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Background: Acute kidney injury (AKI) is a relevant complication after cardiac
surgery and is associated with significant morbidity and mortality. Existing risk
prediction tools have certain limitations and perform poorly in the Chinese
population. We aimed to develop prediction models for AKI after valvular cardiac
surgery in the Chinese population.
Methods: Models were developed from a retrospective cohort of patients
undergoing valve surgery from December 2013 to November 2018. Three
models were developed to predict all-stage, or moderate to severe AKI, as
diagnosed according to Kidney Disease: Improving Global Outcomes (KDIGO)
based on patient characteristics and perioperative variables. Models were
developed based on lasso logistics regression (LLR), random forest (RF), and
extreme gradient boosting (XGboost). The accuracy was compared among three
models and against the previously published reference AKICS score.
Results: A total of 3,392 patients (mean [SD] age, 50.1 [11.3] years; 1787 [52.7%]
male) were identified during the study period. The development of AKI was
recorded in 50.5% of patients undergoing valve surgery. In the internal validation
testing set, the LLR model marginally improved discrimination (C statistic, 0.7;
95% CI, 0.66–0.73) compared with two machine learning models, RF (C statistic,
0.69; 95% CI, 0.65–0.72) and XGBoost (C statistic, 0.66; 95% CI, 0.63–0.70). A
better calibration was also found in the LLR, with a greater net benefit,
especially for the higher probabilities as indicated in the decision curve analysis.
All three newly developed models outperformed the reference AKICS score.
Conclusion: Among the Chinese population undergoing CPB-assisted valvular
cardiac surgery, prediction models based on perioperative variables were
developed. The LLR model demonstrated the best predictive performance was
selected for predicting all-stage AKI after surgery.
Clinical trial registration: Trial registration: Clinicaltrials.gov, NCT04237636.
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Introduction

Acute kidney injury (AKI) is one of the most common complications following cardiac

surgery, with documented incidence ranging from 5% to 54% (1, 2). The occurrence of

cardiac surgery-associated AKI (CSA-AKI) is associated with an increase in both short-

and long-term adverse outcomes, as well as healthcare expenses (3, 4). Approximately
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25% of patients with AKI will advance to chronic kidney disease

(CKD) after three years (5). And the 5-year and 7-year cohort

survival rates of patients with severe AKI was 54% and 38%,

respectively (6). The corresponding annual cost for CSA-AKI was

almost $1 billion in the United States (7). Currently, no

treatment for CSA-AKI has been proven to be effective in large-

scale clinical trials (1). Therefore, the management of

postoperative CSA-AKI is now primarily focused on prevention,

making screening and identification of high-risk patients of

paramount importance.

The effectiveness of screening and identifying high-risk

patients is contingent upon the development of easy-use,

accurate, and high-performance prediction models.

Unfortunately, currently available risk prediction models are

unsuitable for widespread clinical use due to intrinsic defects,

and there has been no significant improvement in early diagnosis

(8). First, the majority of established prediction models were

developed to classify patients with a high risk of acute renal

failure (ARF) and/or a requirement for renal replacement therapy

(RRT), but with varying definitions of ARF or RRT (9–13). ARF

or RRT are clinically consistent with advanced or end-stage

kidney injury, and such severe kidney damage was typically

irreversible. Thus, identifying patients with a high risk of early-

stage CSA-AKI and initiating treatment was warranted. Second,

in the majority of previous models, only preoperative risk factors

were included, whereas intra- and postoperative risk predictors

were neglected (14), resulting in unsatisfactory prediction

performance. Third, the consensus KDIGO (Kidney Disease:

Improving Global Outcomes) definition of AKI, which allows for

the classification of AKI by the severity of kidney injury from

mild to severe (9), with higher sensitivity to predict AKI-related

morbidity and mortality (15), was not implemented in the

majority of prediction models or screen scores, such as the

widely used Cleveland Clinical score (11). Finally, using

conventional logistic regression to construct prediction models of

CSA-AKI necessitates meeting specific assumptions, whereas

machine learning techniques can model nonlinear relationships

and interactions, as well as handle large numbers of input

features (16). Both classical regression and machine learning can

be used to construct prediction models, with advantages and

disadvantages depending on the clinical scenario and data

attributes.

It has been demonstrated that the risk of postoperative AKI in

patients undergoing valve procedures is higher than in those

undergoing coronary artery bypass grafting (CABG) surgery (17).

