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Objects: To evaluate the hsa_circ_0001445 level in peripheral blood leukocytes of
patients with coronary heart disease (CHD) and its related clinical factors, and
predict its circRNA-miRNA-mRNA regulatory network in CHD pathogenesis via
bioinformatics analysis.
Methods: Peripheral blood leukocyteswere isolated from thewhole blood samples of
94 CHD patients (aged 65.96±9.78 years old) and 126 healthy controls (aged 60.75 ±
8.81 years old). qRT-PCR was used to quantify the expression level of circRNA and
subsequently analyze its association with CHD clinical parameters. Via bioinformatics
algorithm and GEO datasets, differential miRNA expression was evaluated using the
Limma package. A miRNA-mRNA regulatory network was predicted by
cyTargetLinker. ClusterProfiler was employed to perform functional enrichment
analysis of the circRNA network to investigate its role in CHD pathogenesis.
Results: The expression of hsa_circ_0001445 in peripheral blood leukocytes of CHD
patients was downregulated compared with that of healthy controls. Positive
correlations were evident between hsa_circ_0001445 expression level and the levels
of hemoglobin, triglycerides, high- and low-density lipoprotein cholesterol. A
significant negative correlation was also found between hsa_circ_0001445
expression level and age and the neutrophil level. Low expression of
hsa_circ_0001445 exhibited a discriminatory ability between CHD patients and
healthy controls with a sensitivity of 67.5% and a specificity of 76.6% (p <0.05). By
bioinformatics analysis, 405 gene ontology terms were identified. The Kyoto
Encyclopedia of Genes and Genomes terms focused principally on the PI3K-Akt
signaling pathway. hsa_circ_0001445 was associated with the expression of three
miRNAs that may regulate 18 genes involved in KEGG processes: hsa-miR-507, hsa-
miR-375–3p, and hsa-miR-942–5p.
Conclusion:Thehsa_circ_0001445 level in peripheral blood leukocytesmayserve as a
biomarker forCHDdiagnosis.Ourworkon circRNA-miRNA-mRNAnetworks suggests
a potential role for hsa_circ_0001445 in CHD development.
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Introduction

Coronary heart disease (CHD) is the most common heart

condition worldwide and the leading cause of death of elderly

men and women (1). Despite recent declines in developed

countries, both CHD morbidity and mortality continue to

increase rapidly in developing countries. Various factors are

involved in CHD pathogenesis, including older age, dyslipidemia,

obesity, psychological issues, hypercholesterolemia, diabetes, and

family history (2–4). Currently, most efforts focus on

biochemical tests, protein and gene based biomarkers to predict

the incidence of CHD (5, 6). However, the ability of these factors

in terms of early detection of CHD are still controversial (5).

Recently, circular RNAs (circRNAs) have emerged as a novel

potential non-invasive biomarker for diagnosis and prognostic of

CHD patients.

CircRNAs are a kind of non-coding RNA that consists of

continuous covalently closed loops without the 3′- and 5′ end

like linear RNA, which enables it to resist degradation, and thus

has relative conservation and stability (7). Recently, their

functions and biological features have been extensively studied.

They modify gene expression by serving as microRNA (miRNA)

sponges that bind and inactivate certain miRNAs (8–10).

Research on their roles in cardiovascular diseases has progressed

rapidly. In particular, in-depth studies of the relationship

between circRNA and CHD have provided effective tools to early

diagnose CHD and by that reduced CHD mortality (5, 7, 11).

Recently, Vilades et al. (6) showed that the plasma levels of the

circRNA hsa_circ_0001445 (hsa_circSMARCA5_013) were

proportional to coronary atherosclerotic burden.

hsa_circ_0001445 has been consistently detected in clinically

relevant samples, including heart tissue (12), plasma (13), serum

(14), and whole blood (15). In this study, we first investigated

the levels of hsa_circ_0001445 in peripheral blood leukocytes

(PBLs) of CHD patients from Guangxi, China (6), and analyzed

its correlation with clinical characteristics. Next, we performed

bioinformatics analyses to define a novel circRNA-miRNA-

mRNA network involved in CHD. Finally, we conducted

functional and pathway enrichment analyses of potentially

relevant genes. Our findings may provide potential candidate for

further studies on the pathogenesis of CHD.
Methods

Study population

The experimental group included 94 CHD patients aged

65.96 ± 9.78 years (58 men and 36 women) admitted to the

Department of Cardiology of the People’s Autonomous Hospital

of Guangxi Zhuang from January 1 2019 to December 31 2020.

