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Background: Pulmonary thromboembolism (PE) is the third leading cause of
cardiovascular events. The conventional modeling methods and severity risk
scores lack multiple laboratories, paraclinical and imaging data. Data science and
machine learning (ML) based prediction models may help better predict outcomes.
Materials and methods: In this retrospective registry-based design, all consecutive
hospitalized patients diagnosed with pulmonary thromboembolism (based on
pulmonary CT angiography) from 2011 to 2019 were recruited. ML based
algorithms [Gradient Boosting (GB) and Deep Learning (DL)] were applied and
compared with logistic regression (LR) to predict hemodynamic instability and/or
all-cause mortality.
Results: A total number of 1,017 patients were finally enrolled in the study,
including 465 women and 552 men. Overall incidence of study main endpoint
was 9.6%, (7.2% in men and 12.4% in women; p-value = 0.05). The overall
performance of the GB model is better than the other two models (AUC: 0.94
for GB vs. 0.88 and 0.90 for DL and LR models respectively). Based on GB
model, lower O2 saturation and right ventricle dilation and dysfunction were
among the strongest adverse event predictors.
Conclusion: ML-based models have notable prediction ability in PE patients.
These algorithms may help physicians to detect high-risk patients earlier and
take appropriate preventive measures.
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Introduction

Pulmonary Embolism (PE) causes more than 100,000 cardiovascular-related deaths

annually in the United States and is the third leading cause of cardiovascular events after

myocardial injury and stroke (1). It occurs approximately 0.5–1 case per 1,000 persons

annually, and the incidence rate is dramatically age-dependent, rising sharply after the age

of 45 years by the age of 80, the annual average incidence is one case per hundred (2, 3).

Disease outcomes such as in-hospital mortality, major gastrointestinal (GI) bleeding,

recurrence, and post-thrombotic syndromes occur differently based on the type of the

emboli, which could be massive or sub-massive, and also the underlying comorbidities of

patients (4, 5). Studies have shown that the mortality rate in patients with pulmonary

embolism without underlying disease is much lower than in patients with cancer,
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congestive heart failure, or chronic lung disease. However,

hemodynamically unstable patients who receive mechanical

ventilation or cardiopulmonary resuscitation are at higher risk of

mortality (6, 7). Prediction algorithms and risk scoring systems

have been developed to help physicians estimate the chance of

outcome occurrence in every individual.

The conventional modeling methods are premised on certain

assumptions such as linearity and additivity of the data which

may not hold true in practice. It is also difficult to model high-

dimensional relationships between features with conventional

methods. These situations can be addressed using sophisticated

machine-learning techniques (8).

In the present study, we aimed to evaluate and compare the

performance of two different machine-learning techniques,

namely gradient boosting and deep learning with that of the

conventional logistic regression method for predicting in-hospital

PE adverse outcomes. In addition, selected features with the most

association with study main endpoint will be discussed.
Materials and methods

Study design and patient selection

In this retrospective analysis conducted in Tehran Heart Center

(THC) hospital, Tehran, Iran, all consecutive hospitalized patients

diagnosed with pulmonary embolism (based on pulmonary CT

angiography) from 2011 to 2019 were recruited. A total number

of 1,031 patients were diagnosed at first, 14 patients were

excluded due to missing data, and 1,017 patients were finally

enrolled in the study. Nearly all patients had at least one post-

discharge follow-up. These follow-ups were conducted twice:

short and long-term (3 and 12 months following hospital

discharge, respectively).
Study endpoints

The main endpoint of the present study was a composite of the

following events: hemodynamic instability and/or all-cause

mortality. Hemodynamic instability was defined as low systolic

blood pressure that needs inotrope therapy and/or mechanical

ventilation in the course of admission.
Statistical analysis

As it’s illustrated in Table 1, continuous and categorical

variables were represented as mean and frequencies respectively.

