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Background: Atherosclerotic cardiovascular disease is prevalent among patients

with chronic kidney disease (CKD). In this study, we initially aimed to test whether

vascular calcification associated with CKD can worsen atherosclerosis. However, a

paradoxical finding emerged from attempting to test this hypothesis in a mouse

model of adenine-induced CKD.

Methods: We combined adenine-induced CKD and diet-induced atherosclerosis in

mice with a mutation in the low-density lipoprotein receptor gene. In the first study,

mice were co-treated with 0.2% adenine in a western diet for 8 weeks to induce CKD

and atherosclerosis simultaneously. In the second study, mice were pre-treated with

adenine in a regular diet for 8 weeks, followed by a western diet for another 8 weeks.

Results: Co-treatment with adenine and a western diet resulted in a reduction of

plasma triglycerides and cholesterol, liver lipid contents, and atherosclerosis in co-

treated mice when compared with the western-only group, despite a fully penetrant

CKD phenotype developed in response to adenine. In the two-step model, renal

tubulointerstitial damage and polyuria persisted after the discontinuation of adenine

in the adenine-pre-treated mice. The mice, however, had similar plasma triglycerides,

cholesterol, liver lipid contents, and aortic root atherosclerosis after being fed a

western diet, irrespective of adenine pre-treatment. Unexpectedly, adenine pre-

treated mice consumed twice the calories from the diet as those not pre-treated

without showing an increase in body weight.

Conclusion: The adenine-induced CKD model does not recapitulate accelerated

atherosclerosis, limiting its use in pre-clinical studies. The results indicate that

excessive adenine intake impacts lipid metabolism.
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1. Introduction

Chronic kidney disease (CKD) confers an increased risk of
mortality from cardiovascular causes, including atherosclerotic
cardiovascular disease (ASCVD) (1). CKD is considered a risk-
enhancing factor for ASCVD (2, 3). Vascular calcification, another
independent predictor of ASCVD used for risk stratification, is
prevalent in patients with CKD (4, 5). It is currently unknown
whether calcification directly contributes to an increased ASCVD
burden or severity in patients with CKD (6). A better understanding
of the complex interplay between calcification and atherosclerosis
in patients with CKD could help develop new strategies to reduce
ASCVD and mortality in these patients (6).

Animal models demonstrate that increased uremic toxins
accelerate ASCVD (7). Uremic toxins induce endothelial dysfunction,
inflammation, and oxidative stress, promoting atherosclerosis,
while premature senescence and cell death contribute to plaque
vulnerability (8–11). We hypothesized that a causal relationship exists
between calcification and atherosclerosis in CKD and sought to test
this hypothesis in an animal model.

Animal models of CKD and atherosclerosis almost exclusively
use a 5/6 kidney ablation in mice deficient in the apolipoprotein
E (apoE) or low-density lipoprotein receptor (ldlr) (12–15). The
5/6 nephrectomy model, however, has several limitations, including
variable surgical success rate, inter-laboratory variations, and
irreversibility of the procedure (16). On the other hand, several recent
vascular calcification studies not concerned with atherosclerosis have
been conducted using a non-surgical adenine-induced model of CKD
(17–20). Excessive oral intake of adenine leads to the accumulation
of 2,8-dihydroxyadenine crystals in the renal tubules that cause
progressive tubulointerstitial nephropathy (21). Adenine-induced
CKD is thought to be reversible, with kidney function fully or
partially restored upon discontinuation of adenine treatment (22).
The reversibility of the adenine model of CKD might provide an
opportunity to study the effects of calcification on the progression of
atherosclerosis independently of uremic blood toxins.

In this study, we explored two scenarios. The first experiment
involved a concurrent induction of CKD and atherosclerosis by
feeding ldlr mutant mice with a western diet supplemented with
adenine to confirm the interaction between CKD and atherosclerosis.
In the second study, CKD was established prior to atherosclerosis.
Adenine was used as a pre-treatment and discontinued during
a western diet treatment. Unexpectedly, we observed a striking
reduction of plasma lipids and atherosclerosis in mice co-treated
with adenine and a western diet despite all other manifestations of
CKD. The development of atherosclerosis was no longer impeded
after the discontinuation of adenine. Although the effect of adenine
on lipid metabolism precluded testing of the central hypothesis of this
study, the results point to a previously unrecognized mechanism of
modulating atherosclerosis.

