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Introduction: The primary factor for cardiovascular disease and upcoming cardiovascular 
events is atherosclerosis. Recently, carotid plaque texture, as observed on ultrasonography, 
is varied and difficult to classify with the human eye due to substantial inter-observer 
variability. High-resolution magnetic resonance (MR) plaque imaging offers naturally 
superior soft tissue contrasts to computed tomography (CT) and ultrasonography, and 
combining different contrast weightings may provide more useful information. Radiation 
freeness and operator independence are two additional benefits of M RI. However, other 
than preliminary research on MR texture analysis of basilar artery plaque, there is currently 
no information addressing MR radiomics on the carotid plaque.

Methods: For the automatic segmentation of MRI scans to detect carotid plaque for 
stroke risk assessment, there is a need for a computer-aided autonomous framework 
to classify MRI scans automatically. We used to detect carotid plaque from MRI 
scans for stroke risk assessment pre-trained models, fine-tuned them, and adjusted 
hyperparameters according to our problem.

Results: Our trained YOLO V3 model achieved 94.81% accuracy, RCNN achieved 
92.53% accuracy, and MobileNet achieved 90.23% in identifying carotid plaque from 
MRI scans for stroke risk assessment. Our approach will prevent incorrect diagnoses 
brought on by poor image quality and personal experience.

Conclusion: The evaluations in this work have demonstrated that this methodology 
produces acceptable results for classifying magnetic resonance imaging (MRI) data.
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1. Introduction

Global mortality and morbidity are primarily caused by cardiovascular disease (CVD), and 17.9 
million fatalities each year globally are attributable to CVD, or 31% of all deaths (1). The primary factor 
for CVD and upcoming cardiovascular events is atherosclerosis. Atherosclerosis development and plaque 
formation in the vasculature, including the coronary and carotid arteries, are the primary causes of CVD 
(2). Plaque rupture or ulceration frequently leads to the development of a thrombus, which may embolize 
or occlude the lumen, blocking blood flow and resulting in myocardial infarction or stroke (3). The plaque 
is seen and screened using a variety of medical imaging techniques, the most popular of which are 
magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US).
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Recently, because of significant inter-observer variability, the 
texture of carotid plaques, as seen on ultrasonography, is variable and 
challenging to classify with the human eye. In order to determine the 
mechanical qualities caused by the influence of the lipid core and 
calcification within a plaque, numerical simulation is also employed to 
define the distribution and components of the plaque structure (4). 
Compared to CT and ultrasonography, high-resolution MR plaque 
imaging provides naturally superior soft tissue contrasts, and a 
combination of various contrast weightings may yield more insightful 
data. Two further advantages of MRI include operator independence 
and the absence of radiation. However, other than preliminary research 
on MR texture analysis of basilar artery plaque, there is currently no 
information addressing MR radiomics on carotid plaque (5).

Since medical images contain a plethora of information, many 
automatic segmentation and registration approaches have been 
investigated and proposed for use in clinical settings. Deep learning 
technology has lately been used in various industries to evaluate 
medical images, and it is particularly good at tasks like segmentation 
and registration. Several CNN architectures have been suggested that 
feed whole images with increased image resolution (6). Fully CNN 
(fCNN) was developed for segmenting images and was first introduced 
by Long et al. (7). However, fCNNs produce segmentations with lower 
resolution than the input images. That was brought about by the later 
deployment of convolutional and pooling layers, both of which reduce 
the dimensionality. For multiple sclerosis lesion segmentation, Brosch 
et al. (8) suggested using a 3-layer convolutional encoder network to 
anticipate segmentation of the same resolution as the input pictures. 
Kamnitsas et  al. (9) used a deep learning technique to categorize 
ischemic strokes. Roy and Bandyopadhyay (10) examined Adaptive 
Network-based Fuzzy Inference System (ANFIS), a suggested method 
for categorizing cancers into five groups. The Gray-Level 
Co-Occurrence Matrix (GLCM) was used to obtain characteristics that 
were used to categorize and segment tumors using pre-trained AlexNet 
(11). In this research, we used various pre-trained deep learning models 
to the automatic segmentation of MRI carotid plaque for Stroke risk 
assessment. Deep learning networks have recently been repeatedly 
suggested for enhancing segmentation performance in medical 
imaging. Segmentation performance can be improved by combining 
segmentation and classification, regression, or registration tasks (12).