Statistical analysis was performed with independent samples t-

test for continuous numerical variables. Also, a chi-square test

was done to evaluate the relationship between categorical

variables and final adverse outcomes. The significance level for

all of the statistical analyses was determined as a p-value of lower

than 0.05.
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Data extraction and processing

Demographics and clinical and paraclinical variables were

extracted from Electronic Health Records (EHR). In view of the

absence of a registry system for PE patients over the study period

(2011–2019), the EHR data were manually extracted. A total

number of 120 variables were identified. Based on previous

similar studies (9–15) and our primary analysis, finally 76

variables remained, and further analysis was done using these

selected variables. We divided all the variables into ten

categories, including “baseline demographic and past medical

history”, “signs and symptoms”, “physical examination”, “drug

history”, “laboratory tests”, “electrocardiography findings”,

“pulmonary CT angiography findings”, “echocardiography

findings”, “treatment options” and finally “complication” variables.
Missing data

We had missing data for some cases in different variables. Our

approach to missing data was a combination of these two methods:

(1) Imputation method, or (2) Removal of the data. Our main

strategy was data imputation using the K-nearest neighbor

(KNN) algorithm if the variable had notable importance for the

prediction process and its missing values were few. This is a

standard strategy for managing missing data that effectively

imputes the expected values instead of the missing ones while

having less of an impact on the final analysis than other

traditional approaches. On the other hand, the variable could be

eliminated if the number of missing values was remarkable and

the variable wasn’t significant enough (based on primary data

analysis for the importance of variables). Furthermore, if a case

had a high amount of missing data, we totally removed that case

as well (14 cases were totally removed out of 1,031).
Feature selection

As various scores for the prediction and categorization of PE

patients (like PESI, sPESI, Bova, etc.) use different variables from

different categories, we tried to include all of them together and

evaluate them in combination for one well-structured dataset.

This way allowed us to find the most important factors from

approximately all diagnostic tools to preciously predict future

adverse events for hospitalized PE patients. Of course, since all of

these data are prepared within the first few hours of a PE

patient’s admission to the emergency room, we primarily used

the baseline variables, including demographic, physical

examination, electrocardiography, echocardiography, laboratory,

and imaging data; and our models mostly uses only these data

for prediction process. Yet, we decided to include some of the

most important complications that might occur during

hospitalization, alongside previously mentioned baseline features,

because these could potentially change the course of the disease

and worsen the patient’s prognosis.
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TABLE 1 Intergroup comparison of baseline characteristics.

Event−(N = 919) EVENT+(N = 98) Odds ratio 95% C.I for odds ratio p-value

Baseline demographic
Sex Female: 44.3 Male: 55.7 Female: 59.2 Male: 40.8 1.8 (F/M) 1.19–2.78 0.05

Age (years) 58.8 65.4 1.21 1.11–2.17 0.001

Diabetes (%) 18.8 16.3 0.84 0.48–1.4 0.54

Hypertension (%) 40.4 45.9 1.25 0.82–1.9 0.28

Dyslipidemia (%) 24 32.7 1.53 0.9–2.3 0.06

Cigarette smoker (%) 23.2 17.3 0.69 0.4–1.2 0.19

Coronary artery disease (%) 14.7 28.6 2.3 1.4–3.7 0.00

Heart failure (%) 4.5 15.3 3.8 2.05–7.2 0.00

COPD (%) 3.8 5.1 1.35 0.5–3.5 0.53

Drug addiction (%) 4.8 8.2 1.76 0.80–3.8 0.14

Previous CABG (%) 6.5 10.2 1.62 0.8–3.2 0.17

Previous CVA (%) 4.4 7.1 1.69 0.73–3.88 0.21

Malignancy (%) 4.7 8.2 1.81 0.82–3.97 0.13

Previous DVT (%) 8.8 4.1 0.44 0.15–1.2 0.10

Previous PE (%) 6.3 5.1 0.79 0.31–2.0 0.63

Recent immobility (%) 27.4 30.6 1.16 0.74–1.83 0.50

Obesity (BMI > 30) (%) 34.3 25.5 0.65 0.4–1.05 0.08

IV drug user (%) 1 3.1 3.19 1.85–11.9 0.05

Recent surgery (%) 12.7 12.2 0.95 0.59–1.80 0.89

Signs and symptoms
Dyspnea (%) 89 88.8 0.96 0.49–1.8 0.92

Cough (%) 11 11.2 1.02 0.5–1.9 0.94

Hemoptysis (%) 3.9 5.1 1.3 0.5–3.4 0.57

Syncope (%) 10.4 14.3 1.4 0.7–2.6 0.24

Clinical signs of DVT (%) 24.6 18.4 0.7 0.4–1.1 0.17

Altered mental status (%) 3 11.2 4.0 1.9–8.3 0.00

Palpitation (%) 32.9 32.7 0.99 0.6–1.5 0.96

Physical examination
Systolic blood pressure (mmHg) 129.8 124.6 0.95 0.85–0.98 0.02

