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Background: Heart failure (HF) is a multifaceted clinical syndrome characterized
by different etiologies, risk factors, comorbidities, and a heterogeneous clinical
course. The current model, based on data from clinical trials, is limited by the
biases related to a highly-selected sample in a protected environment,
constraining the applicability of evidence in the real-world scenario. If properly
leveraged, the enormous amount of data from real-world may have a
groundbreaking impact on clinical care pathways. We present, here, the
development of an HF DataMart framework for the management of clinical and
research processes.
Methods: Within our institution, Fondazione Policlinico Universitario A. Gemelli in
Rome (Italy), a digital platform dedicated to HF patients has been envisioned
(GENERATOR HF DataMart), based on two building blocks: 1. All retrospective
information has been integrated into a multimodal, longitudinal data repository,
providing in one single place the description of individual patients with drill-
down functionalities in multiple dimensions. This functionality might allow
investigators to dynamically filter subsets of patient populations characterized by
demographic characteristics, biomarkers, comorbidities, and clinical events (e.g.,
re-hospitalization), enabling agile analyses of the outcomes by subsets of
patients. 2. With respect to expected long-term health status and response to
treatments, the use of the disease trajectory toolset and predictive models for
the evolution of HF has been implemented. The methodological scaffolding has
been constructed in respect of a set of the preferred standards recommended
by the CODE-EHR framework.
Results: Several examples of GENERATOR HF DataMart utilization are presented as
follows: to select a specific retrospective cohort of HF patients within a particular
period, along with their clinical and laboratory data, to explore multiple
associations between clinical and laboratory data, as well as to identify a
potential cohort for enrollment in future studies; to create a multi-parametric
predictive models of early re-hospitalization after discharge; to cluster patients
according to their ejection fraction (EF) variation, investigating its potential
impact on hospital admissions.
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Conclusion: The GENERATOR HF DataMart has been developed to exploit a large amount
of data from patients with HF from our institution and generate evidence from real-world
data. The two components of the HF platform might provide the infrastructural basis for
a combined patient support program dedicated to continuous monitoring and remote
care, assisting patients, caregivers, and healthcare professionals.
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Introduction

Heart failure (HF) contributes to a significant proportion of the

global burden of cardiovascular diseases, with increasing

prevalence and incidence rates worldwide (1). Currently, it is

estimated that approximately 2% of adults suffer from HF in

industrialized countries, although the true prevalence is likely to

be higher, due to the common underestimation of this clinical

syndrome (2).

The prognosis of patients with HF has improved considerably

in the last decades since several drugs have been developed and

tested in randomized controlled trials (RCTs). However, the

improvement in overall survival has been confined mainly to

those with heart failure with reduced ejection fraction (HFrEF)

and the quality of life (QoL) remained poor in the advanced

phases of the disease (1). Furthermore, acute HF continues to

represent one of the greatest unmet needs in cardiovascular

medicine, as trials of novel interventions have been largely

unsuccessful (1, 3). In addition, RCTs in HF are becoming

increasingly elaborated, expensive, time-consuming, and limited

to a selected population, excluding broad categories of patients,

such as those with chronic kidney disease or hyperkaliemia (4).

In this regard, Real World Data (RWD), derived from several

sources, including electronic health records (EHRs) (i.e.,

systematized collection of patient’s health information stored in a

digital format) and registries, may provide extensive and

generalizable data from the real-world ground, enabling the

validation of risk markers, risk scores, and drug usability. As Dr.

Lukas Kappenberger, a pioneer in computational cardiology, said

in 2005, “Science (i.e., RCTs) tells us what we can do; guidelines

what we should do; and registries what we are doing”(5).

However, RWD-based studies require long-term data collection,

high set-up, and running costs, usually including a specific set of

predefined variables captured at specific time points and periods

(5). Therefore, the significant scale, complexity, and speed at

which such data are collected necessarily require innovative

approaches that exploit the use of automated data investigation

and discovery (6). Through the automated process of artificial

intelligence (AI) and machine learning, the extraction and

analysis of RWD could even be performed without needing to be

explicitly programmed, due to a machine’s ability to learn and

efficiently achieve complex tasks autonomously (6). Moving

towards a more data-driven paradigm, capturing data from

multiple data sources and in a longitudinal manner continuously

over time, our institution, Fondazione Policlinico Universitario

A. Gemelli in Rome (Italy) has established a dedicated research
02
facility “Gemelli Generator Real World Data”. The main purpose

of this framework was to generate “Real World Evidence” (RWE)

from RWD (i.e., observational data obtained outside the context

of RCTs during routine clinical practice) related to patients with

various diseases admitted to our institution (7). The facility is

made up of a multidisciplinary team, composed of data scientists,

medical researchers, and service design experts, cooperating to

develop and deploy data-driven techniques (from data

integration to data visualization and AI-based predictive models)

in a standardized and clinically-validated manner. Currently, the

laboratory has built a solid and reproducible methodology, usable

for various medical domains, such as breast, ovarian, and colon-

rectal cancers (7, 8) (Supplementary material, section “Gemelli

GENERATOR DataMart framework”). In this context,

GENERATOR HF DataMart was created to leverage hospitals’

large amounts of data on patients with HF, generating RWE in

this area, and eventually modifying the risk stratification and the

clinical standard of care, adapting to contemporary rapid

advances in precision medicine.