All patients underwent coronary angiography (CAG), and those

with stenoses ≥50% in at least one of the three main coronary

arteries or their major branches (diameter ≥2 mm) were
02
diagnosed with CHD. The exclusion criteria were diabetes

mellitus, any other clinically acute or chronic inflammatory

systemic disease, uncontrolled hypertension, liver or kidney

dysfunction, endocrine disease, autoimmune disease, a

malignancy, prior percutaneous coronary intervention (PCI) or

coronary artery bypass grafting (CABG), and a history of CHD.

The control group included 126 healthy subjects aged 60.75 ±

8.82 years (61 men and 65 women) recruited in the same period

from the Second Affiliated Hospital of Guangxi Medical

University. They were confirmed healthy after physical check-

ups; none had a history of coronary atherosclerosis or

microvascular disease. This study was conducted in accordance

with the Declaration of Helsinki (1975) and was approved by the

ethics committee of Guangxi Medical University (approval no.

2019-SB-060). All patients and controls gave written informed

consent.
Total RNA extraction

Total RNAs were extracted from PBLs of CHD patients and

healthy controls using the SanPrep column microRNA extraction

kits (Sangon Biotech, China); all samples were stored at −80°C.
Reverse transcription polymerase chain
reaction (RT-PCR)

RNA reverse transcription into cDNA was performed using 5×

HiScript III qRT SuperMix kits (Vazyme Biotech, China) according

to the manufacturer’s instructions. One microgram of RNA and 4x

gDNA wiper mix were incubated at 42°C for 2 min, then 5×

HiScript III qRT SuperMix was added, followed by incubation at

37°C for 15 min and 85°C for 5 s. The products served as qRT-

PCR templates.
qRT-PCR analysis

The expression level of hsa_circ_0001445 was detected by qRT-

PCR with Light Cycler 96 platform (Roche, USA), and

Glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) served as

the internal standard for normalization. The specific primers

were listed as follows: (hsa_circ_0001445) forward primer: 5′-
TGGGCGAAAGTTCACTTAGAA-3′, reverse primer: 5′-
CACATGTGTTGCTCCATGTCT-3′; (hGAPDH) forward

primer: 5′- TGTTGCCATCAATGACCCCTT-3′, reverse primer:

5′-CTCCACGACGTACTCAGCG-3′ (6, 16). Each sample was

performed in triplicate. The reaction conditions included of 40

cycles at 95°C for 3 min, 95°C for 10 s, and 60°C for 60s; the

dissolution curves were obtained via one cycle at 95°C for 5 s,

60°C for 1 min, and 97°C for 1 s. The expression level of

hsa_circ_0001445 was calculated using the 2−ΔCt method relative

to hGAPDH.
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Statistical analysis

Data were statistically analyzed using SPSS 22.0 (SPSS Inc.

Chicago, IL, USA) and GraphPad Prism 8 (GraphPad Software, San

Diego, California, USA). Continuous data were presented as mean

± standard deviation (means ± SD) if normally distributed, and

otherwise as median (interquartile range). The circRNA expression

levels between CHD and controls were compared using the

Student’s t-test (calculated by SPSS) to determine statistically

significant difference between the means of two groups. Spearman’s

rho coefficient was used to assess the correlation between

continuous variables. Logistic regression was used to assess

relationships between various factors and the PBL levels of

hsa_circ_0001445. A p-value < 0.05 was considered significant.