2. Proposed methodology

For automatic segmentation of MRI scans to detect carotid plaque for 
stroke risk assessment, there is a need for a computer-aided autonomous 
framework to classify MRI scans automatically. Deep learning technology 
has recently permeated several areas of medical study and has taken center 
stage in modern science and technology (13). Deep learning technology 
can fully utilize vast amounts of data, automatically learn the features in the 
data, accurately and rapidly support clinicians in diagnosis, and increase 
medical efficiency (14). In this research, we proposed a deep learning 
framework based on transfer learning to detect carotid plaque from MRI 
scans for stroke risk assessment. We used YOLO V3, Mobile Net, and 
RCNN pre-trained models, fine-tuned them and adjusted hyperparameters 
according to our dataset. All experiments in this paper are conducted on 
Intel(R) Celeron(R) CPU N3150 @ 1.60 GHz. The operating system is 
Windows 64-bit, Python 3.6.6, TensorFlow deep Learning framework 
1.8.0, and CUDA 10.1. The proposed framework to address the mentioned 
research problem is shown in Figure 1.

2.1. Data collection and statistics

The data of 265 patients were collected from the Second Affiliated 
Hospital of Fujian Medical University, in which 116 patients have a high 
risk of plaques, and the remaining 149 patients have a stable condition 
and have a low chance of plaques. The detailed process and parameters 
for the data collection are described in the following subsections.

2.1.1. Inclusion criteria
Carotid artery stenosis detected by ultrasound, CTA, MRA, and 

other numerical simulations (15) methods needs to be  identified; 
ultrasound and CTA indicate plaque formation on the wall, regardless 
of whether the patient has clinical symptoms; carotid artery is not found 
by other imaging examinations Significant stenosis, but clinical 
symptoms: TIA and cerebral infarction of unknown cause. Magnetic 
resonance carotid artery scans were performed.

2.1.2. Scanning parameters
Philips 3.0 T MRI with 8-channel phased array surface coil dedicated 

for carotid artery assessment. Instruct the patient to lie down, keep calm 
during the scanning process, avoid swallowing, and place the jaw and neck 
in the center of the 8-channel phased array surface coil. First, the bilateral 
carotid arteries were scanned by coronal thin slice T2WI scanning, and 
the images were reconstructed to obtain the shape and stenosis position 
of the carotid arteries. The sequence and imaging parameters are as follows:

 • Rapid gradient echo (3D MERGE): 3D motion sensitized driven 
equilibrium prepared; fast gradient echo (turbo field echo); 
duration of repetition (TR)/time of echo (TE) 9/4.2 ms; field of 
view (FOV) 25,164 cm3; spatial resolution (SR) 0.80.80.8 mm3; flip 
angle 6°; imaging time 4 min.

 • 3D simultaneous noncontract angiography and intraplaque 
hemorrhage (3D SNAP): TFE TR/TE 10/4.8 ms, FOV 
25 × 16 × 4 cm3, spatial resolution 0.8 × 0.8× 0.8 mm3, flip angle 
11°/5°, imaging time 5 min.

 • 3D time of flight (TOF): fast field echo (FFE) TR/TE 20/4.9 ms, FOV 
16 × 16 × 4 cm3, spatial resolution 0.6 × 0.6 × 2 mm3, flip angle 20°, 
imaging time 6 min. Axial 3DTOF, fast spin echo (FSE)-based T1WI 
and T2WI scans were performed in the longitudinal range of 
20–24 mm (10–12 layers) with the stenosis as the center, supplemented 
by fat suppression (FS). The positions of the patients’ T1WI, T2WI, 
and 3DTOF sequences were kept consistent, and the images of 
patients with carotid plaques were selected for further study. The 
images were post-processed by the MRI-VPD system, and Plaque 
View software was used to analyze the properties and components of 
carotid plaques. All analysis and measurement steps were performed 
independently by three senior radiologists. The above examinations 
were obtained with the consent of the patients and their families and 
signed informed consent.