The primary aim of this work is to show, in detail, the

methodology and the technologies adopted within

“GENERATOR HF DataMart”, integrating a daily-updated

DataMart, a data visualization dashboard, and an AI-based

toolset, applied to the domain of HF.

Additionally, we provide concrete examples of how

GENERATOR HF DataMart can be used to support research

and clinical practice, as well as the promise, pitfalls, near-term

challenges, and opportunities for big data in the HF-associated

research field.
Methods

GENERATOR HF DataMart analytics
framework

A DataMart is a curated data repository that includes a subset

of data from the hospital’s information technology (IT) warehouse,

about a specific domain or subject and allowing to analyze with

integrated views of patients’ clinical histories, outcomes, and

biomarkers. Specifically, as depicted in Figure 1, the

GENERATOR HF DataMart aims to make all relevant

information residing in Gemelli Data Lake exploitable for

analytics and clinical studies in the HF domain. The

technological tools used are SAS(R), R, and Python, which are

among the most common programming environments in data
frontiersin.org
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FIGURE 1

Overview of HF daily-updated analysis framework. ETL, Extract, Transform, Load; ER, Emergency Room; NLP, Neural Language Processing; RWE, Real
World Evidence; xAI, eXplainable Artificial Intelligence.
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science. SAS(R) is used as a middleware for Extract Transform and

Load (ETL) tasks from hospital information systems, as a data

repository including tables in dedicated storage areas (SAS VIYA

Caslibs), as a text mining tool for extracting clinical concepts

(such as comorbidities), and as a data visualization tool. R and

Python are used for data analytics, data processing, and

modeling activities.

The framework, stemming from GENERATOR infrastructure

and data science system, includes three distinct components; a

dynamically daily-updated datamart, a data visualization

dashboard, and a set of AI modeling tools, which collective

constitute GENERATOR HF DataMart

Specifically:

1) Data concern patients hospitalized for the first time and with a

primary diagnosis of HF. The DataMart captures daily updated

clinical, laboratory, and instrumental data, related to each

contact, defined as a patient’s access, either on an outpatient

or inpatient basis, differentiated, admitted in the elective,

ambulatory, or emergency ward. In particular, the DataMart

is implemented in a dedicated SAS(R) VIYA Caslib where the

data is transformed, extracted, and loaded from the hospital

information systems;

2) The data visualization dashboard through which patient data

can be filtered dynamically according to specific selection

criteria, such as demographics, biomarkers, or comorbidities.

The data visualization dashboard is implemented in SAS(R)

VIYA environment and Visual Analytics;

3) The set of AI-based modeling tools, leveraging the up-to-date

industry standards in terms of statistical analysis and

machine learning, using cutting-edge algorithmic techniques,

based on open-source packages in R and Python. Training
Frontiers in Cardiovascular Medicine 03
and validation sets including subsets of the complete data list

are specified per the study of interest and are available in

SAS(R) VIYA Caslibs and accessible with the swat library

from Python and R notebooks, running either locally or in

dedicated virtual machines.

Of note, according to the CODE-EHR framework, our

methodology, explained in detail throughout this manuscript,

overall meets the preferred standards in all the items (9). In

particular, the dataset construction and linkage item is addressed

in the methods section “Data sources and evidence generation

workflow” and in the Supplementary material section “Overview

of data extraction procedures”. Regarding the data fit for purpose

item, we have detailed the complete Data Ontology considered in

GENERATOR HF Datamart (Supplementary Table S2).

Furthermore, as far as the disease and outcome definitions and

analysis items, we provided outcome definitions, together with

the corresponding modeling use cases, in the results section “Re-

hospitalization modeling and patient clustering as a function of

EF trend”. Furthermore, the coding procedures per variable are

discussed in Supplementary material, section “Data extraction

workflow”. Diagnoses are derived from the ICD-9 codes, whereas

diseases and comorbidities are assigned according to the latest

European Society of Cardiology (ESC) guidelines and further

confirmed and validated following the Joint Commission

International standards since Fondazione Policlinico

Universitario A. Gemelli is an accredited institution. Finally, all

privacy issues were analyzed jointly with Policlinico Gemelli Data

Protection Officer, to design an approach fully compliant with

the Italian and European GDPR directives and regulations (EU

Directive 2016/679 and under Italian Laws: Decreto Legislativo

196/2003, Decreto Legislativo 101 2018, Autorizzazione Generale
frontiersin.org
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Garante 9/2016). These principles of Ethics and Governance are

clearly stated in a legally relevant public document, the

Generator Real World Data Facility Umbrella Protocol, on which

further details can be given upon reasonable request. For more

details, please refer to the Supplementary material section

Gemelli Generator Real World Data ethics and governance.