2. Materials and methods

2.1. Animal studies

Animal studies were approved by the Institutional Animal
Care and Use Committee (IACUC) of the New York Institute

of Technology College of Osteopathic Medicine (Protocol number
2020-OS-01) and complied with the National Institutes of Health
Office of Laboratory Animal Welfare guidelines.

Ldlr mutant mice were initially obtained from the Jackson
Laboratory (C57BL/6J-LdlrHlb301/J; strain #005061; Bar Harbor, ME,
USA) in 2015 and kept in our colony. These mice carry a familial
hypercholesterolemia mutation (C699Y) in the ldlr gene. At the time
of discovery, the mutation was nicknamed “wicked high cholesterol”
(WHC) (23). We used WHC mice in our earlier studies and
reported their lipid profiles, atherosclerosis, and vascular calcification
phenotypes (24, 25).

Mice were kept under a 12:12-h light/dark cycle with unrestricted
access to food and water. A control diet (LabDiet 5001) was obtained
from W.F Fisher and Son Inc. (Somerville, NJ, USA); a western
diet (TD.88137) was obtained from Envigo (Madison, WI, USA).
CKD was induced by adenine (Sigma, cat. #A8626; St. Louis, MO,
USA) supplementation in a western diet (experiment 1) or a control
diet (experiment 2).

In the first experiment, 24 10-week-old mice (50% males) were
divided into two groups. One group was fed a western diet alone (W)
for 8 weeks; the other group was fed a western diet supplemented
with 0.2% adenine (W + A) for 8 weeks. In the second experiment, 82
10-week-old mice (50% males) were divided into four groups. The
first group was fed a control diet for 8 weeks (C) and the second
group was fed a control diet supplemented with adenine for 8 weeks
(A). Due to high mortality in this experiment, the adenine dose
for male mice was adjusted to 0.1%, whereas females received 0.2%
adenine supplementation (26). Mice in the remaining two groups
were fed a control diet with or without adenine for 8 weeks and
then switched to a western diet without adenine supplementation for
another 8 weeks (C→W and A→W).

2.2. Blood and urine chemistry

Blood was collected at terminal time points by cardiac puncture.
Mice were fasted for 5 h prior to blood collection. Lithium heparin
plasma was prepared and kept frozen until the analysis. Total
cholesterol, triglycerides, and glucose were measured in whole plasma
to evaluate lipid and carbohydrate metabolism. Blood urea nitrogen
(BUN), a biomarker of kidney function, along with liver enzymes
(indicative of hepatocellular death) alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) were measured after clearing
the plasma with a Lipoclear reagent (Beckman Coulter, Inc., Brea,
CA, USA) to reduce interference from lipemia. Urine samples were
collected via metabolic cages (Techniplast, West Chester, PA, USA)
to calculate 24-h glucose and protein excretion. All reagents were
from Pointe Scientific (Lincoln Park, MI, USA) and used according to
the manufacturer’s instructions. A mouse/rat Cystatin C Quantikine
ELISA kit was obtained from R&D Systems (Minneapolis, MN, USA)
as another measure of kidney function. Plasma IL-6 and TNF-α were
measured using LEGEND MAXTM Mouse IL-6 and TNF-α ELISA
kits (San Diego, CA, USA) as biomarkers of systemic inflammation.