The sample dataset is shown in Figure 2. Furthermore, we also show 
the dataset statistics in the table for better understanding as shown in 
Table 1.

2.2. YOLO V3

A deep learning network called YOLO identifies and categorizes 
objects in the input photos. The object detection task entails locating 
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each object on the input image and classifying it according to the 
bounding box that surrounds it (16). A single Convolutional Neural 
Networks (CNNs) architectural model is used in the YOLO deep 
learning network to concurrently localize the bounding boxes of objects 
and classify their class labels from all images. The YOLO loss for each 
box prediction comprises coordinate loss due to the box prediction not 
covering an object as described in Eq. 1. Where oi is the output value, 
and ti is the target value.

 
BC Eloss

n
t o t o

i
i i i i= - ´ ´ ( ) + -( )´ -( )( )å1

1 1log log

 
(1)

The primary addition here is that YOLO V3 is able to extract more 
valuable semantic data from the up-sampled features during training. 
Table  2 displays the whole model architecture and hyper 
parameter details.

2.3. MobileNet

The MobileNet model is the first mobile computer vision model for 
TensorFlow and is designed for mobile applications, as its name suggests. 
MobileNet uses depth-wise separable convolutions and features filters/
kernels that are D Dk k´ ´1 . It significantly lowers the number of 
parameters when compared to a network with conventional convolutions 
of the same depth in the nets, and the convolution operation is 
represented in Eq. 2

FIGURE 1

Proposed framework.

A

B

FIGURE 2

Sample Dataset, whereby (A,B) represents the original and marked 
image for carotid plaque, respectively.

TABLE 1 Detailed statistics of the dataset.

Total patients High risk of 
plaques

Low risk of 
plaques

265 116 149

TABLE 2 YOLO V3 hyper parameters.

Type Filters Size Output

Convolutional 32 3 × 3 256 × 256

Convolutional 64 3 × 3/2 128 × 128

Convolutional 32 1 × 1

Convolutional 64 3 × 3

Residual 128 × 128

Convolutional 128 3 × 3/2 64 × 64

Convolutional 64 1 × 1

Convolutional 128 3 × 3

Convolutional 256 3 × 3/2 32 × 32

Convolutional 128 1 × 1

Convolutional 256 3 × 3

Residual 32 × 32

Convolutional 512 3 × 3/2 16 × 16

Convolutional 256 1 × 1

Convolutional 512 3 × 3

Residual 16 × 16

Convolutional 1,024 3 × 3/2 8 × 8

Convolutional 512 1 × 1

Convolutional 1,024 3 × 3

AVG pool GLOBAL

Connected 1,000

Soft max
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A B

FIGURE 3

Accuracy and Loss graph using the YOLO V3. (A) Representing the training and Validation accuracy while (B) representing the training and validation loss of 
YOLO V3 model according to our dataset.

 
Total no of multiplications M x x= D Dk p

2 2

 
(2)

The result of this is lightweight deep neural networks. The new 
architecture requires fewer operations and parameters to accomplish 
the same filtering and combination procedure as a typical 
convolution. The entire model architecture and hyperparameter 
details are displayed in Table  3, where each line represents a 
sequence of one or more identical layers (modulo stride) repeated 
n times and an expansion factor of t. Both layers share the output 
channel number c for the identical sequence. Every sequence starts 
with a stride, and all subsequent layers also employ a stride. All 
spatial convolutions employ 3×3 kernels.

2.4. R-CNN

The sliding-window paradigm is the foundation of the previous 
localization strategy for CNN, however, it struggles to achieve 
acceptable localization precision when working with more 
convolutional layers. The, the authors suggested using the region 
paradigm to address the CNN localization issue (17). Three modules 
make up the R-CNN design principle (1). The first module aims to 

produce a set of category-independent region recommendations 
using selective search (18), a search method that combines the best 
aspects of exhaustive search and segmentation intuitions.