Automated analytics for GENERATOR HF
DataMart build

Every domain-specific-GENERATOR DataMart framework is

the result of cooperation and knowledge exchange between

clinicians and specialists of the domain under study, data

scientists, and data analysts. The general workflow for setting up

a DataMart is shown in Figure 2. First, clinicians indicate the

inclusion criteria (mainly based on the codes from the

International Classification of Disease 9, ICD-9 428, recorded in

the hospital discharge diagnoses) and a primary list of variables

of interest, including biomarkers, demographics, functional data,

comorbidities, therapies, and outcomes. Based on the specific

ICD-9 428 diagnosis codes, data scientists and analysts select

from health records patients matching the inclusion criteria and

then perform the mapping of all variables into the hospital data

sources and subsystems. This repeatable sequence of activities

constitutes the systematic approach to GENERATOR DataMart

implementation, regarding data collection and standardization.
FIGURE 2

Data mart creation methodology. HF, Heart Failure; ICD, International Classifi
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Iterative design sessions are regularly performed to meet

clinicians’ demands and develop a user-oriented data

visualization dashboard.

Regarding the specific GENERATOR HF DataMart framework,

a dedicated working group has been formed with the task of

identifying a variable set of interest, the so-called HF data

ontology, and specific inclusion criteria [i.e., patients who have

been hospitalized with a primary diagnosis of HF (ICD-9 codes

428.* at discharge) during 2019–2021 period] (Supplementary

Table S1, Table S2, Figure S2).

The technological components used to develop the

GENERATOR HF DataMart framework are part of the standard

toolset that the GENERATOR center has developed and

progressively improved through the constant interaction with

medical teams across the different medical areas.

These are represented by:
1) SAS® Institute suite for data extraction, transformation, and

load, to ensure smooth interoperability and integration

between hospital informative technology (IT) systems and

data warehouse;

2) R-Studio and/or open-source suites, to analyze medical notes

and identify information of interest (such as comorbidities,

risk factors, etc.);

3) SAS(R) VIYA for data visualization dashboard;
cation of Disease.
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4) R(R) and Python(R) open-source libraries for the prototyping

and implementation of statistical analysis and machine

learning.

Interoperability represents a key point in data management for

properly exploiting their resources, for example, to visualize them

for different stakeholders, or through joint statistical analysis at

the European level (10). Our approach to interoperability is

twofold, as shown in another area of application (11). First, we

standardize diagnoses and treatments, according to ICD-9 428

and Anatomical Therapeutic Chemical (ATC) classification

systems, to adapt GENERATOR HF DataMart to the FHIR (Fast

Healthcare Interoperability Resources) specification (12). Second,

portability to other hospitals, at the Italian and European levels,

can be achieved since we apply FAIR (Findability, Accessibility,

Interoperability, and Reuse of digital assets) principles to data,

metadata, and infrastructure (13). Furthermore, we leverage

federated data processing methods [i.e., distributed learning

algorithms (14)], which allow us to establish interoperability and

collaboration among hospitals, using the same statistical and

machine learning methods, without transferring data from these

hospitals to a centralized site, to be compliant with the General

Data Protection Regulation [GDPR, Regulation (EU) 2016/679].

Data sources and evidence generation
workflow

The GENERATOR HF DataMart integrates heterogeneous data

from multiple sources in form of structured or unstructured data.

Structured data is characterized by a high level of standardization

and fulfill certain criteria, in terms of ontologies and data

formats (data model) (for example, ICD-9 428 code for

diagnosis). Such data is entered without further processing into

GENERATOR HF DataMart in dedicated tables, grouped by data

source and/or data category, establishing “relational databases”.

Conversely, unstructured data refer to unorganized data, such as

medical records in plain text, which require further processing

before being integrated into our GENERATOR HF DataMart.
FIGURE 3

Flowchart describing cohort selection. ETL, Extract, Transform, Load; NLP, Ne

Frontiers in Cardiovascular Medicine 05
Natural language processing (NLP) and text mining techniques

allow for the extraction of clinically relevant variables from plain

text and their integration in the GENERATOR HF DataMart.