Undergoing valve surgery is an independent risk factor for

postoperative ARF (18). Most of the above-mentioned models

have concentrated on all cardiac surgeries or those specific to

CABG surgery, resulting in poor accuracy in predicting the risk

of postoperative CSA-AKI for cardiopulmonary bypass (CPB)

assisted open-heart valvular procedures.

The current study aimed to investigate the utilization of pre-,

intra-, and early postoperative clinical features to predict mild or

moderate to severe CSA-AKI in patients undergoing CPB-

assisted valvular surgery. This study compared the prediction

accuracy of models developed by traditional logistic regression
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with machine learning techniques, including random forest (RF)

and eXtreme Gradient Boosting (XGboost). The models with the

best performance were then chosen for future clinical use.
Methods

Study design, setting and participants

The study followed the TRIPOD (Transparent Reporting of a

multivariable prediction model for Individual Prognosis Or

Diagnosis) statement (19) for prediction model development and

validation. The institutional review board of Xijing Hospital

reviewed and approved (KY20192157-C-1) the protocol of this

study and exempted the requirement for obtaining informed

consent due to the retrospective, minimal-risk nature of the

study. This project was registered on clinicaltrials.gov:

NCT04237636.

The cardiovascular surgery cohort from December 2013 to

November 2018 in Xijing hospital was used for prediction model

derivation and validation. Surgical and perioperative management

data were obtained from the Anesthesiology Registry system and

electronic health records system for all patients who underwent

CPB-assisted valve surgery. Of note, only the first procedure

record was included in the analyses for patients with multiple

eligible procedures during the study period.

The study included all adult patients (18 years and older) who

underwent elective valvular surgery. Patients who underwent off-

pump coronary surgery; or had a history of valvular surgery; or

with pre-existing renal failure (defined as preoperative serum

creatinine greater than 4.0 mg/dl or higher, or receiving renal

replacement therapy within 48 h of serum creatinine

measurement; with an estimated glomerular filtration rate (eGFR)

less than <30 ml/min/1.73 m2; or required preoperative dialysis)

were excluded. Patients without baseline or postoperative serum

creatinine measurements were excluded from the analysis.
Data collection and predictors

Perioperative patients and procedure-related variables were

chosen for modeling. On the basis of available literature and

clinical expertise, a set of predictors was assessed. These include

patient demographics, comorbidities, medical history, preoperative

medications and the use of an intra-aortic balloon pump (IABP),

laboratory tests, procedure-related variables, and early

postoperative variables (detailed candidate variables were listed in

Additional File S1). A total of 48 variables were obtained and the

final prediction models were developed based on predictors

derived from the above-mentioned candidate variables.
Outcome measures

The study used modified KDIGO criteria to diagnose CSA-AKI

by using the most recent preoperative serum creatinine
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measurement as the baseline. In brief, stage 1 AKI was defined as

an increase of serum creatinine ≥26.5 mmol L−1 within 48 h or a

1.5–1.99 fold elevation within seven days after surgery, while

stage 2 AKI was defined as a 2.0–2.99 fold increase, and stage 3

AKI defined as a≥ 3.0 times increase or creatinine level

>354 mmol L−1 or the initiation of dialysis (20). The primary

outcome was the development of any-stage postoperative AKI. A

set of models to predict stage 2 or stage 3 AKI (moderate to

severe AKI) were also developed as a secondary analysis.
Modeling strategies

Two sets of models were built. One for predicting all-stage AKI,

and the other for moderate to severe AKI (stages 2 and 3 AKI).

To develop models for predicting all-stage AKI, the data were

randomly split into 2 subsets: 70% for model development and

30% for model testing. Since the incidence of stages 2 and 3 AKI

(moderate to severe injury) was relatively low with an incidence

of 7.4% in the full cohort, a complete dataset was used to

develop models for predicting moderate to severe AKI.

Models were developed with traditional logistic regression and

machine learning techniques: (1) logistic regression was combined

with the least absolute shrinkage and selection operator (LASSO)

regularization. LASSO is effective in variable selection and

parameter elimination by using shrinkage. LASSO added the L1

norm of the feature coefficients as a penalty term to the loss

function, and thus forced the coefficients of those weak features

to become zero. After abandoning those redundant features, 14

selected features were left for model construction (Appendix

Figure S1). (2) eXtreme Gradient Boosting (XGboost) (21), a

kind of gradient descent boosting. It develops an interpretable

model using a sequence of decision trees to make predictions.