One of the best techniques for reducing overfit is increasing the 
training dataset’s size. The training images were automatically resized 
using an augmented image dataset. Our pre-trained deep learning model 
avoids over-fitting by using the dropout layer.

3. Results and discussion

Global mortality and morbidity are primarily caused by 
cardiovascular disease (CVD), and 17.9 million fatalities each year 
globally are attributable to CVD, or 31% of all deaths. 
Atherosclerosis is the primary factor for CVD and upcoming 
cardiovascular events (19). The main causes of CVD are 
atherosclerosis development and plaque production in the 
vasculature, including the coronary and carotid arteries. Since 
medical images contain a plethora of information, many automatic 
segmentation and registration approaches have been investigated 
and proposed for use in clinical settings. Recently, deep learning 
technology has been used in various industries to analyze medical 
images. In this research, we proposed a deep learning framework 
based on transfer learning to detect MRI scans into a carotid 
plaque for stroke risk assessment. We used YOLO, Mobile Net, and 
RCNN pre-trained models, fine-tuned them and adjusted 
hyperparameters according to our problem. The data of 265 
patients were collected from the Second Affiliated Hospital of 
Fujian Medical University, in which 116 patients have a high risk 
of plaques, and the remaining 149 patients have a stable condition 
and have a low risk of plaques. Then, using a random selection 
approach, we divide the data in the ratio of 70% for training and 
30% for the testing set.

Our trained YOLO model achieved 94.81% accuracy, RCNN 
achieved 92.53% accuracy, and Mobile Net achieved 90.23% in 
identifying carotid plaque from MRI scans for stroke risk 
assessment. We  used accuracy and loss graphs to evaluate the 
performance of our model. According to our dataset, Figures 3, 
4A,B respectively, show the training and validation accuracy and 
training and validation loss for the YOLO V3 Mobile Net models. 
Similar to Figure 5, which uses the RCNN model to identify carotid 

TABLE 3 Mobile net model hyper parameters.

Input Type t c n s

2,242 × 3 conv2d - 32 1 2

1,122 × 32 Bottleneck 1 16 1 1

1,122 × 16 Bottleneck 6 24 2 2

562 × 24 Bottleneck 6 32 3 2

282 × 32 Bottleneck 6 64 4 2

142 × 64 Bottleneck 6 96 3 1

142 × 96 Bottleneck 6 160 3 2

72 × 160 Bottleneck 6 320 1 1

72 × 320 conv2d 1 × 1 – 1,280 1 1

72 × 1,280 avgpool 7 × 7 – – 1 –

1 × 1 × 1,280 conv2d 1 × 1 – k –
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plaque from MRI scans for stroke risk assessment, Figure 5A shows 
the training loss and training accuracy, and Figure 5B shows the 
validation loss and validation accuracy.

Table 4 lists the classification accuracies in terms of sensitivity 
and specificity for each pixel in the testing set. Both blinded manual 
and automated segmentation yield similar results, showing high 
specificities for all tissue categories and great sensitivity for fibrous 
tissue. In contrast to the loose matrix, which has very poor 
sensitivity, necrotic core and calcifications sensitivity is good. This 
metric is pessimistic for small locations, like the majority of 
calcifications and confusion matrix, which can mainly cause a 
slightly lower sensitivity. The segmentation result in Figure 6 serves 
as an illustration of this observation.

The relationship or trade-off between clinical sensitivity and 
specificity for each potential cut-off for a test or set of tests is usually 

A B

FIGURE 4

Accuracy and Loss graph using the RCNN. (A) representing the training and validation accuracy while (B) representing the training and validation loss of 
RCNN model according to our dataset.

A B

FIGURE 5

Accuracy and Loss graph using the Mobile Net. (A) Representing the training loss and training accuracy while (B) representing the validation loss and 
validation accuracy of the Mobile Net model according to our dataset.