Analysis of receiver operating characteristic (ROC) curves was

performed to calculate the optimal area under the ROC curve

(AUC) for evaluating the CHD diagnostic ability of hsa_circ_0001445.
Differential miRNA expression and
construction of the miRNA-mRNA
regulatory network

miRNA expression levels of CHD patients were collected from the

public Gene Expression Omnibus database (GEO) (https://www.ncbi.

nlm.nih.gov/geo/) using the following criteria: peripheral blood cells

from humans, ≥3 samples of patients and normal controls, and

miRNAs expression in CHD patients. The relevant datasets were

GSE105449 (GPL22949) (17) and GSE61741 (GPL9040) (18). There

were 236 samples in total (136 control and 100 CHD) that met the

above criteria. GSE IDs, the high-throughput data, and the annotated

subject characteristics of the control and CHD groups were collected

in a series matrix file and were analyzed using R software ver. 3.6.2.

R software (Version 3.6.2; R Foundation for Statistical Computing,

Vienna, Austria) (https://www.r-project.org/), the Bioconductor

software package (https://bioconductor.org/packages) (19), and the

limma package (20) were used to analyze differential miRNA

expression based on miRNA expression data. All p-values were

corrected using the false discovery rate (FDR) correction toolkit. A p-

value <0.05 and with an FDR < 0.05 for all GSE files (fold change >1)

were considered significant. Then, Venn diagrams were framed to

identify overlapping miRNAs among the predicted datas in order to

determine which potential miRNAs were associated with

hsa_circ_0001445 in CHD. miRNAs identified as significant were

entered into Cytoscape ver. 3.6.1 (http://cytoscape.org/) and were used

to establish a network. A regulatory network was predicted by

cyTargetLinker (https://cytargetlinker.github.io/) using the targetscan-

hsa-7 and miRTarBase-hsa-7 databases (21). Finally, a miRNA-

mRNA network was constructed.
FIGURE 1

Expression levels of hsa_circ_0001445 in the healthy and CHD groups.
p < 0.001.
Gene ontology (GO) and Kyoto
encyclopedia of genes and genomes
(KEGG) enrichment analyses

ClusterProfiler ver. 3.14.3 package in R software was used to

analyze the gene ontology and signaling pathways. Genome-wide
Frontiers in Cardiovascular Medicine 03
annotation for humans was based on mapping employing the

Entrez gene identifiers; we used several methods to visualize and

interpret the functional enrichment results. A p-value <0.05

served as a cut-off when determining significant enrichments of

GO terms and KEGG pathways. That is, the more likely that the

gene associated with the listed entry/pathway influences cellular

life activities and warrants further research (22). Venny 2.1

diagram was used to improve predictive accuracies (via

intersection) (https://bioinfogp.cnb.csic.es/tools/venny/). Finally,

the interaction network of miRNAs with genes of the KEGG

pathway was established.
Results

Expression of hsa_circ_0001445 in PBLs
of CHD patients

The expression level of hsa_circ_0001445 in PBLs of CHD

patients was significantly lower than that of healthy controls

(0.640 ± 0.254 and 1.079 ± 0.453, respectively) (p < 0.001)

(Figure 1).
Clinical characteristics comparison
between CHD patients and healthy controls
groups

We compared the age, sex, blood parameters, fasting blood

glucose levels (GLU), three renal function items (UREA, CREA,

and UA), three liver enzymes (AST, ALT, GGT) and cholesterol

levels of the two groups. As shown in Table 1, age, white blood

cell count (WBC), and levels of hematocrit (HCT), neutrophils

(NEU), red blood cells (RBCs), hemoglobin (HGB), platelets
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TABLE 1 Clinical parameters of the CHD patients and healthy controls.

