies.

Overall, our study highlights novel and clinically valuable aspects

of cardiomyopathies, with implications ranging from prognosis

to therapeutic intervention.
2. Materials and methods

2.1. Data acquisition and preprocessing

Transcriptomic raw data comprising RNA-seq, single-nucleus

RNA-seq (snRNA-seq) and microarray for cardiomyopathy

studies were acquired from the European Nucleotide Archive

(ENA) database (https://www.ebi.ac.uk/ena/browser/) and Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/geo/). Search terms like “hypertrophic cardiomyopathy”,

“dilated cardiomyopathy”, “restrictive cardiomyopathy”, and

“arrhythmogenic cardiomyopathy” were searched against these

databases to obtain the RNA-seq and microarray dataset results.

Each result was manually reviewed and considered for inclusion

if (1) the disease samples in the study indicated heart tissues

from the cardiomyopathy patients, and (2) control samples came

from non-failing heart patients. We focused on the studies that

were supported in our R-analysis pipeline. We considered seven

publicly available cardiomyopathy transcriptomic data, including

five RNA-seq (SRP125284, SRP125595, SRP052978, SRP186138

and SRP061888) and two microarray datasets (GSE29819,

GSE36961) using these inclusion criteria. One single-nucleus

RNA sequencing (snRNA-seq) dataset (GSE183852) with dilated

cardiomyopathy (DCM) was selected to explore cell type

expression of candidate genes due to the cell annotation in the
frontiersin.org
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supplementary files of the original dataset (44). The details of the

transcriptome datasets are shown in Supplementary Table S1.
2.2. Data processing and differential
expressed genes (DEGs)

Previously described and curated raw data were downloaded and

reprocessed to ensure uniform processing and normalization of each

study. RNA-seq and microarray studies were processed using

independent pipelines. In the RNA-seq pipeline, custom shell

scripts were used to download data. Salmon (v1.5.2) (a fast and

bias-aware quantification tool) was utilized to align and quantify

samples using NCBI human reference transcriptome (Gencode

v38) (45). The count data output of Salmon quantification was

used for differential gene expression analysis between disease and

donor samples. This analysis was performed using the DESeq2

(v1.26.0) package in R (v 3.6.3) (46). It uses the negative binomial

distribution to model a statistical analysis for differential gene

expression. It also normalizes samples automatically. Wald t-test

was applied to the distribution (47). To control the false discovery

rate (FDR), the resultant p-values were adjusted using Benjamini

and Hochberg’s test (BH) correction (48). Genes with adjusted p <

0.1 and |log2FC|≥ 0.28 were assigned as being differentially

expressed. Likewise, microarray datasets were processed with the

limma (v3.42.2) package (49). A linear model was constructed

between disease and control samples, and the empirical Bayes

statistical method was utilized to obtain the significant genes. BH

correction was used to obtain the adjusted p value. The snRNA-

seq expression stored as the R object (44) was processed and

analyzed using the R package “Seurat” (version 3.2.3) (50).
2.3. Sample variability and study
consistency

Principal component analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE) were applied to assess

the sample variability across datasets. Only RNA-seq datasets

were explored for testing. These datasets were normalized using

the “DESeq” method in the R package. The R function “prcomp”

was used to perform PCA. On the other hand, the “Rtsne”

function was utilized to perform t-SNE. Principal component

and t-SNE plots, Venn diagrams, and heatmap plots were

prepared using the ggplot2 R package (version 3.3.5) and the

Matplotlib package in Python 3.
2.4. Gene set analysis (GSA)

The gene set analysis was carried out on the gene expression

data to identify significantly perturbed pathways in each study.

We utilized p-values from the differential expression analysis for

all genes in individual datasets for this analysis. A ranking was

generated based on these p-values, representing the input for

Gene-level statistics (gene expression). The Kyoto Encyclopedia
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of Genes and Genomes (KEGG) pathways list file was

downloaded from KEGG (https://www.kegg.jp). Parametric

analysis of gene set enrichment (PAGE) was employed for GSA

analysis using the Piano (version 2.2.0) package in R (51, 52).