TABLE 4 Pixel-wise segmentation accuracy.

Sensitivity Specificity

Necrotic 0.75 0.92

Calcification 0.65 0.98

loose matrix 0.51 0.97

Fibrous tissues 0.88 0.78

A

D E

B C

FIGURE 6

The following segmentation results are displayed on a T2-weighted 
image. (A) Automatic labeling result by Gaussian classifier. 
(B) Probability map and region contours based only on intensity, with a 
necrotic core in green, calcification in a red, loose matrix in blue, and 
fibrous tissue in gray. (C) Corresponding results with morphologic 
information. (D) Manual segmentation result. (E) Corresponding 
histology specimen used to direct contour placement in (D) dark areas.
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A B

C

FIGURE 7

ROC curves for three models. Whereby (A–C) represents the performance of the YOLO V3, MobileNet, and RCNN, respectively, to detect carotid plaque 
from MRI scans for stroke risk assessment.

TABLE 5 Comparative accuracy of the proposed approach with previous 
proposed studies.

Reference study Approach Accuracy (%)

Jamthikar et al. (21) Machine learning models 93

Qian et al. (22) DL models 90.6

Our proposed framework Pre-trained models 94.81

Highlight the accuracy of our model.

depicted graphically using ROC curves. The performance of two or 
more diagnostic tests is compared using the ROC curve (20), which 
is used to evaluate a test’s overall diagnostic performance. It is also 
used to choose the best cut-off value for assessing whether a disease 
is present. Figure 7 represents the performance of three models by 
using the ROC curve. Here (a) illustrates the performance of the 
YOLO V3 model to detect carotid plaque from MRI scans for stroke 
risk assessment. Similarly, (b) represents the performance of Mobile 
Net in terms of the confusion matrix, and (c) illustrates the 
performance of the RCNN model to detect carotid plaque from MRI 
scans for stroke risk assessment.

In this research, we proposed a deep learning framework based 
on transfer learning to detect carotid plaque from MRI scans for 
stroke risk assessment. We used to detect carotid plaque from MRI 
scans for stroke risk assessment pre-trained models, fine-tuned 
them, and adjusted hyperparameters according to our problem. 
The proposed framework assists the radiologist in early and 
accurate carotid plaque detection from MRI scans for stroke risk 
assessment. Our proposed framework also improves the diagnosis 
and addresses other challenges in MRI diagnosis due to various 
issues. Furthermore, we have compared our proposed framework 
performance with the previously proposed approach shown in 
Table 5 (23–26).

4. Conclusion

In this study, we concluded that deep learning-based methods 
for stroke risk assessment are the most promising and successful. 
Our trained YOLO model achieved 94.81% accuracy, RCNN 
achieved 92.53% accuracy, and Mobile Net achieved 90.23% in 
identifying carotid plaque from MRI scans for stroke risk 
assessment. Using accuracy, loss graphs, and ROC curves, 
we evaluated the performance of our model and found that the 
suggested framework performed better. Our approach will prevent 
incorrect diagnoses brought on by poor image quality and personal 
experience. The evaluations in this work have demonstrated that 
this methodology produces acceptable results for classifying MRI 

https://doi.org/10.3389/fcvm.2023.1101765
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Chen et al. 10.3389/fcvm.2023.1101765

Frontiers in Cardiovascular Medicine 07 frontiersin.org

data. Future applications may employ extreme learning as a more 
sophisticated classifier for plaque categorization issues.

5. Limitations and future work

Deep learning requires a large amount of data to improve 
performance and avoid over-fitting. It is difficult to acquire 
medical imaging data of low-incidence serious diseases in general 
practice. Due to differences in patients and the appearance of the 
prostate, future work will focus on testing the model with a more 
extensive data set. The, even though the results of studies have the 
potential for deep learning associated with different kinds of 
images, additional studies may need to be carried out clearly and 
transparently, with database accessibility and reproducibility, in 
order to develop valuable tools that aid health professionals.
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