NLP and text mining are performed using either SAS(R) VIYA

Text Analytics for concept extraction (i.e., comorbidities, risk

factors) or native Python libraries such as re for the use of

regular expressions. Regular expressions identify predefined

keywords of interest; while distance-based rules filter negations

and expressions referring to familiarity. More advanced NLP use

cases are explored for topic modeling and classification of clinical

reports using both traditional features and word frequencies

(package scikit-learn and gensim) and sentence embedding

(package sentenceTransformers).

Therefore, data extraction is performed based on ETL

procedures, differentiated per data type (structured and

unstructured) (Supplementary Figure S1). As the final step in

the data extraction workflow, extensive validation procedures

ensure the consistency and the quality of their transformation.

Data validation is performed in different phases of data

extraction and transformation including standardized reporting

processes. Regarding structured and calculated variables, data

analysts and data scientists examine variable distributions and

their acceptable values before consolidating the respective ETLs.

Concerning unstructured data and text, extracted variables are

initially validated by the technical team and later independently

by clinicians using dedicated annotation tools (open source such

as doccano or made in-house). Evaluation reports on extracted

concepts assist to iteratively define and optimize text mining

rules. Finally, regarding variables presenting a direct relationship

between them (i.e., BMI and obesity), we examine whether the

relationship conditions are met as an index of data consistency.

A detailed overview of the entire data extraction workflow is

provided in the Supplementary material, section on data quality

and completeness.

An extensive list of clinical data was selected and captured in

the GENERATOR HF DataMart, fulfilling the ambition to build

the most comprehensive and longitudinal overview of HF
ural Language Processing.
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patients within our institution. Supplementary Table S2 shows the

complete overview of the HF data ontology. The main categories of

structured data are demographics, admissions, contacts, laboratory

exams, echocardiograms, ECG, and outcomes (death, re-

hospitalization, and admissions for acute events in the emergency

department). Instead, the most relevant unstructured data are

represented by comorbidities, risk factors, medications,

interventions, and procedures.

The HF framework is regularly updated with new data and new

patients, as follows:

1) data related to patients, already included in the cohort, are

daily updated when a new contact occurs;

2) once a new patient meets the predefined inclusion criteria (i.e.

admission for the first time at our institution with a primary

diagnosis of HF), he/she is inserted in the patient cohort.

Subsequently, his/her data is entered in the GENERATOR

HF DataMart based on the data workflow, previously

described.

Results

In this section, we provide some examples of how

GENERATOR HF DataMart has been exploited. A detailed

description of the results is beyond the scope of this manuscript,

the purpose of which is primarily to provide a description of the

data collection and processing methodology. The results shown

are only a hint of how our DataMart could be implemented in

clinical practice and research.
Retrospective cohort selection

Considering 2019–2021 as the reference period, we selected the

group of patients who have been hospitalized with a primary

diagnosis of HF (ICD-9 codes 428.* at discharge), with the

possibility to validate it with the values of instrumental

examinations, such as an echocardiogram, biomarkers (i.e., nt-

proBNP) and clinical data, to render our inclusion criteria more

stringent, but at the same time more confident (Figure 3). The

final cohort included 1951 patients. Such a selection provides a

comprehensive overview of HF patients currently under

treatment at our institution, together with their clinical and

laboratory data.

Table 1 shows an overview of the main clinical characteristics,

biomarker values, and outcomes at the discharge of the first

hospitalization for HF in this subset of patients. Continuous

variables are reported as the median and interquartile range

(IQR), and categorical variables are as counts and proportions

(%). The median age of the overall population was 78 years (IQR

68–85) and 58.3% were male. Among 829 patients with an

available measurement of ejection fraction (EF) before re-

hospitalization, 318 patients had HFrEF, 160 patients had Heart

Failure with mid-range Ejection Fraction (HFmrEF) and 351

patients had Heart Failure with preserved Ejection Fraction

(HFpEF), according to the most recent ESC definition (1). 66.3%
Frontiers in Cardiovascular Medicine 06
presented hypertension, 30.2% diabetes, and 28.4% a pulmonary

disease. As regards clinical outcomes, 5.4% died during

hospitalization while 8% of patients have been readmitted within

30 days after discharge. Table 2 provides an overview of the

number of contacts, per year, and contact type. Contact number

is reported as a median value among patients, together with its

interquartile range (IQR) per contact type (outpatient, day

hospital, in-patient, emergency) and per year.