The PAGE method uses the mean of the gene-level statistics of a

gene set (a particular pathway in this case) and corrects for the

background, represented by all gene-level statistics. The

cumulative normal distribution is used to estimate the PAGE

gene-level statistics significance. Heatmap of pathways, volcano

plots and bar charts were plotted using Matplotlib and Seaborn

packages in Python 3.
2.5. Identification and screening of
significant pathways

Pathways with PAGE statistics p-values < 0.1 were considered

significant. Among many altered pathways like glycolysis and

oxidative phosphorylation, arachidonic acid metabolism was

chosen as the candidate for further analysis due to its

significance in all primary cardiomyopathies. To show that the

AA metabolism perturbation was consistent in all datasets rather

than only individual studies, we used microarray data to validate

its role in ACM, DCM and HCM independently. We could not

find any microarray dataset for RCM, so it was not considered.

Gene set analysis of these microarray studies was performed

using the sorted Gene-level statistics (GSA) as previously

described. Genes differentially regulated in AA metabolism were

mapped to the KEGG mapper using the online server: Pathview

Web (https://pathview.uncc.edu/) (53).
2.6. Finding DEGs, cell types annotation in
arachidonic acid metabolism and cell-
specific marker genes

Finally, to explore AA metabolism genes, AA genes were

screened with a cut-off value of adjusted p < 0.1 and |log2FC|≥
0.28. To understand the expression of these genes in different

cell types of heart tissue, gene expression and cell phenotypes

were considered from an snRNA-seq study (GSE183852) (44). In

this, control samples were filtered to identify the expression of

screened AA metabolism genes in the donor heart cell types.

Further, marker genes were identified in each cell type. The

“FindMarkers” function in the Seurat package was used to

accomplish this task with the cut-off values of adjusted p < 0.1,

minimal percentage > 0.1, and log2FC≥ 0.58. These marker genes

were utilized to select the cell types significantly enriched within

cardiomyopathies DEGs. The GSA method PAGE was employed

to evaluate the significance of the DEGs against the cell-specific

marker genes in the Piano (version 2.2.0) package in R (51, 52).

Functional enrichment of cell-specific marker DEGs was

performed using the online tool “g:Profiler” (https://biit.cs.ut.ee/

gprofiler/) (54).
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2.7. Identification of dysregulated marker
genes interactions in the cell types

For human interactome data, PPI data (HPRD, MINT, IntAct)

along with protein complex and kinase substrate data (CORUM,

Phosphositeplus) were obtained from our previous study (55).

Then, AA metabolism genes and cell type marker genes were

mapped to the human interactome, and a subnetwork consisting

of these genes was constructed. Network visualization was

executed in Gephi (version 0.9.3).
3. Results

3.1. Gene expression profile in primary
cardiomyopathies

We identified and selected seven studies fitting our inclusion

criteria (see Supplementary Table S1 and Materials and

methods), consisting of arrhythmogenic cardiomyopathy, dilated
FIGURE 1

The transcriptome datasets in primary cardiomyopathies. (A) PCA plot of disea
disease and donor samples in ACM, DCM, HCM and RCM. (C) Venn diagrams sh
showing the metabolic genes’ expression in ACM, DCM, HCM and RCM phen
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cardiomyopathy, hypertrophic cardiomyopathy and restrictive

cardiomyopathy samples. Analyses were performed using 4

RNA-seq, one single-nucleus RNA-seq (snRNA-seq) and two

microarray datasets. We performed sample variability analysis on

normalized RNA-seq studies. The PCA and t-SNE analysis

revealed variability in the samples of different datasets. Attributes

like demography, genetic differences and tissue biopsies influence

the above variability (Figures 1A,B). Since each dataset

independently consists of control and disease samples, these

variations can be ignored. For the RNA-seq differential gene

expression, the negative binomial generalized linear model was

used (see Materials and methods). We employed the empirical

Bayes method on the generalized linear model for the microarray

datasets DEGs. This analysis led to the identification of 4,158,

5,822, 3,048 and 1,655 DEGs in ACM, DCM, HCM and RCM

RNA-seq studies. We screened KEGG metabolic genes amongst

these DEGs and found 527, 644, 346 and 150 differentially

regulated metabolic genes (see Figure 1C). Gene expression

results indicate that DCM gene expression differed from other

primary cardiomyopathies (see Figure 1D).
se and donor samples in ACM, DCM, HCM and RCM. (B) The t-SNE plot of
owing DEGs and metabolic genes in each cardiomyopathy. (D) A heatmap
otypes.
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3.2. The metabolic pathways are
significantly dysregulated in
cardiomyopathies

To further understand the role of metabolic genes in

cardiomyopathies, we performed gene set analysis (GSA) on

RNA-seq and microarray studies. The p-values from the
FIGURE 2

GSA enrichment of KEGG pathways in primary cardiomyopathies. (A) Volc
cardiomyopathies. (B) Heatmap showing major pathway perturbation in ACM,
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differential expression analysis of each dataset were ranked to

estimate the gene-level statistics (see Materials and methods).