The advantages of XGboost lie in its ability to account for

higher-order interactions and complex nonlinear relationships

between variables and outcomes; (3) random forests (RF), a

learning method for classification. They generate reasonable

predictions across a wide range of data with minimal

configuration. The two machine learning models, XGboost, and

RF were fitted with ten-fold cross-validation to fine-tune the

model parameters.
Statistical analysis

The estimation of overall outcome prevalence in the target

population, the number of candidate predictors, and the

predicted model performance regarding the overall model fit (R2)

(22) were used to determine the sample size for binary outcome

prediction model development. We did not calculate the sample

size in advance because we utilized all accessible data throughout

the study period. However, we did a post hoc sample size

calculation to verify whether the developed models ensure

accurate prediction. Selecting an estimated C statistic (AUC) of

0.75, a prevalence of all-stage AKI of 50% for the patient

undergoing valvular surgery, and a candidate predictor of 40,
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model development required at least 1,739 cases. In the training

subset of this study, a sample size of 2,375 (70% of the whole

cohort) was sufficient to ensure precise predictions and minimize

over-fitting. Using an incidence of moderate to severe AKI of

8%, as indicated by the available data in the current study, at

least 5,586 cases were required to develop a model for predicting

stages 2 or 3 AKI (calculated by R package pmsampsize).

Therefore, this subset of models was under-powered. However,

the ten events per predictor degree of freedom rule were followed

to reduce over-fitting.

Descriptive statistics were reported as median (IQR) or mean

(SD) for continuous variables as appropriate, and as frequency or

percentage for categorical variables. Mann–Whitney U test or

chi2 test was used for the comparison of continuous or

categorical variables, respectively. Missing data were either

omitted (percentage of missing data less than 5%) or imputed

(proportion of missing greater than or equal to 5%) according to

the percentage of missing. Using the random forest (RF)

approach, the missing entries were inputted. RF was able to deal

with a mixture of continuous and categorical variables when

imputing missing values. During the imputation, the original

dataset was divided into two parts according to whether the

variable is observed or missing in the original dataset. The

observed data were used as the training set, and the missing

observations were used as the prediction set. The missing part of

the variable under imputation is replaced by predictions from RF

models.

Model discrimination was assessed with concordance statistic

(C-statistic), also known as areas under the (AUC) receiver

operating characteristic curve (ROC). Additionally, the predictive

performance of the models was evaluated based on their

sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV), as well as the F1 score.

Calibration was graphically assessed by plotting the risk of AKI

development against observed risk, with a perfectly calibrated

prediction lying on the 45-degree line. The calibration plots

represent the model confidence. The models of all-stage AKI

were internally validated and calibrated using bootstrapping of

the training set for 1,000 resampling iterations and bootstrapping

of the testing set for 100 resampling iterations, respectively. The

constructed models were compared with the previously published

reference models. For the model to predict any stage AKI, the

reference model was the AKICS score (23); while for the model

to predict moderate to severe AKI (stage 2 or 3 AKI), the

Cleveland Clinical score was used as the reference model (11).

Integrated discrimination improvement (IDI) and net

reclassification improvement (NRI) were used to calculate the

performance improvement of the constructed models over the

reference models. Decision curve analysis was used to compute

the net benefit of decisions, so as to evaluate the clinical

applicability of the different constructed models. In addition, to

improve the interpretability of the constructed models, especially

for the machine learning algorithm, we adopted the Shapley

Additive exPlanation (SHAP) method to demonstrate the

importance of each variable. SHAP values were calculated to

provide accurate attribution values for each feature within each
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prediction model (14). We also calculated the variance inflation

factor of the variables from the model with the best performance.

A nomogram was finally constructed based on the variables

from the model with the best performance, aka the LASSO

logistic regression model in the current study. An online

calculator representing the regression equation of the final model

was provided at https://anun.shinyapps.io/AKI-prediction/.

Reported statistical significance levels were all 2-sided, P < .05.

All data analyses were developed in Python Software (version 3.9,

https://www.python.org) with related packages (pandas, numpy,

scikit-learn, matplotlib) and R software (Version 4.2.1, https://

www.r-project.org) with related relevant packages (tableone, rms,

ROCR, glmnet, pROC, Hmisc, DynNom, shiny, pmsampsize,

regplot, car).
Results

Characteristics of study population

The medical records of 3,494 patients from December 2013 to

November 2018 at Xijing hospital were reviewed and identified.