2.3. Fecal fat content

Fresh fecal samples were collected after placing a mouse in a
clean cage for 15–20 min. Fecal dry weight was determined following
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FIGURE 1

Chronic kidney disease in WHC mice fed a western diet supplemented with 0.2% adenine. (A) Treatment groups: male and female mice (n = 6 per group)
were treated with a western diet (W) or a western diet supplemented with 0.2% adenine (W + A). (B) Body weight (BW). (C) Blood urea nitrogen (BUN).
(D) Plasma Cystatin C. (E) 24-h urine output. (F) 24-h water intake. (G) Renal histology scores and representative images of H&E stained slides; tubular
dilatation (arrow), inflammation (arrowhead), pus casts (asterisk), enlarged Bowman’s space (open arrow). (H) Quantification of kidney fibrosis and
representative images of picrosirius red staining. n = 4–10 per group; two-way ANOVA; ns, not significant; ∗p < 0.05; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

an overnight incubation at 42◦C, and the samples were rehydrated
with an equal volume (v/w) of saline. Lipids were extracted according
to the Folch method and reconstituted in 0.1% Triton X-100 in
saline. Cholesterol and free (non-esterified) fatty acids (FFA) were
determined using Pointe Scientific cholesterol reagents and WAKO
non-esterified fatty acids (NEFA) kit (FUJIFILM Medical Systems
U.S.A. Inc., Lexington, MA, USA).

2.4. Histology

Tissues were harvested via whole-body perfusion and stored in
10% neutral formalin (Sigma, cat. #HT501320; St. Louis, MO, USA).
The left kidneys were dissected, and transverse slices were made
at the level of the renal pelvis. Cross-sectional slices of the liver
(perpendicular to the central vein) were obtained from the medial
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FIGURE 2

Aortic root atherosclerosis, plasma lipids, and inflammatory cytokines in WHC mice treated with a western with or without adenine. (A) Representative
images and quantification of Oil red O staining of the aortic root. (B) Representative images and quantification of alizarin red staining of the aortic root.
(C) Plasma triglycerides (TG). (D) Cholesterol (CHOL). (E) Interleukin-6 (IL-6). (F) Tumor necrosis factor alpha (TNFα). n = 4–6 per group; two-way
ANOVA; ns, not significant; ∗p < 0.05; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

FIGURE 3

Food consumption and macronutrient excretion in feces and urine of WHC mice co-treated with adenine and a western diet. (A) Caloric intake per body
weight (BW). (B) Fecal cholesterol (CHOL) content. (C) Fecal free fatty acids (FFA) content. (D) 24-h urine protein excretion. (E) 24-h urine glucose
excretion. (F) Plasma glucose concentration. n = 3–11 per group; two-way ANOVA; ns, not significant; ∗p < 0.05.
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FIGURE 4

Liver and brown adipose tissue phenotypes of WHC mice treated with a western diet with or without adenine. (A) Pathology scores and representative
images of H&E staining of the liver. (B) Representative images and quantification of Oil red O staining of the liver. (C) Plasma alanine transaminase (ALT).
(D) Plasma aspartate transaminase (AST). (E) Core body temperature. (F) Interscapular brown adipose tissue (iBAT) weight. (G) Average diameter of lipid
droplets in iBAT and representative images of iBAT stained with H&E. (H) iBAT lipis content detected by Oil red O staining. n = 4–11 per group; two-way
ANOVA; ns, not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

lobes. Grossed tissues were equilibrated in 30% sucrose in phosphate-
buffered saline (PBS), embedded in an Optimal Cutting Temperature
(OCT) compound (Sakura Finetek USA, Inc., Torrance, CA, USA),
and frozen in liquid nitrogen vapor. Ten µm-thick cryosections
were prepared using a cryostat and mounted on positively-charged
slides. Slides were stained with hematoxylin and eosin (H&E),
picrosirius red (kidneys), and Oil red O (liver). Four high-power

microscopic fields were imaged for each sample using an Olympus
BX53 microscope (Olympus Co., Breinigsville, PA, USA). Kidney
damage was assessed on a semi-quantitative pathological scale (0, 1,
2, 3) in H&E stained slides: 0 = no visible lesions; 1 = mild dilation
of some tubules, luminal debris (casts), and partial nuclear loss in
<1/3 tubules in a high-power field; 2 = apparent dilation of many
tubules, nuclear loss, and cast in <2/3 tubules in a high-power field;
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FIGURE 5