The KEGG pathway metabolic gene signature was used to

identify the dysregulated pathways. The GSA revealed widespread

alterations of glycolysis/gluconeogenesis, TCA cycle, oxidative

phosphorylation, and riboflavin, thiamine, purine and

arachidonic acid metabolism (see Figure 2).
ano plots showing pathways enrichment and fold change in primary
DCM, HCM and RCM phenotypes.
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Oxidative phosphorylation metabolism, a mitochondrial-

associated process, was significantly downregulated in ACM, HCM

and RCM but not in DCM. It was upregulated in the DCM

phenotype. Similarly, another primary energy pathway, glycolysis/

gluconeogenesis metabolism, was also downregulated in ACM,

HCM and RCM and upregulated in DCM. Nucleotide-specific

purine metabolism was downregulated in all phenotypes except

DCM. In addition, the pathway related to the amino acid arginine

biosynthesis was significantly upregulated in DCM but significantly

downregulated in other primary cardiomyopathies. Pathway related

to co-factor metabolism, riboflavin was upregulated in DCM but

downregulated in ACM, HCM and RCM. We found this

surprising; it is possible that impact on metabolic pathways in

DCM may vary compared to HCM or other cardiomyopathies due

to its hypo-contractile nature. While some studies have indicated a

downregulation of oxidative phosphorylation in DCM (56), a

previous study by Verdonschot et al. reported an upregulated

oxidative phosphorylation in DCM caused by truncating titin

variants (TTNtv) (57). Interestingly, inositol phosphate metabolism
FIGURE 3

Top pathways enriched in ACM, DCM, HCM and RCM phenotypes (A–D). Pat
Pathways enriched with up-regulated genes are marked in saffron color, and
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was upregulated in HCM and RCM but downregulated in DCM.

Our analysis also indicated significant downregulation of fatty acid

precursor, arachidonic acid metabolism. Surprisingly, it was

downregulated in the HCM and RCM phenotypes but upregulated

in the ACM and DCM phenotypes (see Figure 3). A previous

study highlighted that arachidonic acid (AA) induces

mitochondrial depolarization in isolated myocytes by a

lipoxygenase (LOX)-dependent mechanism and that such

depolarization might contribute to arrhythmogenesis (58). ACM’s

pathological feature results from the replacing the myocardium

with fibrous and fatty (fibro-fatty) tissue (59). In light of this, AA

metabolism requires further investigation. As observed in the

literature, major metabolic pathways are disrupted in almost all

cardiomyopathies, either upregulated or downregulated, depending

upon the nature of cardiomyopathy (60). Our results concluded

that DCM displayed opposite trends compared to the other

primary cardiomyopathies in critical metabolic pathways, such as

glycolysis/gluconeogenesis, oxidative phosphorylation, riboflavin,

thiamine, and purine metabolism.
hways were ranked based on enrichment scores calculated by the PAGE.
those enriched with down-regulated genes are highlighted in green.
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3.3. Arachidonic acid metabolism is
perturbed in primary cardiomyopathies

We focused on arachidonic acid metabolism from previous

results due to its involvement in all cardiomyopathies and its less

studied nature in cardiomyopathies. We chose independent

studies from microarray datasets to validate AA metabolism

disruption in the ACM, DCM, and HCM human heart tissues.