Heart rate (beat/min) 99.9 107.2 1.18 1.1–3.44 0.001

Respiratory rate (/min) 22.3 24.9 1.31 1.13–2.45 0.001

O2 saturation (%) 92.4 86.6 0.91 0.78–0.95 0.001

Drug history
Aspirin (%) 16.9 14.3 0.82 0.45–1.48 0.51

Clopidogrel (%) 2.2 3.1 1.4 0.41–4.8 0.57

Beta blockers (%) 23.4 38.8 2.07 1.34–3.20 0.001

Warfarin (%) 3 3.1 1.005 0.3–3.36 0.99

Statins (%) 37 46.9 1.5 0.99–2.29 0.054

ACEi/ARB (%) 9.7 6.1 0.6 0.25–1.42 0.24

Laboratory tests
Hemoglobin (mg/dl) 13.90 13.3 0.91 0.87–0.93 0.03

White blood cells (/dl) 10,603 12,105 1.24 1.15–1.43 0.001

Platelets (/dl) 226,719 233,369 1.03 0.83–1.34 0.49

Creatinine (mg/dl) 0.93 1.06 1.27 1.15–2.43 0.001

Hs-troponin T (Ng) 59.0 72.1 1.22 0.89–2.32 0.37

Electrocardiography
RBBB (%) 16.9 17.3 1.03 0.59–1.79 0.90

S1S2S3 (%) 14.4 15.3 1.07 0.60–1.92 0.80

Q in V1 (%) 11.2 14.3 1.32 0.72–2.41 0.36

AF rhythm (%) 5.2 17.3 3.80 2.09–6.92 0.00

S1Q3T3 (%) 36.7 35.8 0.95 0.61–1.47 0.83

Right axis deviation (%) 10.5 15.3 1.62 0.90–2.93 0.10

ST-Elevation in V1 (%) 13.8 12.2 0.87 0.46–1.63 0.66

Pulmonary CT angiography
Segmental A (%) 15.1 6.1 0.36 0.15–0.85 0.01

Lobar A (%) 79.2 72.5 0.82 0.45–0.92 0.05

(continued)
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TABLE 1 Continued

Event−(N = 919) EVENT+(N = 98) Odds ratio 95% C.I for odds ratio p-value
Saddle emboli (%) 12 13.3 1.12 0.60–2.08 0.70

Pleural effusion (%) 13.7 25.5 2.15 1.31–3.52 0.002

RV strain (%) 16.3 28.1 1.50 1.28–1.87 0.01

Pulmonary infarction (%) 15.6 17.3 1.13 0.65–1.97 0.64

Echocardiography
RV/RA Thrombus (%) 3.5 9.2 2.80 1.29–6.06 0.006

PA Thrombus (%) 1 4.1 4.30 1.30–14.23 0.009

PFO (%) 0.5 3.1 5.77 1.35–24.5 0.007

RV Dysfunction (%) 61.9 83.7 3.15 1.81–5.47 0.00

RV Dilation (%) 60 81.6 2.96 1.75–5.03 0.00

LV ejection fraction (%) 51.5 49.9 0.95 0.89–0.98 0.05

Treatment
Contraindication To Fl (%) 3.4 11.2 3.62 1.75–7.45 0.00

Fibrinolysis (%) 14.5 29.6 2.48 1.55–3.97 0.00

AC: LMWH (%) 16.1 4.1 0.22 0.08–0.61 0.002

AC: UFH (%) 83.1 93.9 3.11 1.33–7.23 0.006

AC: NOACs (%) 7.3 1 0.13 0.01–0.95 0.01

Thrombectomy (%) 0.5 9.2 18.48 6.06–56.35 0.00

IVC Filter (%) 2.4 11.2 5.15 2.41–10.98 0.00

Aspirin (%) 43.1 55.1 1.6 1.06–2.46 0.02

Statins (%) 32.6 19.4 0.49 0.29–0.83 0.007

Complications
ICH (%) 0.3 1.0 3.14 0.32–30.5 0.29

GI bleeding (%) 0.9 5.1 6.12 1.96–19.09 0.00

HIT (%) 2.1 4.1 3.19 0.85–11.99 0.07

Blood transfusion (%) 1.7 14.3 9.40 4.43–19.93 0.00

Missed PE (Initial) (%) 7.8 12.2 1.64 0.85–3.14 0.13

COPD, chronic obstructive pulmonary disease; CABG, coronary artery bypass grafting; CVA, cerebrovascular accident; DVT, deep vein thrombosis; PE, pulmonary