This cohort could be exploited to investigate multiple

associations between clinical and laboratory data, as well as

represent a contemporary cohort for enrollment in future studies.
Data visualization to support clinical study
design

The data visualization component of the HF framework offers

two complementary views, cohort segmentations, and patient

journeys. Once a cohort is identified, several types of data groups

can be selected for analysis, as shown in Figure 4. The user can

select subgroups with common features (i.e., age, specific

comorbidities, re-hospitalization events) and analyze the

distribution of biomarkers for this subgroup (“cohort

segmentation” utility) at discharge. This utility may be used as a

tool to compose cohorts with specific features that can be later

screened for participation in clinical trials. In the same view, it is

possible to compare selected features such as estimated

glomerular filtration rate (eGFR) and/or hemoglobin, between

the first hospitalization and the last one (Figure 5). This

functionality allows clinicians to follow laboratory trends, helping

them to identify some biomarkers to consider potentially during

study design.

Moreover, the user can further drill down, select a specific

patient, and visualize his complete clinical history (Figures 6, 7).

For every patient included in the GENERATOR HF DataMart, it

is possible to get a comprehensive view of all his contacts

together with respective clinical and laboratory variables (“patient

journey” utility).
Re-hospitalization modeling and patient
clustering as a function of EF trend

We focused on two distinct outcomes: re-hospitalization events

within certain periods defined as the second hospitalization event

observed after patient inclusion in the study and EF changes over

time considering the first and last available EF measures after

patient inclusion, with the aim of predicting the evolution of the

disease.

Re-hospitalization modeling may allow the identification of

predictors related to re-hospitalization events within 30, 60, or 90

days after discharge, employing time-to-event analysis. After

extensive experimentation, we identified models with the highest

true positive rate, given a certain threshold of false positive rate.

Re-hospitalization events were modeled through Cox models and

cross-validation techniques. Model performance was evaluated at
frontiersin.org
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TABLE 1 Baseline characteristics at hospitalization discharge for
retrospective cohort 2019–2021.

Variables Total patients
(n = 1951)

Missing
rate

Demographics/organizational/socioeconomic
Age (years), median(IQR) 78.0 (68.0,85.0) 0 (0.0%)

Male sex 1,138 (58.3%) 0 (0.0%)

Education 648 (33.2%)

No education 51 (2.6%)

Primary 318 (16.3%)

Secondary 746 (38.2%)

Higher 188 (9.6%)

Married 969 (49.7%) 1 (0.1%)

Clinical

EF Class 1,122 (57.5%)

HFrEF 318 (16.3%)

HFmrEF 160 (8.2%)

HFpEF 351 (18.0%)

NYHA 1,441 (73.9%)

I 42 (2.2%)

II 56 (2.9%)

III 322 (16.5%)

IV 90 (4.6%)

Heart rate (bpm), median (IQR) 74.0 (66.5,80.0) 667 (34.2%)

Systolic blood pressure (mmHg), median
(IQR)

120.0 (110.0,130.0) 656 (33.6%)

BMI(kg/m2), median (IQR) 26.0 (23.4,29.4) 621 (31.8%)

Laboratory values
Hemoglobin(g/dl), median (IQR) 12.2 (10.5,13.7) 10 (0.5%)

NT-ProBNP(pg/ml), median (IQR) 3492.5
(1280.2,8815.0)

265 (13.6%)

eGFR (ml/min/1.73 m2), median (IQR) 60.9 (40.2,84.0) 10 (0.5%)

Potassium (mEq/L), median (IQR) 4.0 (3.7,4.4) 9 (0.5%)

History and comorbidities
Diabetes 589 (30.2%) 0 (0.0%)

Pulmonary disease 554 (28.4%) 0 (0.0%)

Malignant disease 416 (21.3%) 0 (0.0%)

Hypertension 1,293 (66.3%) 0 (0.0%)

Hepatic disease 34 (1.7%) 0 (0.0%)

Treatment
β-blockers 1,410 (72.3%) 0 (0.0%)

ACEi 377 (19.3%) 0 (0.0%)

ARB 171 (8.8%) 0 (0.0%)

ARNi 887 (45.5%) 0 (0.0%)

MRA 564 (28.9%) 0 (0.0%)

SGLT2i 49 (2.5%) 0 (0.0%)

Diuretics 1,460 (74.8%) 0 (0.0%)

Digoxin 117 (6.0%) 0 (0.0%)

Statin 786 (40.3%) 0 (0.0%)

Acetylsalicylic acid (ASA) 324 (16.6%) 0 (0.0%)

Outcomes
Re-hospitalization within 30 days 156 (8.0%) 0 (0.0%)

In hospital death 106 (5.4%) 0 (0.0%)

All included variables reported at the date of discharge.

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker;

ARNi, angiotensin receptor–neprilysin inhibitor; BMI, body mass index; eGFR,

estimated glomerular filtration rate; IQR,interquartile range; MRA,mineralo

corticoid receptor antagonist; NYHA,New York Heart Association;NT-proBNP,

N-terminal pro hormone brain natriuretic peptide; SGLT2i,Sodium-glucose

co-transporter 2; EF Class, Ejection Fraction Class; HFrEF. Heart Failure with

Reduced Ejection Fraction; HFmrEF, Heart Failure with Mid-Range Ejection

Fraction; HFpEF, Heart Failure with Preserved Ejection Fraction.