After GSA on validation datasets, we observed that ∼76% of

KEGG pathways enriched in the original RNA-seq datasets were

also significantly enriched in microarray sets. In the validation

set, too, AA was dysregulated across ACM, DCM and HCM

phenotypes (see Supplementary Figure S1). As referred in the

previous result that arachidonic acid (AA) induces mitochondrial

depolarization via lipoxygenase (LOX), which may be attributed

to arrhythmogenesis (58). Therefore, we focused on DEGs to

further understand the molecular players in AA metabolism. We

identified 25 AA metabolism DEGs in primary cardiomyopathies

(see Table 1). Genes like AKR1C3, CYP2J2, EPHX2, LTC4S,

PLA2G2A, PLA2G5, PTGDS and PTGIS were particularly

interesting (see Figure 4 and Supplementary Figure S2). The

aldo/keto reductase superfamily protein-coding gene AKR1C3

was downregulated in DCM and HCM but upregulated in ACM.

A recent work suggests that AKR1C3 might be involved in the

process of ferroptosis in cardiac myocytes and may act as a bio-

marker for Acute Myocardial Infarction (AMI) (61). The
TABLE 1 A list of differentially expressed genes in arachidonic acid (AA)
metabolism in arrhythmogenic, dilated, hypertrophic and restrictive
cardiomyopathies.

Gene AA metabolism DEGs (log2FC)

ACM DCM HCM RCM
AKR1C3 0.7539 −0.9029 −0.3240 NA

ALOX5 0.7306 NA NA NA

CBR1 NA 0.5106 NA NA

CBR3 0.6172 NA NA NA

CYP2J2 NA 1.6690 0.5889 NA

CYP2U1 0.3272 −0.6522 0.3382 NA

EPHX2 −0.4213 0.7662 NA 0.6280

GGT1 NA 1.1862 NA −0.8778
GGT5 1.0935 NA −0.4816 NA

GPX1 NA NA −0.4593 NA

GPX3 NA 1.2371 −0.4969 NA

GPX7 0.3851 NA NA NA

GPX8 0.6545 NA NA NA

LTC4S 0.5660 1.174 −0.6461 NA

PLA2G2A NA 2.1743 −1.3455 −1.1266
PLA2G4A 0.4587 NA NA NA

PLA2G4C NA 0.8315 NA NA

PLA2G5 −0.2836 NA −0.3504 −0.5976
PLA2G6 0.4439 −0.6529 NA NA

PTGDS −1.0987 NA −0.5926 −0.9405
PTGES NA NA NA −1.3769
PTGES2 NA 1.2104 NA NA

PTGES3 −0.3304 0.4085 NA NA

PTGIS 0.7085 −1.3175 −0.8043 NA

TBXAS1 0.4671 NA −0.9969 NA
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cytochrome P450 superfamily protein-coding gene CYP2J2 was

upregulated in ACM, DCM and HCM phenotypes. CYP2J2

coding for cytochrome P-450 2J2 is reported to be implicated in

hypertension and coronary artery disease (CAD) (62). The

epoxide hydrolase family protein-coding gene EPHX2 encoding

sEH was upregulated in DCM and RCM but downregulated in

ACM. This gene was shown to be associated with heart failure in

a rat model of heart failure (63). The MAPEG family protein-

coding gene LTC4S was downregulated in HCM while being

upregulated in ACM and DCM. Nobili et al. highlighted that

LTC4S antagonists could protect against a hypoxic heart (64).

The phospholipase A2 family (PLA2) protein-coding gene

PLA2G2A was upregulated in DCM and downregulated in HCM

and RCM. At the same time, the PLA2 family protein-coding

gene PLA2G5 and glutathione-independent prostaglandin D

synthase enzyme coding-protein PTGDS were downregulated in

ACM, HCM and RCM. Phospholipase A2 (PLA2) enzyme is

attributed to as a risk factor for coronary heart disease (65). The

enzyme coded by PTGDS catalyzes the conversion of

prostaglandin H2 to prostaglandin D2. It is recognized as a

circulating marker for cardiovascular injuries and the severity of

CAD (66). Lastly, the cytochrome P450 superfamily protein-

coding gene PTGIS was upregulated in ACM, while being

downregulated in DCM and HCM (see Figure 5A). The

endogenous expression of the PGIS gene product is reported to

have a potentially protective effect against hereditary pulmonary

arterial hypertension (HPAH) (67). In summary, AA genes are

significantly dysregulated in primary cardiomyopathies.
3.4. Arachidonic acid metabolism regulators
cell types and marker genes in these cells