embolism; BMI, body mass index; ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin ii receptor blockers; RBBB, right bundle branch block; RV, right

ventricle; LV, left ventricle; PA, pulmonary artery; RA, right atrium; PFO, patent foramen oval; FL, fibrinolytic; AC, anti-coagulant; IVC, inferior vena cava; UFH,

unfractionated heparin; LMWH, low molecular weight heparin; NOAC, novel oral anti-coagulant; HIT, heparin-induced thrombocytopenia.

Jenab et al. 10.3389/fcvm.2023.1087702
The next step was to choose the best variables for model

development (after data preprocessing and missing value

management). In this step, which is called “Feature Selection”,

we used two methods: first, regarding traditional statistical

analysis, we determined the variables which had significant

differences between the two groups; second, we utilized the more

precise method, L1 regularization (or Lasso regression) method,

which is one of the best methods for feature selection in data

science. L1 regularization lets us find the most important

variables for the prediction of final results. Using this method

and the traditional analysis, we eventually determined 35

variables that were more important for model development.
Model development

Eventually, 41 variables of the initial 76 were excluded from

future model development. The 35 retained variables for the

development of our models included: age, sex, systolic blood

pressure, heart rate, respiratory rate, coronary artery disease,

heart failure, obesity, intravenous (IV) drug user, altered mental

status, O2 saturation, hemoglobin, white blood cells, creatinine,

CT angiography variables [segmental and lobar artery
Frontiers in Cardiovascular Medicine 04
thrombosis, pleural effusion, right ventricle (RV) strain],

echocardiography features [patent foramen oval (PFO), RV

dysfunction, RV dilation, pulmonary artery (PA) and RV/RA

thrombosis, left ventricular (LV) ejection fraction, treatment

variables (contraindication to fibrinolytic, treatment with

fibrinolysis/thrombectomy/inferior vena cava filter,

anticoagulation with unfractionated heparin (UFH), low

molecular weight heparin (LMWH), novel oral anticoagulants

(NOACs)] and complication variables [intracranial hematoma

(ICH), heparin-induced thrombocytopenia (HIT), GI bleeding,

blood transfusion].

The features that the model applies to them are based on the

routine index units that are regularly employed by healthcare

facilities. These index units for each element are detailed in

Table 1. We offer the variables to the model with these typical

units, and then it would convert them into interpretable numbers

for computing the results automatically on its own.

Then, for the creation of the prediction models, the whole

dataset with 1,017 patients was randomly divided into three

categories: (1) training set (56% of total population, n = 570), (2)

validation set (14% of total population, n = 141) and (3) testing

set (30% of total population, n = 306). As a final step, three

prediction models were developed using the R programming
frontiersin.org
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language: a Gradient Boosting model, a Deep Learning model, and

a Logistic Regression model. By learning them through the training

set, tuning their hyperparameters with the validation set, and

finally fitting the models onto a testing set, performance metrics

were determined for each model. The results were then

compared to find the most accurate model (Supplementary File).

The Logistic Regression (LR) model is a common method that

uses the independent variables (the “predictors”) to predict the

class of a categorical type variable (the “target variable”). LR

models the probability of one target out of the two possible

probabilities (binary LR), using the log-odds (the logarithm of

the odds), and the class of the target variable will be predicted

based on this probability.

The Gradient Boosting (GB) model is a machine learning method

that commonly is used for classification problems. Gradient boosting

belongs to the class of ensemble methods, which means it uses

multiple models (the “weak models”) and combines them to

improve their results and get the best final model. Typically, the

weak models are based on a decision tree method. Recently, the GB

model has become more popular in medical data analysis due to its

high prediction accuracy compared to other machine learning or

traditional statistical analyses.