TABLE 2 Contact statistics per year and type of contact for the
retrospective cohort 2019–2021.

Year Contact Type Number of contacts [median (IQR)]
2019 Outpatient 2.0 (1.0,4.0)

Day Hospital 1.0 (1.0,2.0)

Emergency 1.0 (1.0,2.0)

Inpatient 1.0 (1.0,2.0)

2020 Outpatient 2.0 (1.0,3.0)

Day Hospital 1.0 (1.0,2.0)

Emergency 1.0 (1.0,2.0)

Inpatient 1.0 (1.0,2.0)

2021 Outpatient 2.0 (1.0,3.0)

Day Hospital 1.0 (1.0,1.5)

Emergency 1.0 (1.0,2.0)

Inpatient 1.0 (1.0,2.0)
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selected time points using standard classification evaluation metrics

and ROC curves in which the rate of true positives was optimized

based on Jouden’s statistic. Successively, we selected a list of

possible predictors to compose a score that classifies patients

according to the risk of re-hospitalization (i.e., high, medium, or

low risk). Such scores can be integrated into the data

visualization framework and can further assist clinicians during

patient selection for clinical trials.

As regards patient clustering, we analyzed EF changes with

the k-means algorithm on standardized variables. Considering

baseline phenotype (HFrEF, HFmrEF, and HFpEF), we

clustered patients based on their EF variation between the first

and the last measurement and, subsequently, investigated its

impact on hospital accesses. Additionally, non-linear models of

EF decrease per baseline EF group may identify important

predictors of EF deterioration, helping with disease

management and allocation of resources. Furthermore, we may

identify patterns of fast EF deterioration across different

baseline EF groups and compare them to the expected

trajectories in terms of hospitalizations, days in hospitals, and

planned medical examinations.
Discussion

In the current work, the authors aim to describe, in detail, the

methodological scaffolding underlying GENERATOR HF

DataMart, an AI-based laboratory based on RWD about patients

with HF in Fondazione Policlinico Universitario A. Gemelli. This

has led to the creation of a flexible, highly reusable framework

for the generation of RWE, which is now being exploited for

multiple research threads in the domain of HF, including the

personalization of medical interventions. Therefore, the results

reported in this paper are intended only as illustrative examples

of such exploitation patterns, which are to be adequately

described in subsequent works.

Due to the latest technological developments, cardiovascular

research is stepping into an unprecedented new era, characterized

by the generation and release of an incredible amount of data,

termed big data (15).
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FIGURE 4

Data visualization of selected variables (eGFR, Hemoglobin, NT-ProBNP) distribution for a patient subgroup during the first hospitalization event (patients
with age <90 years, diabetes, and hypertension, period 2019–2021). eGFR, estimated Glomerular Filtration Rate.

FIGURE 5

Comparison of eGFR values between first and last hospitalization event for a patient subgroup (patients with age <90 years, diabetes and hypertension,
period 2019–2021).
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FIGURE 6

Patient journey visualization with history of contacts (outpatient, emergency, day hospital, inpatient) for a male, 74 years old patient with diabetes and
hypertension during the period 2019–2021. ID, identification.

FIGURE 7

Hemoglobin trend across contacts (outpatient, emergency, day hospital, inpatient) for a male, 74 years old patient with diabetes and hypertension during
the period 2019–2021. eGFR: estimated Glomerular Filtration Rate.
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Key features of them are:

1) speed, as they can be generated, processed, and analyzed in

real-time;

2) quantity, due to the richness of the data, the scale of which

challenges classical storage, processing, and analysis

approaches;

3) variety, referring to the diversity of data sources (i.e.

administrative, patient-reported, or healthcare-generated)

4) veracity, concerning their quality and reliability;

5) value, about their applicability and usability (15).
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By definition, big data cannot be analyzed through traditional

methods, but their management must necessarily rely on AI,

defined as a set of programs that allow machines to mimic

human behaviour (16). This has placed researchers in front of

new challenges including data integration, transformation,

verification, validation, and data privacy, which need to be

necessarily resolved and explained thoroughly before presenting

results. To ensure their clarity and transparency, we have

described, in advance, the methodology of our project, aiming at

transforming RWD into RWE in the HF field. Unquestionably,

one of the major pitfalls of “traditional” clinical trials, conducted
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with specific populations and in specialized environments, is the