Clinical parameters Healthy CHD P value
Age 60.746 ± 8.817 65.957 ± 9.780 <0.001

Sex (Male/Female) 61/65 58/36 0.051

WBC (109/L) 6.2387 ± 1.475 6.877 ± 2.289 0.013

NEUTR (109/L) 3.485 ± 1.115 4.234 ± 1.779 <0.001

RBC (1012/L) 4.815 ± 0.606 4.497 ± 0.620 <0.001

HGB (g/L) 138.218 ± 11.815 131.489 ± 15.641 <0.001

HCT 41.610 ± 3.199 39.485 ± 4.373 <0.001

PLT (109/L) 251.108 ± 59.333 228.391 ± 64.189 0.008

AST (U/L) 20.246 ± 5.353 31.607 ± 35.559 0.001

ALT (U/L) 17.802 ± 6.516 29.122 ± 46.475 0.008

GGT (U/L) 26.776 ± 17.127 40.417 ± 40.246 0.001

Urea (mmol/L) 4.981 ± 1.130 5.351 ± 2.176 0.109

Crea (µmol/L) 79.429 ± 15.032 91.765 ± 115.907 0.239

UA (µmol/L) 329.659 ± 74.302 341.455 ± 129.966 0.464

GLU (mmol/L) 4.986 ± 0.502 4.677 ± 0.712 <0.001

T-Cho (mmol/L) 4.963 ± 1.038 4.457 ± 1.098 0.001

TG (mmol/L) 1.356 ± 0.70031 1.454 ± 0.981 0.416

HDL-C (mmol/L) 1.454 ± 0.398 1.110 ± 0.275 <0.001

LDL-C (mmol/L) 3.245 ± 0.852 2.642 ± 0.861 <0.001

Dinh et al. 10.3389/fcvm.2023.1104223
(PLT), alanine aminotransferase (ALT), aspartate transaminase

(AST), glutamyl transpeptidase (GGT), glucose (GLU), total

cholesterol (T-Cho), high-density lipoprotein cholesterol (HDL-

C), and low-density lipoprotein cholesterol (LDL-C) significantly

differed between the two groups (all p < 0.05).
Relationships between PBL
hsa_circ_0001445 expression level and
clinical characteristics

Clinical parameters associated with hsa_circ_0001445

expression level in CHD patients were shown in Table 2. Its

expression was negatively correlated with age and NEU but

positively correlated with HGB, T-Cho, HDL-C, and LDL-C (p <

0.05).
TABLE 2 Correlations between hsa_circ_0001445 expression level and
clinical parameters of CHD patients.

Factors hsa_circ_0001445

r P value
Age −0.290 <0.001

WBC (109/L) −0.088 0.195

NEUTR (109/L) −0.137 0.043

RBC (1012/L) 0.142 0.036

HGB (g/L) 0.181 0.007

HCT 0.172 0.011

PLT (109/L) 0.039 0.566

AST (U/L) −0.103 0.136

ALT (U/L) −0.021 0.781

GGT (U/L) −0.102 0.143

GLU (mmol/L) 0.063 0.356

T-Cho (mmol/L) 0.249 <0.001

HDL-C (mmol/L) 0.284 <0.001

LDL-C (mmol/L) 0.293 <0.001
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Logistic regression analysis of associations
between hsa_circ_0001445 expression
level and clinical characteristics of CHD
patients

We used multivariate logistic regression to explore whether

hsa_circ_0001445 independently predicted CHD. Model 1

included NEU and HGB; model 2 included T-Cho, HDL-C, and

LDL-C; and model 3 included NEU, HGB, T-Cho, HDL-C, and

LDL-C. Based on the median 2−ΔCt values for hsa_circ_0001445,

the CHD group was subdivided into those with low and high

circRNA expression. In addition, based on the normal ranges

and median values of NEU, HGB, T-Cho, and LDL-C, patients

were subdivided into high and normal subgroups. The HDL-C

values were used to define normal- and low-expression subgroups.

Low hsa_circ_0001445 expression level was an independent

risk factor for CHD in all three models (Table 3).
ROC curve analysis and the AUC of
hsa_circ_0001445 for diagnosing CHD

ROC curve analyses of the healthy and CHD groups showed

that the AUC for hsa_circ_0001445 was 0.816 ± 0.028 (95% CI

0.761–0.871; p < 0.001; Figure 2). It had the highest J index [(Se

+ Sp− 1) = 0.441]; a 2−ΔCt value of 0.814 was thus chosen as the

cut-off. The sensitivity was 67.5%, the specificity was 76.6%, and

the likelihood ratio [Se/(1-Sp)] was 2.88.
Differentially expressed miRNAs of CHD and
the predicted miRNA-mRNA regulatory
networks

We found 132 differentially expressed miRNAs in CHD,

including 79 that were upregulated and 53 that were

downregulated in GSE105449 and GSE61741 dataset; all met the

cutoff criteria of abs (log2FC) >1 and p < 0.05 (Supplementary

Table S1). The top 10 up- and downregulated miRNAs are listed

in Tables 4, 5.