The Deep Learning (DL) model is a sort of neural network

which consists of neural layers, and each layer includes some

nodes. The nodes in consecutive layers are connected with the

“weights” that are set during the learning method and are tuned

in the validation process. The output from all of the serial layers

is the probability of the target variable, which would be

converted to the predicted class regarding previous learnings.

Although the deep learning method is usually used for

developing prediction models on large datasets, however, it could

be applied to datasets of any size, but some techniques should be

implemented in such situations to augment the training dataset

and improve the final estimations. Our deep learning model in

this study was based on a multi-layer perception (MLP) method

since the MLP neural networks work well on tabular data. The

model consists of 4 layers, including the input layer, two hidden

layers (each containing ten nodes), and the output layer.
FIGURE 1

Comparison of the receiver operating characteristic curve (ROC curve) of ma
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We evaluated the predictive power of the models on a single

testing dataset. For the test set to be able to accurately assess the

performance of developed models, it must have the same

distribution of adverse outcomes as the whole dataset, so that it

mimics the pattern of distribution of events in the main

population (i.e., the overall prevalence of final events should be

about 9–10 percent). Many factors should be considered for this

purpose (called “performance metrics”), such as the Receiver

Operating Characteristic curve (ROC curve), the precision-recall

curve (PR curve), area under the curve (AUC) of the ROC curve,

AUC of the PR curve, accuracy, precision, recall, F1-score and

the Matthews Correlation Coefficient (MCC) of the model. The

ROC curves and the PR curves of the 3 models are shown in

Figures 1, 2 respectively.

Since the target variable (the composite outcome) had two

categories, in which the incidence of the events is so fewer than

the number of event-free patients, we had a class imbalance

problem. To strengthen the estimations, we should convert our

training set to a dataset that consists of a more balanced outcome

variable (a process that can be done using the data augmentation

methods), but the important point is that in such analysis, the

validation set and also the testing set should have the same ratio

of target variable as the original dataset does have. So first we

divided our original data into random samples and created the

training, validation, and testing set with respect to preserving the

ratio of events in the validation and testing set, then, the data

augmentation process for the training set was done using the

ROSE (Random Over Sampling Examples) library in R Studio.
Results

Basic characteristics

A total number of 1,017 patients were finally enrolled in the

study, including 465 women and 552 men. The most common

traditional cardiovascular risk factor among patients was

hypertension (40.9%), and 14.6% of patients had a history of
chine learning models. AUC, area under the curve.
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FIGURE 2

Comparison of the precision-recall curve (PR curve) of machine learning models. AUC, area under the curve.
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VTE (including 8.4% for previous DVT and 6.2% for previous PE).

The most frequent symptom was dyspnea (89%).
Main outcome

The overall incidence of study-defined events (composite of

adverse outcomes) was 9.6%, (7.2% in men and 12.4% in

women) (p-value = 0.05). Event-free patients were younger

(58.8 ± 17.3 vs. 65.4 ± 15.7 years old), had higher in-admission

systolic blood pressure (129.8 vs. 124.6 mmHg), and higher O2

saturation (92.4% vs. 86.6%) (p-value < 0.05).
ECG findings

S1Q3T3 pattern (i.e., marked S wave in lead I, inverted T, and

marked Q wave in lead III) was the most frequent dynamic change,

which was not significantly different between event-positive and

event-negative groups (p-value 0.83). Atrial fibrillation (AF)

rhythm occurred significantly higher in the patients with in-

hospital events (17.3% vs. 5.2%, p-value = 0.00).
Echocardiographic findings

In echocardiography examination, 64% of the patients had at

least mild right ventricular dysfunction. The mean ejection

fraction was slightly (but statistically significant) lower in event-

positive patients (49.9 ± 8.7 vs. 51.5 ± 7.4, p-value = 0.05). In

addition, patients with in-hospital events were more likely to

develop RV dysfunction and visible thrombus in the right

atrium/right ventricle and pulmonary artery (p-value < 0.05).
Pulmonary CT angiography