Chronic kidney disease in WHC female mice pre-treated with 0.2% adenine before a western diet. (A) Schematics of the experiment: control diet (C),
0.2% adenine in a control diet (A), control diet followed by a western diet (C→W), adenine diet followed by a western diet (A→W). (B) Body weight (BW).
(C) Blood urea nitrogen (BUN). (D) Plasma Cystatin C. (E) 24-h urine output. (F) 24-h water intake. (G) Renal histology scores and representative images
of H&E stained slides. n = 4–10 per group; two-way ANOVA. ns, not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

3 = severe dilation of most tubules, casts, and interstitial proliferation
in >2/3 of the cortex (27). Kidney fibrosis was estimated as an
average Picrosirius red-positive area. Liver damage was graded by
analyzing hepatocellular vesicular steatosis on a scale (0, 1, 2, 3) from
0 = no damage to 3 > 75% affected area (28). Liver lipid content was
measured as an Oil red O positive percent area. Interscapular brown
adipose tissue (iBAT) was dissected. Ten µm-thick cryosections were
prepared and mounted on TruBond360 adhesion slides and stained
with H&E and Oil red O. Atherosclerosis was assessed at the aortic
root level. Cryosections of the aortic roots were prepared over the as
per recommended protocol (29). We collected 72 consecutive 10 µm
sections as an array on eight slides. Slides were stained with Oil red
O and Alizarin red. Atherosclerosis in the aortic root was quantified
by measuring the Oil red O-positive area using ImageJ software
Similarly, calcification was quantified by measuring the alizarin red
positive area in sections of the aortic root.

2.5. Statistical analysis

Data were analyzed in GraphPad Prism 9 statistical software
(San Diego, CA, USA). A two-way ANOVA was used to determine
the main effects and the interactions between sex and adenine
treatment (experiment 1) or adenine pre-treatment and a western
diet (experiment 2). Not normally distributed non-zero data were
log-transformed to meet the assumptions of the two-way ANOVA.

Post hoc pair-wise comparisons were calculated using Sidak’s multiple
comparison test. In addition, a t-test or a Mann–Whitney test were
applied to investigate specific effects. Survival curves were compared
by a log-rank (Mantel–Cox) test. Data were reported as means
and standard deviations (SD). A p-value of <0.05 was considered
statistically significant.

3. Results

3.1. Tubulointerstitial disease in WHC mice
co-treated with adenine and a western
diet

Both male and female mice (n = 6 per group) were started
on a western diet with or without 0.2% adenine supplementation
when 10 weeks of age (Figure 1A). At the end of the 8-week
treatment period, a significant loss of body weight (BW) was
observed in both sexes (p < 0.0001, Figure 1B; Supplementary
Table 1); one male mouse died. Adenine treatment was associated
with a significant increase in plasma BUN and Cystatin C
(p < 0.0001, two-way ANOVA; Figures 1C, D; Supplementary
Table 2). A significant increase in 24-h water consumption and urine
output was also observed in adenine-supplemented mice compared
to those treated with a western diet alone (p < 0.0001, two-way
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FIGURE 6

Aortic root atherosclerosis, plasma lipids, and inflammatory cytokines in WHC mice pre-treated with 0.2% adenine before a western diet.
(A) Representative images and quantification of Oil red O staining of the aortic root. (B) Representative images and quantification of alizarin red staining
of the aortic root. (C) Plasma triglycerides (TG). (D) Cholesterol (CHOL). (E) Interleukin-6 (IL-6). (F) Tumor necrosis factor alpha (TNFα). n = 4–6 per
group; two-way ANOVA; ns, not significant.

ANOVA; Figures 1E, F; Supplementary Table 1). After 8 weeks on
a diet, H&E staining of the renal cortex displayed hallmark features
of adenine-induced CKD, including tubular dilation, granulomatous
inflammation, pus casts, and enlarged Bowman’s space resulting in a
significantly higher pathology score (p < 0.0001, two-way ANOVA;
Figure 1G; Supplementary Table 1). The area positive for picrosirius
red staining was also increased, indicating the development of
interstitial fibrosis (p < 0.0001, two-way ANOVA; Figure 1H;
Supplementary Table 1). Overall, these data confirmed the expected
renal phenotype in mice treated with 0.2% adenine on a western
diet (30).