The Circbank and Circinteractome databases were used to

predict interactions between hsa_circ_0001445 and miRNAs. We

identified 26 interacting pairs.

We used Venny ver. 2.1 to visualize the Circbank and

Circinteractome data, the upregulated miRNAs of GSE105449

and GSE61741 dataset; and their intersections (Figure 3). The

predicted target miRNAs of hsa_circ_0001445 were hsa-miR-507,

hsa-miR-375–3p, hsa-miR-576–5p, and hsa-miR-942–5p. These

four miRNAs were entered into Cytoscape ver. 3.6.1. The

CyTargetLinker app simply links Cytoscape networks to miRNA-

mRNA interactions. A total of 1,175 mRNAs were obtained and

the Gene IDs were converted into Entrez IDs for GO and KEGG

analyses using R software and the Perl tool.
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TABLE 3 Logistic regression results.

Model 1 Model 2 Model 3

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value
hsa_circ_0001445 0.175 <0.001 0.158 <0.001 0.163 <0.001

(0.096–0.319) (0.081–0.306) (0.084–0.318)

FIGURE 2

ROC curve analysis of hsa_circ_0001445. The AUC shows the
diagnostic ability of hsa_circ_0001445 in terms of CHD (p < 0.001).

TABLE 4 Top 10 DmiREs from GSE105449.

Up-regulated miRNA log2FC P value D
hsa-miR-124-3p 1.344234242 0.008875452

hsa-miR-1305 1.240584333 0.001566456

hsa-miR-1288-3p 1.175015237 0.016246456

hsa-miR-542-3p 1.174828635 0.008972344

hsa-miR-1202 1.162524856 0.016565743

hsa-miR-378a-3p 1.128869631 0.031397457

hsa-miR-27b-3p 1.116581263 0.021416462

hsa-miR-139-3p 1.104053912 0.002214564

hsa-miR-520e 1.055113965 0.021147573

hsa-miR-644a 1.034448666 0.005345673

TABLE 5 Top 10 DmiREs from GSE61741.

Up-regulated miRNA log2FC P value D
hsa-miR-375-3p 2.055179668 3.41 × 10−8

hsa-miR-142-3p 1.911637447 5.52 × 10−7

hsa-miR-29c-3p 1.850096182 4.86 × 10−8

hsa-miR-1258 1.846107258 1.34 × 10−7

hsa-miR-302b-3p 1.789940606 2.09 × 10−6

hsa-miR-1468-5p 1.711611027 1.76 × 10−6

hsa-miR-520c-3p 1.647465652 7.74 × 10−7

hsa-miR-204-5p 1.643870075 7.73 × 10−7

hsa-miR-609 1.621093043 2.97 × 10−5

hsa-miR-132-5p 1.603354363 1.14 × 10−7

Dinh et al. 10.3389/fcvm.2023.1104223
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GO and KEGG analysis

GO terms were analyzed using R ver. 3.6.2 and clusterProfiler

ver. 3.14.3 followed by pathway enrichment. A total of 405 GO

terms were found (Supplementary Table S2). These covered

molecular function pathways, as shown in the table. The GO

terms were ranked by their adjusted p-values (p-value <0.05;

p-adjusted <0.05) (Figure 4).

The GO terms indicated biological process pathways such as

dephosphorylation, negative regulation of phosphorylation, and

venous blood vessel development (Figure 5).

KEGG enrichment analysis identified 70 pathways (p-values

<0.05) (Supplementary Table S3). The top 30 are summarized

in Figure 6.

To enhance accuracy, the results afforded by the mirtarbase

and targetscan databases were intersected with those described

above (Figure 7). This yielded 63 genes that were compared to

KEGG pathway genes. We found 18 potential KEGG genes.