lack of generalizability (17). They rely upon long lists of

eligibility criteria, detailed case reporting forms that exist

separately from standard medical records, accurate monitoring,

and specialized research staff to ensure adherence to a well-

characterized protocol (18). This allows for high-quality and

accurate data, with high internal validity, but often comes at the

expense of generalizability. Furthermore, “traditional” clinical

trials may provide scarce data on interactions with concomitant

diseases and treatments, and adherence to the tested therapy may

be biased by being supported through intensive efforts, not

feasible in real clinical practice (18). It should be considered that

generalizability is inherently constrained because our DataMart

consists of a geographically-limited patient cohort. Therefore, an

essential point for maximizing generalizability is to ensure

interoperability with other “datamarts” from other research

contexts. This is ensured since each variable is standardized and

defined according to the latest European guidelines, enabling the

reproducibility of our analysis in other environments.

Acute and chronic HF may represent a promising target for big

data use, due to its intrinsic complexity and heterogeneity. Clinical

big data, collected during daily clinical practice, reflect real-life

populations, providing a complementary viewpoint compared to

rigorous and highly selective RCTs. They may be extracted from

imaging exams, EHRs, and implantable or wearable devices.

However, RWD, despite increased generalizability, raises other

concerns about data quality and data missingness, as a downside.

Indeed, they are not collected to support a specific research

project defined a priori. Therefore, their accuracy and reliability

need to be taken into account and maximized, as far as possible,

for such purposes.

The fields, within which GENERATOR HF DataMart could be

employed, are multifarious.

First, HF 30-day readmission rates have been a major focus of

efforts to improve the prognosis and QoL of HF patients, as well

as reduce healthcare costs (1). Unlike other diseases like acute

coronary syndrome and pneumonia, which are most often isolated

events not expected to imminently recur, acute HF patients are at

increased risk for early re-admission since they have higher rates

of comorbidities or residual congestion at the time of discharge

(19). Different risk scoring systems have been designed to identify

patients at high risk of 30-day re-admission in the general

population, but none of these predictive risk scores has been

widely implemented in the population of HF (20). Nevertheless,

the identification of this subgroup of patients at high risk of re-

admission could allocate appropriate resources to these patients, as

well as attenuate the clinical and financial burdens of overall patients.

Second, according to contemporary guidelines, HF classification

and treatment decisions are deeply based on the evaluation of EF

(1). However, EF is not a stationary parameter but can increase or

decrease over time. Of note, the majority of contemporary studies

focus exclusively on baseline EF and its recovery, without assessing

the full spectrum of EF changes, its determinants, and related

prognosis (21–23). As a result, information on the onset,

determinants, and prognosis of EF variation over time is scant and

limited to a handful of studies (24–27). The main reason for this
Frontiers in Cardiovascular Medicine 10
knowledge gap is the lack of granularity of clinical trial data, often

with a short follow-up and a narrow data spectrum, specific to

certain research purposes. On the other hand, GENERATOR HF

DataMart, including demographics, vitals, diagnosis, labs,

procedures, medications, and their response, represents potentially a

patient’s multi-parametric health trajectory, capable of filling this gap.

Third, one of the greatest challenges in modern cardiology is

“precision medicine,” which means delivering therapies tailored

to each patient, taking inter-individual variability into utmost

consideration. However, precision medicine requires more

detailed data, together with a considerable ability of computers to

analyse, integrate and leverage these data, to create the “digital

twin” of a patient (28). In healthcare, it represents a

comprehensive and virtual tool that integrates coherently and

dynamically the clinical data acquired over time for an individual

and creates a digital model of him, projected into the future. In

practice, a “digital twin” may suggest whether a treatment is

appropriate for a patient by simulating drug response before a

specific treatment is ultimately chosen (28). One emerging

application of the “digital twin” is to address sex-related

differences in terms of therapeutic response and prognosis in HF

patients (29). Of note, important sex differences exist in

epidemiology, pharmacokinetics, pharmacodynamics, and

prognosis, leading to differential responses to pharmacological

therapies (30, 31). Nonetheless, women remain consistently

underrepresented in interventional trials (20%–25% of overall

patients), and, therefore, guidelines are predominantly based on

male-derived data. Our GENERATOR HF DataMart, consisting

currently of 37.7% women, a percentage significantly higher than

that of RCTs and in line with other HF registries, can contribute,

at least in part, to fill this knowledge gap (29, 32, 33). In this

regard, Figure 8 shows a Sankey diagram, grouping HF patients

according to their clinical pathways within our institution. This

multi-parametric approach, through which we know about each

subject’s clinical-laboratory data, comorbidities, and all contacts at

our institution, both inpatient and outpatient, allow us to create

digital representations of patients (i.e., digital twins). Therefore,

these population data may be used to build and validate statistical

and mechanical models, providing valuable information

(phenotyping, risk assessment, prediction of disease development)

that, in combination with traditional data, aids in the process of

clinical decision-making, in support of precision medicine.