Lobar artery involvement was the prevailing pattern of

thrombo-emboli in the pulmonary CT angiography of both two
Frontiers in Cardiovascular Medicine 06
groups, however the prevalence of segmental PE was significantly

higher in the event-negative group, whereas, the saddle emboli

was more prevalent (although non-significant) among the event-

positive subjects. Also, evidences of the RV straining in CT

angiography sequences were seen more in the event-positive

patients (28.1% vs. 16.3%, p-value = 0.010).
Treatment

As we expected, the rate of subjects that had a contraindication

for fibrinolytic administration, was significantly higher among the

event-positive group (11.2% vs. 3.4%, p-value < 0.001). Also, the

overall rate of individuals who received fibrinolytic agents was

higher in the event-positive group as well (14.5% vs. 29.6%, p-value

< 0.001). Furthermore, the thrombectomy procedure was performed

in 9.2% of patients in the event-positive group, compared with

0.5% of subjects in the event-negative group (p-value < 0.001).
Complications

Among all of the major complications, the incidence of

gastrointestinal bleeding and also the need for blood transfusion

were significantly higher in the event-positive group compared to

the event-negative group (5.1% vs. 5.1%, p-value < 0.001 and

14.3% vs. 1.7%, p-value < 0.001, respectively).
Evaluation of model performance

In order to compare model performances to predict mentioned

adverse outcomes in our population, performance metrics

associated with model evaluation are demonstrated in Table 2.

As seen there, the overall performance of the GB model is better

than the other two models (AUC: 0.95 for GB vs. 0.91 and 0.92

for DL and LR models respectively). Because the distribution of

composite outcome in the population was so imbalanced,

interpretation of the model only based on the AUC of the ROC-
frontiersin.org
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TABLE 2 Performance metrics for comparison of the three models.

Model AUC-ROC AUC-PR Accuracy MCC F1-score
Logistic regression 0.90 0.49 0.94 0.55 0.58

Deep learning 0.88 0.58 0.93 0.62 0.64

Gradient boost 0.94 0.80 0.96 0.74 0.76

AUC, area under the curve; ROC, receiver operating characteristics; PR, precision-

recall; MCC, Matthews correlation coefficient.

Jenab et al. 10.3389/fcvm.2023.1087702
curve is not enough, so we considered comparing the AUC of PR-

curve models because it reflects the performance of models in an

imbalanced population more accurate. On the other hand, while

the “accuracy” factor is not appropriate for imbalanced datasets,

the Matthews Correlation Coefficient (MCC) is more

interpretable and accurate for evaluating the prediction models in

such populations. As we expected from previous results, the

MCC of the GB model was at a higher level in comparison with

the other two models. So based on what we observed, the overall

performance of the GB model for determination and prediction

of the composite adverse outcomes group is higher than the

other DL and LR models.
SHAP analysis

In order to identify what features mostly impact the final

prediction, the “SHAP” analysis was done on our GB model.

This analysis sorts the features based on their importance for

algorithm decision-making. Furthermore, it demonstrates the

variable’s “Shapley Value”, a value that determines the

contribution of a player in the game theory, whereas, in machine

learning, it reflects how the system makes the final decision using

each of the variables. In our survey, as shown in Figure 3, the
FIGURE 3

SHAP summary plot sorts the features used in the gradient boosting model, co
shows the variables, while the x-axis represents the Shapley value of each varia
(composite adverse outcomes), red shows the direct relationship, whereas b
echocardiography; Lab, laboratory test; CT angio, pulmonary CT angiography
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most important variables for the GB model to predict the

occurrence of adverse events, in order of their importance, are

lower O2 saturation (the most important), RV dilation, and RV

dysfunction in echocardiography images (which their existence is

contributed to a greater risk for events), lower levels of

hemoglobin, higher need for blood transfusion, absent of only

the lobar artery emboli (which means that the patient had a

saddle emboli and as we expected, is at a higher risk for adverse

outcomes), higher respiratory rate, and higher levels of

leukocytosis in laboratory tests.
Discussion

ML is commonly used to develop predictive models for medical

datasets and their performance generally surpasses that of

conventional methods when dealing with high-dimensional

relationships between features.

We developed 3 machine learning models and compared their

performance for predicting in-hospital PE adverse outcomes,

namely the Gradient boosting model, the Deep learning model,

and the Logistic regression model. Of the three methods,

gradient boosting achieved the highest AUC (higher than LR).