After excluding 102 patients, 3,392 patients were included in the

final analysis (Appendix Figure S2). The training set consisted

of 2,374 patients while the testing set consisted of 1,018 patients.

The mean (SD) age in the whole study population was 50.1

(11.3) years, 1,787 participants (52.7%) were men. The mean

(SD) age in the training set was 50.1 (11.2) years; 1,240

participants (52.2%) were men. In the testing set, the mean (SD)

age was 49.9 (11.4) years, and 547 (71%) were men. Among

3,392 patients in the primary cohort, AKI, as per KDIGO

criteria, was observed in 1,713 patients (50.5%), with 1,175

(49.5%) patients in the training set and 538 (52.8%) patients in

the testing set developed all stage AKI. The incidences of stage 2

or 3 AKI were 166 (7%) and 87 (8.5%) in the training and

testing set, respectively. The variables between the training set

and testing set were well balanced as demonstrated in Table 1. A

total of 786 (23.2%) patients had hypertension, 452 (13.3%) with

pulmonary hypertension, and 1,158 (34.1%) experienced atrial

fibrillation. In the study cohort, 3,294 (97.1%) patients

underwent a valvular procedure, while the remaining 2.9% of

patients underwent combined valvular and CABG procedures.
Features selected by LASSO

Among 48 features extracted from EHRs, including 25

categorical features and 23 continuous features that underwent

feature selection by the LASSO, 14 features were finally selected

for modeling (Appendix Figure S1). The variables finally

included in the lasso logistic regression model included age,

gender, hemoglobin, pulmonary hypertension, arrhythmia,

hypertension, duration of CPB, the volume of autologous blood

transfusion, pre-operative diagnosis, the highest level of lactate

during the operation, albumin, BMI, vasoactive inotropic score

and ejection fraction. The postoperative variable of central
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venous pressure (CVP) at the time of ICU admission was

investigated as a potential feature in model development.

However, CVP at ICU admission was omitted from the final

model due to the shrinkage of this variable’s coefficient via lasso

regression.
Model performance

In the machine learning algorithms of RF and XGboost, all the

variables were used to predict postoperative all-stage AKI as input.

In general, all three models including lasso logistic regression

(LLR), RF and XGboost demonstrated varying but promising

performance in predicting all stage AKI regarding the

discrimination and calibration. Among the models, the lasso

logistic regression model exhibited a slightly larger AUC of 0.69

(95% confidence interval [CI] 0.67–0.71) with an accuracy of

65% (95% CI, 63%–67%) in the training set (Figure 1A and

Table 2). The AUCs of RF and XGboost were 0.68 (95% CI

0.66–0.71) and 0.65 (95%CI 0.62–67), respectively (Figure 1A).

The AUCs of LLR, RF and XGboost in the testing set were 0.70

(0.66–0.73), 0.69 (0.65–0.72) and 0.66 (CI 0.63–0.70), respectively

(Figure 1D). The discriminations of the three models were

comparable, with the lasso logistic regression model marginally

outperforming the other two. The three models accurately

calibrated across the spectrum of all probabilities. The LLR

model aligned with the 45-degree line the best (Figures 1B,E).

Events tended to be overestimated at lower probabilities and

underestimated at higher probabilities in LLR and RF models,

while the trend was opposite in the XGboost model.

In models for moderate to severe AKI, the AUC of the RF

model (0.73, 95%CI 0.69–0.78) was numerically higher than that

of the LLR model (0.69, 95%CI 0.64–0.75) and the XGboost

(0.68, 95%CI 0.64–0.74) (Supplementary Table S2 and

Appendix Figure S3A). However, all the models for stage 2 or

stage 3 AKI were not calibrated well (Appendix Figure S3B).

This may be due to the relatively low incidence of events.
Model performance compared to
previously published reference model

The previously reported AKICS was tested as the reference

model for the prediction of all-stage AKI. It had an AUC of 0.56

(95%CI 0.53–0.59) and 0.55 (95%CI 0.51–0.59) in the training

and testing sets, respectively (Figure 1A). Moreover, all three

models demonstrated higher accuracy, negative predictive value,

and positive predictive value in both the training set and testing

set as compared to the reference AKICS score (Table 2). The net

reclassification index (NRI) in the training set was 0.20 (95%CI

0.14–0.25), 0.17 (95%CI 0.10–0.23), and 0.14 (95%CI 0.09–0.20)

in the LLR, XGboost and RF models, respectively. In the testing

set, the LLR model had the largest NRI of 0.23 (95%CI 0.17–

0.30) when compared with the reference AKICS score. XGboost

had the best-integrated discrimination improvement (IDI) among

all three models, with an IDI of 11.39 in the training set and
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TABLE 1 Patient characteristics.