Fourth, big data may be particularly useful when the

investigated disease is uncommon, such as congenital

cardiovascular disease, a domain in which RCTs often fail to

provide definitive answers, because of the small number of

subjects enrolled and their inherent heterogeneity (34).

However, the most important drawback of registry-based

studies is the lack of randomization of interventions, leading to

bias, confounding, and, therefore, the impossibility of establishing

treatment efficacy. At the same time, significant obstacles are

often encountered in implementing conventional RCTs,

especially in the domain of HF, as demonstrated by the small

portion of completed studies. Many of these difficulties are

mitigated by registry-based pragmatic trials, characterized by

simplified regulatory procedures (limited monitoring, regulatory
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FIGURE 8

Sankey diagrams grouping HF patients according to their clinical pathways within Policlinco Gemelli between 2019 and 2021. FPG, Fondazione Policlinico
Gemelli; HFpEF, Heart Failure with preserved Ejection Fraction; HFrEF, Heart Failure with reduced Ejection Fraction; HFmrEF, Heart Failure with mildy
reduced Ejection Fraction.
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and compliance documentation), focus on essential outcome data,

single ethical approval, automatic assessment of outcomes, and

real-world evidence (4).
Limitations

Major shortcomings of big data need to be considered. First, large

databases and registries may present operator-to-operator variability in

data collection, inconsistent use of definitions, low-quality of data, and

missing data (35). RWD is often used for purposes different from those

for which they were originally collected and thus may lack information

for critical endpoints. In our DataMart a significant proportion of

patients did not have an assessment of EF and other basic

measurements (i.e., arterial blood pressure and heart rate). When

considering the EF data, for instance, the percentage of missing data

might be considered relevant, but at the same time provided RWD

on the use of the echocardiogram in daily clinical practice. By

analyzing of the continuous data and performances derived from

our DataMart, a remarkable improvement in the use of

echocardiography in the clinical routine was observed, decreasing

significantly the incidence of missing and/or not reported data of

this parameter when comparing the first year of observation to the

third (80+ % missing rate in 2019, reduced to 43% in 2020 and

then down to 22% in 2021). However, it should be always taken in

to account that the diagnosis of HF is clinically based, and therefore

the precise numerical value of EF is occasionally missing since it

does not change the patient’s therapeutic management, as recently

challenged by several authors (24).

In our DataMart, the data collection process is made automatic

with regular human validation, which ensures high-quality data,

while minimizing missing data. In addition, discrepancies in

medical definitions are greatly reduced by having a standardized

language in our institution. Second, some analytical issues, such
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as the potential over-fitting of prediction models and multiple

comparisons, should be addressed with appropriate statistical

tools, to minimize the likelihood of false-positive associations

(15). Over-fitting is a latent problem in predictive modelling,

especially in datasets with a limited number of patients and high

missing rates. In GENERATOR HF DataMart, we developed

models of re-hospitalization and EF variation, employing cross-

validation and regularization techniques. Additionally,

GENERATOR HF DataMart updates daily with data, providing

the possibility to extensively validate and even adapt the

developed models. Third, data analysts also encounter

considerable difficulties in interpreting the processes by which

deep learning algorithms reach their results, the so-called “black-

box criticism” (36). Interpretability may be facilitated by capsule-

based networks or approaches that systematically censor inputs

to define those that have the greatest influence on outputs.

Fourth, we acknowledge that the presence of missing data might

affect the consistency of our GENERATOR HF DataMart.

However, this issue is probably one of the most commonly faced

in data cleansing or pre-processing. The degree of missing data

will be assessed periodically to quantify the consistency and

accuracy of our GENERATOR HF DataMart and will be

considered an important quality indicator. By design, regardless

of all other factors constituting the data analysis model, the

degree of missing data will be minimized as much as possible

through the optimization of the processes of data mining and

multiple imputations and, in selected cases, by implementing a

model to predict the target variable and missing values.

Finally, there are some privacy and bioethical issues due to the

pervasive and ubiquitous nature of big data. In this regard,

GENERATOR HF DataMart has developed pseudonymization

procedures that convert patient-sensitive information into

encrypted data, to ensure the usability of potentially sensitive and

personal data, while preserving their scalability and reliability (7).
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Conclusions

GENERATOR HF DataMart has been created to support

clinical research in the HF field. This is based on an AI-driven

process, that automatically extracts data from various sources and

uses them for generating clinical evidence, drawn from the real

world. This new approach is paving the way for a revolutionary

paradigm shift that may provide a complementary perspective to

RCTs, while ensuring, at the same time, sustainability, accuracy,

velocity, and reproducibility.
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