Next, we performed meta-analysis of the expression of the

previous 25 AA metabolism genes in heart cell types. We utilized

the cell types annotated in the human heart from an earlier

single-nucleus RNA sequencing (snRNA-seq) study (GSE183852)

(44). These cells were grouped into 15 clusters. Earlier mentioned

genes AKR1C3, CYP2J2, EPHX2, LTC4S, PLA2G2A, PLA2G5,

PTGDS and PTGIS were predominantly expressed in

cardiomyocytes, epicardium, smooth muscle, endocardium,

pericytes and fibroblasts (see Figure 5B). Inflammation remains

a key player in heart failure (HF) pathogenesis, in both acute and

chronic HF. Our analysis revealed multiple immune and

inflammation inducing cell types were associated with AA

metabolism. Studies have highlighted the role of AA metabolism

in inflammation (39, 68). Interestingly, genes common in up to

two phenotypes were expressed in more immune cells like mast

cells, macrophages and monocytes. The lipoxygenase gene family

member ALOX5, the glutathione peroxidase family member

GPX1 and the cytochrome P450 superfamily member TBXAS1

belong to this category. The glutathione peroxidase family

members GPX3, PLA2G5 and PTGIS were expressed in a

significant number of fibroblasts (greater than 50%). The

presence of AKR1C3 and LTC4S was negligible in all the major

cell types of the heart.
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T/NK cells, cardiomyocytes, endocardium, endothelium,

epicardium, fibroblast, macrophages, mast cells, myocytes,

pericytes and smooth muscles were further explored for marker

gene identification. A few AA metabolic genes were present in

multiple cell types but were left out as marker genes in all cell

types as per the marker definition strategy. PLA2G2A gene is

such an example that was expressed in fibroblast and epicardium.

However, due to its higher expression in the epicardium, it was

missed as a marker in fibroblast. Once the marker genes in the

above cell types were identified, GSA was carried out on these

genes set to inquire enrichment of these markers within

upregulated or downregulated genes of ACM, DCM, HCM and

RCM (see Figure 5C, Supplementary Tables S2–S5). The

cardiomyocytes marker genes were enriched within upregulated

genes of DCM, HCM and RCM (84, 68, 49) but within

downregulated genes of ACM (76) (enrichment p-values < 0.1

and gene adjusted p < 0.1 & |log2FC|≥ 0.28). In comparison,

marker genes of fibroblasts were enriched within upregulated

genes of ACM and RCM (63, 20) and within downregulated

genes of DCM and HCM phenotypes (enrichment p-values < 0.1

and gene adjusted p < 0.1 & |log2FC|≥ 0.28). Moreover, the

marker genes of pericyte and endocardium were enriched within

upregulated genes of ACM and RCM but within downregulated

genes of DCM. Likewise, the smooth muscle marker genes were

enriched within upregulated genes of ACM and RCM only. In

this, a total of 21 and 16 marker genes were found to be

upregulated (enrichment p-values < 0.1 and gene adjusted p < 0.1

& |log2FC|≥ 0.28). The marker genes of the epicardium,

macrophages and monocytes were enriched within

downregulated genes of DCM, HCM and RCM and opposite in

ACM phenotype. The T/NK cells and mast cell marker genes

were enriched in the upregulated genes of ACM but enriched

within downregulated genes of DCM. Lastly, endothelium marker
FIGURE 4

The KEGG pathway map of AA metabolism DEGs. Differentially expressed AA
studies (in this case, HCM). The red color on the map represents the up-regu
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genes were enriched within upregulated genes of DCM (62) only

(enrichment p-values < 0.1 and gene adjusted p < 0.1 & |log2FC|≥
0.28). Overall, expression of AA genes in heart tissue cell types

and enrichment analysis on marker genes of these cell types

demonstrates that AA metabolic genes are expressed in

cardiomyocytes, fibroblast and immune cells, and a large

proportion of cell type marker genes are dysregulated in all

primary cardiomyopathies.
3.5. Network analysis reveals association of
key arachidonic acid metabolism regulator
PLA2G2A and fibroblast marker genes

We next performed in-depth analysis of the significantly

enriched marker genes within DEGs of primary

cardiomyopathies. Gene ontology analysis of cardiomyocytes and

fibroblast cell type enriched marker genes revealed biological

processes associated with muscle contraction and extracellular

matrix organization, confirming the relevance of these markers

(see Supplementary Figures S3–S5). The AA metabolism DEGs

and cell type enriched marker genes were mapped to human

interactome to understand their underlying association (see

Materials and methods). Cardiac fibrosis is a significant player in

cardiomyopathies. Therefore, we examined fibroblast cell types in

this analysis. The fibroblast cell type dysregulated marker genes

were associated with the PLA2G2A gene of AA metabolism in

ACM, DCM and HCM (see Figure 6 and Supplementary

Figures S6–S8). In the RCM phenotype, the interaction was

missing, possibly due to much fewer overall DEGs in RCM.