Characteristic All Training set Testing set p value

Patient population, n 3392 2374 1018

Demographic data
Age, mean (SD) 50.1 (11.3) 50.1 (11.2) 49.9 (11.4) 0.59

Male, n (%) 1,787 (52.7) 1,240 (52.2) 547 (53.7) 0.44

BMI, mean (SD) 22.9 (3.2) 22.9 (3.1) 23.0 (3.3) 0.62

Smoking, n (%) 303 (8.9) 222 (9.4) 81 (8.0) 0.21

Drinking, n (%) 144 (4.2) 102 (4.3) 42 (4.1) 0.89

Surgery type 0.27

Valve surgery only, n (%) 3,294 (97.1) 2,300 (96.9) 994 (97.6)

Valve and CABG surgery, n (%) 98 (2.9) 74 (3.1) 24 (2.4)

Medical history
Angina, n (%) 55(1.6) 38(2.6) 17(1.7) 0.68

Stroke, n (%) 71 (2.1) 52 (2.2) 19 (1.9) 0.41

COPD, n (%) 51 (1.5) 38 (1.6) 13 (1.3) 0.57

Hypertension, n (%) 786 (23.2) 550 (23.2) 236 (23.2) 0.97

Arrythmia, n (%) 1,214 (35.8) 844 (35.6) 370 (36.3) 0.68

Diabetes, n (%) 11 (0.3) 7 (0.3) 4 (0.4) 0.96

Liver Disease, n (%) 16 (0.5) 13 (0.5) 3 (0.3) 0.42

MI, n (%) 3 (0.1) 2 (0.1) 1 (0.1) 1

Atrial fibrillation, n (%) 1,158 (34.1) 808 (34.0) 350 (34.4) 0.87

Pulmonary hypertension, n (%) 452 (13.3) 322 (13.6) 130 (12.8) 0.57

NYHA, n (%) 0.44

Class I 4 (0.1) 2 (0.1) 2 (0.2)

Class II 603 (17.9) 436 (18.5) 167 (16.5)

Class III 2,626 (78.1) 1,824 (77.6) 802 (79.4)

Class IV 129 (3.8) 90 (3.8) 39 (3.9)

EF (%), mean (SD) 50 (10) 50 (10) 50 (10) 0.43

Cardiac surgery history, n (%) 0.15

Open heart 86 (2.5) 53 (2.2) 33 (3.2)

Percutaneous intervention 65 (1.9) 49 (2.1) 16 (1.6)

Diagnosis, n (%) 0.86

Congenital valve disease 1,513 (44.6) 1,065 (44.9) 448 (44.0)

Infectious endocarditis 199 (5.9) 137 (5.8) 62 (6.1)

Rheumatic valve disease 1,680 (49.5) 1,172 (49.4) 508 (49.9)

Preoperative medications
Contrast, n (%) 481 (14.2) 351 (14.8) 130 (12.8) 0.13

Nephrotoxic antibiotics, n (%) 43 (1.3) 29 (1.2) 14 (1.4) 0.84

ACEI, n (%) 35 (1.0) 26 (1.1) 9 (0.9) 0.71

ARB, n (%) 38 (1.1) 26 (1.1) 12 (1.2) 0.97

Aspirin, n (%) 49 (1.4) 37 (1.6) 12 (1.2) 0.48

Levosimendan, n (%) 300 (8.8) 220 (9.3) 80 (7.9) 0.20

NSAIDs, n (%) 49 (1.4) 37 (1.6) 12 (1.2) 0.48

IABP, n (%) 3 (0.1) 3 (0.1) 0 (0) 0.55

Baseline laboratory findings
eGFR, mean (SD) 71.6 (14.8) 71.4 (14.8) 72.2 (14.9) 0.15