Finally, we built a subnetwork of the interactions between

miRNAs and these genes. This included the signaling pathways

mentioned.
own-regulated miRNA log2FC P value
hsa-miR-376a-3p −1.251881245 0.040091924

hsa-miR-186-5p −1.197982753 0.007514646

hsa-miR-30b-5p −1.178711234 0.004173543

hsa-miR-338-3p −1.156623434 0.029673451

hsa-miR-326 −1.146023456 0.020356346

hsa-miR-29c-5p −1.118398224 0.022234453

hsa-miR-548am-5p −1.108357546 0.010322435

hsa-miR-29c-3p −1.104433632 0.005536363

hsa-miR-17-5p −1.094272355 0.007023452

hsa-miR-335-3p −1.088737452 0.006563467

own-regulated miRNA log2FC P value
hsa-miR-31-3p −1.67133085 9.10 × 10−8

hsa-miR-1283 −1.632062369 8.10 × 10−7

hsa-miR-200a −1.60499372 3.77 × 10−7

hsa-miR-515-5p −1.467324166 4.04 × 10−8

hsa-miR-1245a −1.409488453 3.83 × 10−6

hsa-miR-155-3p −1.376257877 1.03 × 10−5

hsa-miR-488-5p −1.368851066 3.19 × 10−7

hsa-miR-21-3p −1.324586005 0.000113238

hsa-miR-519b-5p −1.275137605 9.00 × 10−6

hsa-miR-545-3p −1.217793064 8.00 × 10−5
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FIGURE 3

The Venn diagram for the overlap of numbers of the predicted miRNAs.
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Discussion

Identifying factors involved in CHD pathogenesis can not only

improves our understanding of its development but also suggests

new approaches to the diagnosis, prognosis, and management of

CHD. Numerous biomarkers associated with CHD have been

applied, however, to identify its primary stage by regular

examinations, such as cardiac ultrasound and electrocardiography,

remains challenging. CHD diagnosis in its early stage with a

sensitive biomarker are crucial for treatment and prognosis.

Recent large-scale studies have suggested that circRNAs play an

essential role in the pathogenesis and progression of CHD (5, 6,

12, 23). In this study, we identified for the first time the circRNA

hsa_circ_0001445 as a potential diagnostic biomarker for CHD.

By evaluating the expression level of hsa_circ_0001445 in CHD

patients and control group, our results showed that the

expression of hsa_circ_0001445 in PBLs of CHD patients was

significantly lower than that of healthy controls. ROC curve

analysis indicated that its expression level well-distinguished

CHD patients from healthy subjects with AUC valued 0.816 ±

0.028 (95% CI 0.761–0.871; p < 0.001). In addition, logistic

regression revealed that hsa_circ_0001445 was an independent

predictor of CHD. Further studies on hsa_circ_0001445 as well

as other circRNAs involved in CHD is required to investigate

their potential in CHD diagnosis.

The RNA binding protein Quaking (QKI) promotes circRNA

formation (24). QKI was proven to be involved in cell

differentiation, apoptosis, proliferation, and migration (25).

Interestingly, recent works have shown that QKI affects
Frontiers in Cardiovascular Medicine 06
cardiovascular development and function (26–29), suggesting that

QKI may affect the expression of hsa_circ_0001445 in CHD

patients and consequently act on the disease progression. Several

studies have also indicated that hsa_circ_0001445 may be involved

in CHD development. Vilades et al. (6) found that plasma levels

of hsa_circ_0001445 are lower in patients with higher coronary

atherosclerotic burdens. Moreover, hsa_circ_0001445 is expressed

by human coronary smooth muscle cells in vitro; its secretion is

reduced under atherosclerotic conditions (6). Cai et al. (30) found

that hsa_circ_0001445 is downregulated during low lipoprotein-

induced oxidation of human umbilical vein endothelial cells.

Overexpression of hsa_circ_0001445 promotes cell proliferation

and inhibits the inflammatory response and apoptosis. These

findings and our work suggest that hsa_circ_0001445 may involve

in CHD development. Since the molecular mechanism of CHD is

complicated, as is the effect of hsa_circ_0001445 on CHD, further

research is required to elucidate its role in CHD pathogenesis.