Network analysis of dysregulated HCM marker genes revealed

that AA gene PLA2G2A interacts with DCN, which interacts with

FN1, COL4A4, SLIT2, EGFR, GSN, COL1A2, ROBO1, COL4A1
metabolism genes are mapped to the KEGG pathway map in individual
lated genes, and green marks the down-regulated genes in the study.
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FIGURE 5

AA DEGs genes and their expression in heart cell types. (A) A heatmap showing the AA metabolism DEGs in the individual cardiomyopathy gene
expression analyses (ACM, DCM, HCM and RCM). (B) The bubble plot shows the expression of these AA metabolism DEGs in different cell types of
the heart tissue from the analysis of the snRNA-Seq dataset (GSE183852). (C) This heatmap represents the up-regulated or down-regulated
enrichment of cell types (violet representing up-regulated and green showing the down-regulated) and the size of their marker genes found in DEGs
of ACM, DCM, HCM and RCM phenotypes.

Chauhan and Sowdhamini 10.3389/fcvm.2023.1110119
and ELN that are primarily involved in extracellular matrix (ECM)

organization and heart development. Similarly, DCM-specific

dysregulated marker genes network uncovered PLA2G2A

interaction with DCN, which was directly linked to FBN1 and

COL4A1. These genes are primarily involved in ECM

organization and anatomical structure morphogenesis.

Collectively, network analysis demonstrates that the

phospholipase A2 family gene PLA2G2A influences fibroblasts

and may be involved in fibrosis during cardiomyopathy.
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4. Discussion

Primary cardiomyopathies like ACM, DCM, HCM and RCM

are heterogenous heart muscle diseases with poor prognosis, and

are a leading cause of sudden cardiac death (6–12). The current

study accomplishes GSA on the transcriptome profile to

understand metabolic pathways perturbation across primary

cardiomyopathies. Among the GSA-enriched KEGG metabolic

pathways between cardiomyopathy and normal samples,
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FIGURE 6

A graph showing the interaction between AA metabolism DEGs and cell type marker DEGs in fibroblast cell type in HCM phenotype. The interaction
network consists of protein-protein, protein complex and substrate-kinase interactions. In the graph, node size represents the degree of the
individual nodes, and pink and light green colors highlight the AA DEGs and fibroblast marker genes, respectively.
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glycolysis/gluconeogenesis, oxidative phosphorylation, nucleotides

metabolism, amino acid biosynthesis, cofactor metabolism, and

fatty acid precursor arachidonic acid metabolism were statistically

significant. Previous studies have reported oxidative

phosphorylation, glycolysis and fatty acid metabolism shift in

individual cardiomyopathies (23, 24). In this work, we carried

out an integrated analysis of AA metabolic alteration across

cardiomyopathies (see Figure 7).

Arachidonic acid (AA) metabolism is an important mediator of

cardiovascular processes such as fibrosis and inflammation.

However, its role in cardiomyopathies is less explored (31, 32).

Arachidonic acid is a free fatty acid that gets transformed into

biologically active mediators by COX, LOX, and CYP450

epoxygenase enzymes (31). These mediators allow AA to

participate in complex cardiovascular functions (32). Our study

highlighted the statistically significant dysregulation of AA
Frontiers in Cardiovascular Medicine 10
metabolism in all primary cardiomyopathies. This was also found

to be consistent in the validation set. Further, AA metabolic

DEGs in our study were expressed in heart tissue cell types like

cardiomyocytes, fibroblasts, epicardium, endocardium, smooth

muscle, and pericytes and immune cells such as macrophages,

monocytes and mast cells at the single-cell level. Our analysis

showed that the AA metabolic genes ALOX5 and TBXAS1 were

present in macrophages, monocytes and mast cells. However,

these were not significant in a majority of cardiomyopathies.