Serum creatinine, mean (SD) 96.2 (17.4) 96.2 (16.7) 96.3 (18.6) 0.38

Uric acid, mean (SD) 294.5 (99.3) 295.6 (100.4) 292.0 (96.8) 0.33

Hemoglobin, mean (SD) 139.0 (20.0) 139.1 (20.0) 138.9 (20.0) 0.78

WBC, mean (SD) 6.4 (2.0) 6.4 (2.1) 6.4 (1.9) 0.87

Albumin, mean (SD) 42.2 (4.7) 42.3 (4.7) 42.0 (4.7) 0.05

Total bilirubin, mean (SD) 17.6 (10.2) 17.6 (10.2) 17.6 (10.1) 0.87

Prothrombin, mean (SD) 11.8 (2.6) 11.7 (2.6) 11.8 (2.6) 0.54

Intraoperative variables
Duration of CPB, mean (SD) 125.6 (46.4) 125.2 (46.5) 126.6 (46.2) 0.42

Duration of cross aortic clamping, mean (SD) 69.2 (35.0) 69.0 (29.2) 69.9 (45.8) 0.56

Glucose, mean (SD) 7.6 (2.1) 7.6 (2.1) 7.5 (2.0) 0.78

Hematocrit, mean (SD) 23.9 (4.5) 23.8 (4.5) 24.1 (4.5) 0.07

(continued)
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TABLE 1 Continued

Characteristic All Training set Testing set p value

Patient population, n 3392 2374 1018
Temperature, mean (SD) 30.9 (1.3) 30.9 (1.4) 30.9 (1.3) 0.53

Volume of hydroxyethyl starch, mean (SD) 18.2 (125.1) 18.8 (137.3) 16.7 (90.6) 0.58

Autologous blood transfusion, mean (SD) 604.2 (251.5) 605.5 (246.8) 601.1 (262.1) 0.64

Fluid balance during CPB, mean (SD) −41.8 (765.1) −28.4 (759.2) −73.2 (778.2) 0.12

Total fluid, mean (SD) 626.4 (949.7) 643.4 (967.0) 586.7 (907.5) 0.10

VIS, mean (SD) 6.1 (3.4) 6.0 (3.3) 6.3 (3.6) 0.01

Lactate, mean (SD) 5.2 (2.5) 5.1 (2.5) 5.2 (2.5) 0.51

Postoperative variables
CVP at ICU admission, mean (SD) 7.09 (2.31) 7.08 (2.28) 7.11 (2.38) 0.22

Glucose and lactate were the highest level during CPB, hematocrit and temperature were the lowest level during CPB, autologous blood transfusion was the volume during

the CPB. BMI, body mass index; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; MI, myocardial infarction; NYHA, New York heart

association; ACEI, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; NSAIDs, non-steroidal anti-inflammatory drugs; IABP, intra-aortic

balloon pump; eGFR, estimated glomerular filtration rate; WBC, white blood cell; EF, ejection fraction; CPB, cardiopulmonary bypass; VIS, vasoactive inotropic score;

CVP, central venous pressure.
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12.7 in the testing set compared to the AKICS. Both NRI and IDI

were in favor of the newly constructed models (Table 2). Similarly,

the newly developed models outperformed the reference Cleveland

Clinical score in predicting moderate to severe AKI after cardiac

surgery, all three models had higher IDI and NRI when

compared with the reference Cleveland clinical score in

predicting stage 2 or stage 3 AKI after cardiac surgery

(Supplementary Table S2). Likewise, the DCA confirmed that

the net benefit of newly developed models exceeded that of the

reference model in both the training and testing sets throughout

the threshold spectrum for all-stage AKI prediction (Figures 1C,

F). For the prediction of moderate to severe AKI, the constructed

models also out-performed the reference model across the full

threshold range (Appendix Figure S3C).
Interpretation and application of the
predictive models

To quantify the importance of each input variable to the

models, we performed an importance matrix plot and SHAP

summary plot for all three models. In the importance matrix plot

(Figures 2A–C), the highest level of lactate during the operation

was the most important variable in all three models. Of the top

10 most important features, 4 were intraoperative variables in the

LLR importance matrix plot, and 1 was postoperative variables in

the RF importance matrix plot. The SHAP summary plots

(beeswarm plots, Figures 2D–F) and the top 10 features were

depicted to identify the features that influenced the prediction

model most. The important features of LLR, RF, and XGboost

were illustrated in order of importance from top to bottom. The

plots demonstrated how high and low the values of the features

were in association with the SHAP values. The higher the SHAP

value was, the more likely to develop AKI. The plots also

indicated if the features were risk or protective factors. If a

greater feature value corresponded to a higher SHAP value, the

feature should be considered a risk factor, and vice versa.
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Finally, the independently associated risk factors from the best-

performed lasso logistic regression model were used to develop an

estimation nomogram to facilitate clinical use (Figure 3). The

nomogram could assign the probability of AKI by summing the

scores for each variable and positioning them on the total point

scale. For instance, examining patient 230 in the database, the

red points represent each variable’s contribution to the score line.