3.2. Aortic root atherosclerosis, plasma
lipids, and inflammation in WHC mice
co-treated with adenine and a western
diet

Unexpectedly, we found that adenine pre-treatment had a
lowering effect on the aortic root atherosclerosis (p < 0.0001,
two-way ANOVA; Figure 2A; Supplementary Table 3), despite
the significant increase in vascular calcification (p < 0.05, two-
way ANOVA; Figure 2B; Supplementary Table 3). In addition,
plasma triglycerides and cholesterol were significantly reduced in

adenine-treated mice compared with those treated with a western diet
only (p < 0.0001, two-way ANOVA, Figures 2C, D; Supplementary
Table 2). Because it was reported that adenine might suppress
inflammatory cytokines secretion (31) and, thus, explain a reduction
in atherosclerosis, we tested plasma levels of interleukin 6 (IL-6)
and tumor necrosis factor alpha (TNFα). Contrary to this potential
explanation, we found an increase in IL-6 level in mice co-treated
with adenine and a western diet (p < 0.01, two-way ANOVA;
Figure 2E; Supplementary Table 2). No significant changes in TNF-
α were observed, with several mice displaying TNF-α levels below the
detection limit in all groups (Figure 2F; Supplementary Table 2).

3.3. Food consumption and macronutrient
excretion in feces and urine of WHC mice
co-treated with adenine and a western
diet

We noted that mice treated with adenine had increased food
consumption compared to mice from the western-only group
(p < 0.05, two-way ANOVA; Figure 3A; Supplementary Table 4).
There were no significant differences in fecal cholesterol or free
fatty acids excretion in adenine treated mice compared to mice on
a western diet alone (Figures 3B, C; Supplementary Table 4). No
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FIGURE 7

Liver and brown adipose tissue phenotypes in WHC mice pre-treated with adenine before a western diet. (A) Representative images and quantification of
Oil red O staining of the liver. (B) Plasma alanine transaminase (ALT). (C) Interscapular brown adipose tissue (iBAT) weight. (D) Average diameter of lipid
droplets in iBAT and representative images of iBAT stained with H&E. (E) iBAT lipis content detected by Oil red O staining. n = 4–9 per group; two-way
ANOVA; ns, not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

increase in urine protein or glucose excretion was found in adenine-
treated mice compared to the western-only group (Figures 3D, E;
Supplementary Table 4). An elevation in blood glucose was found
in female mice co-treated with adenine and western; however, the
overall effect was insignificant (Figure 3F; Supplementary Table 4).

3.4. Liver and brown adipose tissue
phenotypes in WHC mice co-treated with
adenine and a western diet

The reduction of triglycerides and cholesterol in fasted plasma
may result from liver toxicity and an imbalance in the secretion

of triglyceride-rich, very low-density lipoproteins (VLDL) due to
liver steatosis (32). Since liver steatosis is likely to develop in
WHC mice fed a western diet for 8 weeks, we investigated whether
adenine could have worsened steatosis. Contrary to this idea, H&E
staining unequivocally showed that instead of worsening, adenine
prevented steatosis (p< 0.0001, Figure 4A; Supplementary Table 5).
Furthermore, analyzing Oil red O staining of the liver, we found
very little accumulation of lipids in the liver of adenine-treated
mice compared to the western-only group (p < 0.001, females;
p < 0.05, males; Figure 4B; Supplementary Table 5). Conversely,
no significant elevation of ALT or AST were detected in adenine-
treated mice (Figures 4C, D); in fact, lower ALT levels were observed
in adenine-treated mice compared to mice on a western diet alone
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FIGURE 8

Food intake, urinary macromolecule loss, and plasma glucose in WHC mice pre-treated with adenine before a western diet. (A) 24-h calorie intake from
food (control diet—LabDiets 5001; western—Envigo TD.88137). (B) 24-h urine protein excretion. (C) 24-h urine glucose excretion. (D) Fasted plasma
glucose. n = 4–10 per group; two-way ANOVA; ns, not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

FIGURE 9

Summary of key findings. T-test; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

(p < 0.001, two-way ANOVA; Figure 4C; Supplementary Table 2).
Thus, the direct hepatotoxicity of adenine as a cause of lipid reduction
was ruled out.