The circRNA-miRNA-mRNA axis has been recently researched

in terms of how circRNAs regulate CHD development. Lin et al. (31)

constructed a network graph of the correlations between hsa-miR-

101–5 and each of hsa_circ_0030769, hsa_circ_15486–161,

hsa_circ_0122274, and hsa_circ_0079828. Miao et al. (5)

hypothesized that the miRNAs regulated by hsa_circ_0016274 are

miRNA-361–5p, miR-21–3p, miRNA-296–3p, and miRNA-375.

The target genes of the circ-YOD1-miR-21–3p/miR-296–3p axis

are BCL6, FBXL18, MMP9, and FCGR3B, as confirmed in other

studies describing associations of MMP9, BCL6 (32, 33), hsa-

miR-21–3p (32), and hsa-miR-296–3p (34) with CHD. In

another study, the network of circ_ZNF609-related miRNAs
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FIGURE 4

Go enrichment analysis. BP, biological process; CC, cellular component; MF, molecular function.

FIGURE 5

Top 10 GO terms with the lowest p-values. Biological pathways and associated genes were identified. Each node indicates a biological process in the
path. The lines are the interactions between the genes and the terms.
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FIGURE 6

KEGG pathway analysis and the numbers of associated genes. The pathways and the associated genes were ranked based on the p-values. The sizes of
the dots represent the gene counts of each row (KEGG categories).
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included hsa-miR-615–5p, hsa-miR-145–5p, hsa-miR-138–5p,

hsa-miR-150–5p (35), and AKT1 (a downstream target of

miR-138–5p) (36). In this study, we predicted that certain

genes affect CHD through bioinformatics analysis. This

finding is in agreement with previous reports as JAK2 (37, 38),

FZD4 (39), PDGFC (40), YWHAZ (41), SP1 (42), and LRP5

(43–45) which are all targets of hsa-miR-375–3p (46, 47).

These genes participate in many signaling pathways, of which

the PI3K-Akt pathway may play a major role in CHD (48–52).

Phosphoinositide 3-kinase (PI3K) lies downstream of many

receptor tyrosine kinases. PI3Ks play crucial roles in many

aspects of biological response, such as membrane trafficking,

cytoskeletal organization, cell growth and apoptosis. A serine/

threonine kinase Akt, also known as protein kinase B, is the

most well characterized target of PI3K. Akt is known to

mediate cell survival signal by regulating several effectors,

increases the rate of initiation of translation of mRNA by

ribosomes such as Bad or procaspase-9, p70S6K. Stimulating

and activating the phosphoinositide 3-kinase (PI3K)/protein

kinase B (Akt) signaling pathway can regulate the expression

of vascular endothelial cytokines, the polarization and survival
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of macrophages, the expression of inflammatory factors and

platelet function, thus affecting the occurrence and

development of CHD. This reinforces the authenticity of our

interactive network prediction. The integrated biological

information predicts the potential molecular mechanism of

hsa_circ_0001445.

This study had certain limitations. First, it was a cross-

sectional study with a modest sample size. Our findings

require confirmation in larger studies to obtain higher

reliability. Second, we did not perform luciferase assay, WB

assay; but only database-derived links. Those binding assays

would reinforce our suggestion that hsa_circ_0001445 is a

good candidate biomarker of CHD. The mechanism by which

the circRNA-miRNA-mRNA axis regulates CHD pathogenesis

requires further in vivo and in vitro research.
Conclusion

We identified hsa_circ_0001445 as a potential biomarker for

CHD diagnosis. The predicted genes involved in CHD participate
frontiersin.org
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FIGURE 7

Mechanism of action of hsa_circ_0001445. (A) Venn diagram of genes predicted by mirtarbase and targetscan. (B) The subnetwork of the interactions
between miRNAs and these genes. (C) Functional analysis of potential genes of the KEGG pathway using Cytoscape ver. 3.6.1.
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in many signaling pathways, of which PI3K-Akt signaling may be

particularly relevant to CHD. Our results provide a basis for

further research on the molecular mechanism of

hsa_circ_0001445 in CHD pathogenesis.
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