After adding the points to calculate the total score, and

probability of AKI for this patient was determined to be 91.3%.

In fact, this patient developed stage 2 AKI. Based on the

nomogram, a dynamic web-based probability calculator was

constructed to predict the incidence of AKI after cardiac surgery

(https://anun.shinyapps.io/AKI-prediction/). The variance

inflation factor of each variable from the best-performed lasso

logistic regression model was less than 2, and the collinearity

between variables was small.
Discussion

In this retrospective cohort study, we developed and compared

various prediction models using preoperative, intraoperative and

early postoperative features to predict CSA-AKI following open

heart valvular procedures. The lasso logistic regression model

performed marginally better than the other two machine learning

algorithms in predicting all-stage AKI and moderate to severe

AKI. The newly developed models surpass the previously

published reference models, i.e., the AKICS score and Cleveland

Clinical score.

The prognosis of AKI varies based not just on etiology and

clinical scenario but also on the degree of renal function

impairment. Even stage I AKI was reported to be related to poor

prognosis. In prior studies, even a minimal rise in serum

creatinine was strongly related to long-term complications and

increased mortality in cardiac surgery patients (24). As a

transient disease state, stage I AKI can also be reversed by

effective intervention, such as goal-directed fluid management.

Thus, early recognition and initiation of effective AKI
frontiersin.org

https://anun.shinyapps.io/AKI-prediction/
https://doi.org/10.3389/fcvm.2023.1094997
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Comparison of AUCs, calibration curves and decision curve analysis among different machine learning models for AKI. The results of training set were
shown in (A–C), testing set in (D–F). The model included the LLR model, the XGboost model and the Random Forest model. The reference model
was AKICS score in (A–C).
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management are key to improving its prognosis (8). An accurate

assessment of AKI risk can facilitate clinical decision-making and

initiation of effective management, such as the KDIGO bundle

(25, 26), to decrease the incidence and attenuate the severity of

AKI after cardiac surgery.

Unfortunately, when recognition, diagnosis, and treatment of

postoperative AKI are delayed or inadequate, it results in

potentially avoidable increases in cost, other severe

complications, and mortality (27). The models presently available

to predict AKI have not effectively resulted in early diagnosis (8).

The potential reason may be that the response of therapy varies

in different risks of patients. For example, remote ischemic

preconditioning did not improve clinical outcomes in patients

undergoing elective on-pump CABG with or without valve

surgery (28). However, among high-risk patients undergoing

cardiac surgery, remote ischemic preconditioning significantly

reduced the rate of acute kidney injury and the use of renal

replacement therapy (29, 30). So, it is paramount to screen high-

risk patients for specific treatment. Additionally, there is

heterogeneity among different populations and different cardiac

surgery types.

Existing predictive models of AKI mainly focus on all types of

cardiac surgery. The risk of incident AKI varies in different cardiac

surgical procedures. The risk among patients undergoing combined

coronary artery bypass grafting (CABG)-valve procedures is the

greatest, followed by valve replacement surgery and lowest with
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CABG alone (31). Therefore, many factors should be considered

in the development of an AKI model.

Established risk scores for AKI prediction following cardiac

surgery mainly focused on AKI requiring dialysis and severe

AKI, and there were some widely accepted clinical risk scores

developed to predict RRT-AKI, including the Cleveland Clinical

score, SRI score, Mehta score and a score developed by Pannu

et al. (10, 11, 13, 32). Some clinical scores aimed to predict

severe AKI, including the Multicenter Study of Perioperative

Ischemia Score, the Acute Kidney Injury After Cardiac Surgery

Score, the AKICS score and the cardiac surgery-associated-severe

acute kidney injury score (12, 23, 33, 34). These risk scores

varied with different definitions of AKI, and only two risk scores

incorporated post-operation variables, i.e., the AKICS score and

the cardiac surgery-associated severe acute kidney injury score

(35). Besides, these models had substantial flaws, such as

similarity among models, rarely being externally validated, being

heterogenous in AKI definitions, having a high risk of bias, being

based on small cohorts, and ignoring intra- and postoperative

variables (35). No impact analysis studies in which the clinical

application of a model was utilized to underpin or influence

interventional strategies for prevention or treatment had been

documented.