Reduction in body weight and inability to accumulate lipids in
the liver in mice treated with adenine could indicate an increase
in thermogenesis. To address this possibility, we measured core
body temperature and interscapular brown adipose tissue (iBAT)
mass and lipid content. We found that mice treated with adenine
had lower body temperatures than mice from the western-only
group (p < 0.0001, two-way ANOVA; Figure 4E; Supplementary
Table 5). Adenine-treated animals also had smaller iBAT mass,
the diameter of lipid droplets within iBAT tissue, and the overall
lipid content of iBAT (p < 0.0001 for all, two-way ANOVA;
Figures 4F–H; Supplementary Table 5). Thus, there was no evidence
of increased thermogenesis of BAT hyperplasia in mice treated with
adenine.

3.5. Two-step model of adenine-induced
CKD and atherosclerosis

Unfortunately, the profound effect of adenine on lipid
metabolism has precluded testing our central hypothesis regarding

the interaction between vascular calcification and atherosclerosis in
CKD. Although the lipid-lowering effect associated with adenine
supplementation was serendipitous, it was interesting and potentially
clinically relevant. Therefore, we proceeded with the second study
to better understand the mechanism of the lipid-lowering effect of
adenine (Figure 5A).

Both male and female mice were included in the study. However,
despite a reduced adenine dose (0.1%), the mortality in male mice
was prohibitively high (Supplementary Figure 1), and we could not
complete the study in males. Therefore, the remaining data represent
the findings in females only. Data were collected at the end of the
adenine pre-treatment and after western diet treatment.

3.6. Kidney disease in WHC mice
pre-treated with adenine before a western
diet

Mice were treated with a control diet with or without adenine
for 8 weeks and then switched to a western diet without adenine
supplementation for another 8 weeks. At the end of the first 8-
week treatment, a significant loss of body weight was observed in
the adenine-supplemented mice compared to those on a regular
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diet (p < 0.001); the difference in body weight was not significant
at the end of the western diet treatment (p = 0.0681, Figure 5B;
Supplementary Table 6).

The BUN was not significantly affected by adenine in this
experiment (Figure 5C; Supplementary Table 7). However, adenine
pre-treated mice showed significant increases in plasma Cystatin
C (p < 0.05), which persisted after discontinuation of adenine
treatment (p < 0.01, Figure 5D; Supplementary Table 7). In
addition, these mice also displayed significant polyuria and polydipsia
immediately after the adenine treatment period and 8 weeks after they
were switched to a western diet without adenine supplementation
(Figures 5E, F; Supplementary Table 6).

H&E staining of the renal cortex revealed tubulointerstitial
damage immediately after adenine pre-treatment (p < 0.01) that
persisted until the end of the western diet treatment (Figure 5G;
Supplementary Table 6).

3.7. Aortic root atherosclerosis and plasma
lipids in WHC mice pre-treated with
adenine before a western diet

Adenine pre-treatment did not affect aortic root plaque size
(Figure 6A; Supplementary Table 8). However, a t-test comparison
between adenine pre-treated and untreated mice detected a slight
increase in plaque size in pre-treated mice compared to those not
pre-treated (p = 0.0418). There was no significant difference in
vascular calcification between the groups on the same diet (Figure 6B;
Supplementary Table 8). Plasma triglycerides and cholesterol in
adenine pre-treated mice were not significantly different compared
to untreated mice on a western diet (Figures 6C, D; Supplementary
Table 7). There were no differences in plasma inflammatory cytokines
IL-6 and TNFα (Figures 6E, F; Supplementary Table 7) between
adenine pre-treated and untreated mice on a western diet. This
experiment demonstrated that the lipid-lowering effect of adenine
in the setting of a western diet is reversible upon discontinuation
of adenine and that adenine pre-treatment did not interfere with
the development of aortic root atherosclerosis in WHC mice on a
western diet.