These results point to a potential role of AA metabolism in

modulating fibrosis and inflammation in cardiomyopathies.

Cardiomyopathies are generally characterized by cardiac

fibrosis (69). Cardiac fibrosis results from the dysregulation of

the balance between the synthesis and degradation of

extracellular matrix (ECM) proteins (69, 70). It has been

suggested that fibrosis primarily manifests in the interstitial space
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FIGURE 7

A summary figure showing the pipeline used in this work.
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in pressure-induced cardiac remodeling without cardiomyocyte

deletion. Whereas volume overload-induced cardiac remodeling

leads to a significant reduction in cardiomyocytes, and fibrosis is

triggered, especially in myocardial infarction (MI) (39).

Fibroblast cells synthesize the ECM proteins and get involved in

tissue repair and remodeling after injury in heart tissues during

cardiomyopathies (69–71). We investigated whether AA

metabolism genes were associated with dysregulated fibroblast

marker genes. Our analysis showed the interaction between the

AA metabolism gene PLA2G2A and the fibroblast marker gene

DCN, which was linked to many other fibroblast marker genes.

Fibroblast marker genes’ gene ontology enrichment analysis

confirmed their role in ECM organization. Decorin (DCN)

belongs to chondroitin sulfate proteoglycan and has been shown

to exhibit antifibrotic effects in the mouse model (72). In short,

our analysis demonstrated that AA metabolism genes interact

with the ECM proteins, such as decorin and others, directly or

indirectly and might influence cardiac fibrosis in primary

cardiomyopathies.

Epoxyeicosatrienoic acids (EETs) are metabolites that arise

from arachidonic acid (AA) through the activity of CYP

epoxygenases. Successive studies have revealed that EETs protect

the heart against inflammation, cardiac remodeling, endothelial

dysfunction, and fibrosis (41, 73). EETs have been reported to be
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nitric oxide (NO) independent vasodilators in vivo (74). Other

analyses suggest that EETs act as an endothelium-derived

hyperpolarizing factor (EDHF), inducing vasodilation of vascular

smooth muscle by activating Ca2+-activated K+ channels (75).

CYP2J2, CYP2C8, and CYP2C9 enzymes are major sources of

synthesis of EETs (37). Our analysis also showed upregulation of

CYP2J2 gene expression in DCM as well as HCM. Notably,

CYP2J2 is the only human CYP2J2 epoxygenase and is highly

expressed in the heart and endothelium (38). CYP2J2 catalyzes

AA into four regioisomeric EETs, including 5,6-, 8,9-, 11,12-,

and 14,15-EET (39). It will be worthwhile to explore CYPJ2J2

further in cardiomyopathies.

This study has limitations due to heterogeneity in samples

aggregated from different transcriptome studies. Sequencing

methodology, environment and sequencing depth are the main

challenges in an integrative analysis. Quantification of RCM

RNA-seq reads was missing for many genes due to less coverage

of these genes. Next, this study only demonstrates statistically

perturbed pathways, important DEGs and heart cell types and

their interactions in each cardiomyopathy through computational

analysis. Experimental validation in an in vitro or in vivo system

was not performed due to the limitation of resources. Lastly,

ACM, DCM, HCM and RCM are highly heterogeneous diseases.

Thus, their classification may vary substantially in the population.
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Regardless of the limitations, the current study provides new

insights into cardiomyopathy research. This work recognizes the

arachidonic acid metabolism as a potential regulator of all major

primary cardiomyopathies. Apart from this, the study also

demonstrates the expression of AA metabolism genes in major

heart-specific cell types and immune cells, facilitating a better

interpretation of its potential roles in the disease. The interaction

between the products of AA gene PLA2G2A and fibroblast

marker gene DCN could present a promising therapeutic target

to regulate cardiac fibrosis.
5. Conclusion

Arachidonic acid metabolism is perturbed in primary

cardiomyopathies. AA metabolism genes are expressed in most

heart cell types and immune cells, influencing the immune

activation and cardiac fibrosis. The association of the

dysregulated AA gene PLA2G2A with fibroblast marker gene

DCN may be an important factor related to fibrosis.
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