Increasingly, machine learning and other potentially potent

techniques are being reported to identify AKI predictors. In

terms of predicting AKI following cardiac surgery, the models
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developed by machine learning performed better than traditional

risk scores. Lee and colleagues initially adopted a machine

learning approach to predict AKI following cardiac surgery.

Among the developed models, the XGboost model showed the

best performance (36). However, in the current study, the

traditional logistic regression model performed marginally better

at predicting AKI than machine learning models. The sample

size in our study was roughly five times than that of Lee and

colleagues, which could partially explain the discordance in

results. Demirjian et al. have recently reported a new prediction

model for adult patients undergoing coronary artery bypass graft,

valve, or aorta surgery. This study had a substantial sample size,

rigorous statistical analyses, and conducted external validation.

However, important features believed to be closely associated

with CSA-AKI, including the use of cardiopulmonary bypass,

intra-aortic balloon pump, and the length of the aortic cross-

clamp, were omitted from the model (37). As indicated in the

importance matrix plots and the SHAP summary plots, half of

the top 10 features in our final model were intraoperative

variables. Focusing solely on the preoperative variables while

neglecting intra- and post-operative features is likely to

dramatically compromise the accuracy and application of AKI

prediction models.

The previously published risk scoring models, AKICS and

Cleveland Clinical score performed poorly in our cohort. This

could be largely attributable to the disparity in the models’

derivation population. The widely used reference models were

developed from Europe and North American cardiac surgery

patients. They differed in race and ethnicity from the cohorts

in our study. Our cohort consisted of Chinese valvular

procedure patients who predominantly suffered from

rheumatic heart disease. This patient population is younger,

healthier, and has fewer comorbidities than the population

undergoing valve surgery in Europe and North America who

are mainly affected by the degenerative valvular disease (38).

When generalizing a prediction model, heterogeneity in model

performance across populations, settings, and periods should

be considered (39).

A recently developed model was found to be useful in

predicting the severity of AKI in Chinese patients undergoing

on-pump cardiac surgery (40). This study featured a large

sample size and external validation. However, AKI was

diagnosed with the AKIN classification, not the KDIGO

criteria. Furthermore, the incidence of AKI was drastically

different in derivation (14.7%) and validation (42.3%) cohorts.

This huge discordance in event rates may result in differing

predictor value distributions and heterogeneity in the patient

population. Therefore, it was no surprise that the baseline

characteristics of patients in the derivation and external

validation cohorts were highly disparate. Moreover,

postoperative variables were not included in the final model.

Therefore, the model’s generalizability was limited.

Our study has several limitations. First, our analysis was based

on data from a single center, and the external validity needs to be

confirmed. To evaluate the generalizability of our risk scoring

system, prospective multicenter validation studies in different
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FIGURE 2

Importance matrix plot and SHAP summary plots of the LLR, the XGboost and the random forest model for AKI. (A,D) were the results of the LLR model,
(B,E) were XGboost, (C,F) were the Random Forest model. Among the laboratory variables in the figure, only lactate was an intraoperative variable, others
were baseline variables, and lactate was the highest level in the operation. Abbreviations: Lac, lactate; CPB, cardiopulmonary bypass; HB, hemoglobin,
TBIL total bilirubin, bScr2 baseline serum creatinine, GFR glomerular filtration rate, ALB Albumin, CVP central venous pressure; WBC, white blood cell;
VIS, vasoactive-inotropic score.
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settings are warranted. In fact, we are planning a multicenter

external validation of our model in the Chinese population.

Second, we intend to include early postoperative factors into the

model to improve its predictive accuracy. In our current study,
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only CVP at ICU admission data was available, and Lasso

logistic regression did not ultimately pick this variable. Third, it

is uncertain whether incorporating the developed prediction

model into clinical practice to facilitate decision-making and
frontiersin.org
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FIGURE 3

Risk-prediction nomogram in a patient with AKI after valvular cardiac
surgery. Lactate was the highest level during CPB, autologous blood
transfusion was the volume during CPB. HB was the latest value
before operation. Abbreviations: LAC, lactate; HB, hemoglobin; ALB,
albumin; VIS, vasoactive-inotropic score; EF, ejection fraction.
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guide perioperative management will improve patient prognosis.

This needs to be verified in future randomized clinical trials.
Conclusion

Among the Chinese population undergoing CPB-assisted

valvular cardiac surgery, a prediction model based on perioperative

variables demonstrated good predictive performance for all stage

AKI after surgery.
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