3.8. Liver and brown adipose tissue
phenotypes of WHC mice pre-treated
with adenine before a western diet

In contrast to the first experiment involving the co-
administration of adenine and a western diet, the liver lipid
content quantified by Oil red O staining was similar between adenine
pre-treated and untreated mice on a western diet (Figure 7A;
Supplementary Table 9). Interestingly, ALT levels remained
significantly lower in the adenine pre-treated mice compared to those
untreated at both time points (Figure 7B; Supplementary Table 7).
This experiment showed that the attenuation of hepatic steatosis by
adenine appeared fully reversible upon its discontinuation. The size
of interscapular brown adipose tissue (iBAT), lipid droplets diameter,
and lipid content iBAT, however, was significantly reduced in adenine
pre-treated mice 8 weeks after mice were switched to a western diet
without adenine supplementation (Figures 7C–E; Supplementary
Table 9).

3.9. Increased food intake and urinary
macronutrient loss in WHC mice
pre-treated with adenine before a western
diet

We noted in the first experiment that mice co-treated with
adenine and a western diet consumed more calories from food
than non-exposed mice (Supplementary Table 4). The increase in
food consumption was also significant in mice pre-treated with
adenine compared to those untreated, and this difference persisted
after discontinuation of adenine (Figure 8A; Supplementary
Table 10). This phenotype was striking because adenine-exposed
mice did not gain weight (Figure 5B), suggesting that adenine
exposure accelerated metabolism. A plausible explanation was that
mice were losing calories due to their kidney disease. Indeed,
mice had significant proteinuria and glucosuria while on the
adenine treatment; however, both effects were not significant after
the discontinuation of adenine (Figures 8B, C; Supplementary
Table 10). Of note, although increased on a western, as expected (33),
plasma glucose concentration was not affected by adenine treatment
(Figure 8D; Supplementary Table 7).

3.10. Summary of findings

Supplementing a western diet with 0.2% adenine for 8 weeks
resulted in the development of CKD in ldlr mutant mice that was
manifested as tubulointerstitial kidney damage and elevated plasma
Cystatin C, a marker of kidney disease. In addition, adenine exposure
suppressed hyperlipidemia and liver steatosis in ldlr mutant WHC
mice on a western diet. Adenine-induced kidney disease persisted
after its discontinuation. Plasma lipids and lipid metabolism in
the liver appeared to rebound after discontinuation of adenine in
ldlr mutant WHC mice consequently exposed to a western diet
(Figure 9).

4. Discussion

The goal of this study was to model CKD in the background of
hyperlipidemia using a non-surgical approach and then investigate
the long-term effects of CKD-induced vascular calcification on the
course of atherosclerosis. However, we were unable to test this
hypothesis because of the unanticipated effect of adenine on lipid
metabolism that masked the effect of vascular calcification on the
extent of atherosclerosis. Adenine supplemented diet were used to
induce CKD without surgery as previously described (30).

In the first experiment with a western diet and adenine co-
treatment, we documented the reduction of renal function and
tubulointerstitial pathology in male and female mice as expected.
Surprisingly we found reduced plasma triglycerides, cholesterol, and
atherosclerotic plaque formation, the findings that were opposite
to a phenotype in a model of surgical kidney mass reduction
(33, 34). In addition, we found a striking reduction of lipids
in the liver without any signs of liver toxicity of adenine.
Our observation raised the possibility that adenine might affect
lipid metabolism.

While our manuscript was in preparation, two studies reported
on atherosclerosis in adenine-treated apoE knockout mice. One
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study showed an increase in plasma lipids without an increase in
atherosclerosis, attributed by the authors to an overall reduction
in inflammation (35). In our experiment, we observed an increase
in plasma IL-6 and TNFα suggesting that the reduction of
atherosclerosis was independent of inflammation in ldlr mutant
WHC mice. In the other study, apoE knockout mice were treated
with adenine in a western diet supplemented with sodium cholate.
In this study, the authors observed no changes in plasma or
liver lipids but reduced atherosclerosis, which was explained by
the increased cholesterol and triglycerides excretion in feces and
increased bile acid synthesis (36). We investigated the fecal excretion
of cholesterol and free fatty acids in ldlr mutant WHC mice and
found no evidence of the increased fecal fat in adenine-treated mice
under the conditions of our experiment on a western diet without
sodium cholate.

In our follow-up experiment, we administered adenine and
western diets sequentially. We observed a tubulointerstitial injury,
polydipsia, and polyuria in adenine pre-treated mice that persisted
after 8 weeks of adenine washout. Plasma lipids were highly variable
between individual mice within the adenine-pretreated mice, and
the liver lipid content increased after mice were switched from
an adenine-supplemented diet to a western diet. Moreover, mice
pre-treated with adenine had significantly increased food intake,
consuming twice as many calories without significant weight gain or
blood glucose elevation.

Various metabolic effects could potentially explain the
paradoxical reduction of atherosclerosis in the adenine-induced
model of CKD. We can speculate that adenine-induced tubular
damage results in macronutrient wasting and negative energy
balance that leads to the reduction of synthesis of triglycerides and
lipoproteins in the liver. As renal function improves following the
withdrawal of adenine (as indicated by the resolution of proteinuria
and glucosuria), the liver lipid metabolism rebounds and correlates
with an increase in atherosclerosis in WHC mice after discontinuing
adenine treatment. Such a mechanism suggests an indirect effect
of renal tubular function of lipid metabolism and atherosclerosis.
Alternatively, as discussed below, adenine might directly impact
energy metabolism and triglyceride synthesis.

Several studies demonstrate the beneficial effects of adenine
(31, 37–40). Adenine can act as an allosteric activator of a fuel-
sensing enzyme AMP-activated protein kinase (AMPK), increasing
cellular glucose metabolism (37); it can delay senescence of cultured
cells (38), reduce inflammatory cytokines secretion and adhesion of
monocytes to endothelial cells (31, 39), and improve wound healing
(40). In addition, activation of AMPK has been shown to reduce
hyperlipidemia and hepatic steatosis, plausibly explaining the liver
and plasma lipid findings (41).

We observed that mice either co-treated or pre-treated with
adenine neither exhibited histologic evidence of liver damage nor
elevated ALT levels, suggesting that adenine was not toxic to the
liver. Our results support findings from other studies showing a
lack of adenine hepatotoxicity (42, 43). However, another study
reported a hepatotoxic effect of adenine as demonstrated by
elevated liver enzymes in response to inflammation (44). This is in
contrast with the results of our study, in which increased systemic
inflammation was not associated with elevated liver enzymes in
adenine-treated animals.

Our study was not without limitations. Unfortunately, we
could not test our hypothesis regarding the interaction between

vascular calcification and atherosclerosis because of the unanticipated
effects of adenine-induced CKD on lipid metabolism. Thus, the
results of our study can only generate additional hypotheses.
In the pre-treatment experiment, a more extended adenine
clearance period and the assessment of the levels of adenine
in plasma before administrating the western diet could have
helped differentiate between the direct effects of adenine and
tubulointerstitial injury on lipid metabolism or atherosclerosis.
Alternatively, a different nephrotoxic agent acting on the proximal
tubule, such as aminoglycosides (45), could be used to rule out
the direct effects of adenine on metabolism. Lastly, the lack of
direct measurements of energy expenditure and brown adipose tissue
remains a significant limitation for the mechanistic understanding
of the described lipid-lowering effect of adenine. Unfortunately,
developing these timelines and experimental designs was outside the
scope of this study.

Adenine-induced CKD has a metabolic effect on lipid and
energy metabolism, and it may not be an appropriate model to
study the effect of CKD on atherosclerosis in animals. Nevertheless,
our findings can help design future hypothesis-driven research
to understand the pathophysiology of increased metabolism and
reduced atherosclerosis in adenine-treated mice.
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