Among the many scores that have been proposed for PE

outcomes, the pulmonary embolism severity index (PESI) is the

most widely used one. However, many important predictors such

as echocardiographic parameters and lab data have not been

included in PESI which may limit its ability in subgroups of

patients. This is where ML-based models which are based on the

pile of electronic medical records and artificial intelligence come

to work. It has been demonstrated in several studies (16–18) that

PESI score’s overall predictive power is modest, with the ROC
ncerning their importance in the final decision-making process. The y-axis
ble. The colors illustrate the relationship between features and prediction
lue means inverse relation. SHAP, SHapley Additive exPlanations; Echo,
.
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plot AUC ranges from 0.66 to 0.77, whereas our best model’s AUC

was 0.94; Of course, it needs to be tested on other external datasets

as well to confirm. So, we decided not to do this comparison

because it seemed to be imprecise due to the lack of external

validation for our AUC. Instead, we compared the performances

of our various models on the data (Figure 4). It is noteworthy to

mention that our model mostly utilizes baseline parameters for

the prediction process, which are available in the emergency

room during the initial hours of patient admission, nonetheless,

it also includes a few non-baseline variables (including ICH,

HIT, GI bleeding, and blood transfusion) which may arise in the

ensuing days of hospitalization.

Eight features were included in our final models that are mostly

different from what we calculate in the PESI score. Detailed

discussion about these features will come afterward.

1. O2 saturation was the leading feature identified. Our analysis

shows a direct relationship between decreased O2 saturation

and adverse outcomes in PE, which is compatible with

previous studies. As demonstrated in an earlier study, oxygen

saturation <88% is associated with the severity of PE (19).

2. RV dilation and dysfunction were also identified as

important variables for predicting adverse outcomes using

the GB model. Recent studies show that RV dilation

assessed using an RV/LV ratio greater than 0.9 leads to a

greater risk for mortality in PE patients (20). Another

analysis has assessed RV failure in PE patients using

echocardiography and spiral CT or by increased levels of

BNP, pro-BNP or troponin-T and also showed that it is a

significant risk factor for mortality in PE patients which is

in keeping with our findings (21).

3. Considering anemia as an independent risk factor for

developing PE is challenging. Some studies report a

positive correlation between anemia and PE due to

decreased blood viscosity resulting in reduced secretion of

anti-thrombotic mediators (22), while others found the

opposite (23). In terms of analyzing the low hemoglobin

(Hb) level effect on PE outcomes, our analysis was in
FIGURE 4

Graph of classification-error of the gradient boosting model versus the num
validation datasets.
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correlation with past studies and showed that low Hb level

could predict adverse outcomes in PE patients. A study

reported a strong association between anemia and PE

mortality and reports a higher risk in patients who have

RV dysfunction along with anemia (24).

4. Our analysis showed that blood transfusion in patients was

related to a higher risk of developing adverse outcomes.

Transfusions are often associated with anemia, an

independent risk factor for mortality in patients. On the

other hand, blood transfusion increases the risk of infection

and develops a hypercoagulable state which can worsen the

situation. Similar to our findings, one study has assessed

packed-cell transfusion in PE patients and defined it as a

significant independent predictor for short-term and long-

term mortality (25). However, this is one of the few non-

baseline variables the model uses for the prediction task,

which might occur during the hospitalization period and

essentially couldn’t be assigned at the first few hours of

patient admission.

5. Saddle embolus was reported higher in our outcome group

compared to our event-free group, but this was not

statistically significant, probably because of the lower

number of saddle emboli than our lobar emboli and

segmental emboli patients. Recent studies show that saddle

pulmonary embolism results in a higher proportion of

hemodynamic instability and other adverse events (26, 27).

Despite saddle emboli, lobar artery emboli patients had a

higher proportion in our population in both groups, so it

worked as a helpful variable for outcome prediction.

Patients with proximal PE are at a higher risk than those

with subsegmental PE. It is caused by pulmonary

hypertension and enlargement of the right ventricle with

more proximal localization of emboli (28). Similar findings

were obtained in previous research (29, 30). A meta-analysis

assessed the prognostic role of emboli burden in PE patients

using CTA and reported an increased risk of 30-day

mortality in patients with an embolism in the central

branches of pulmonary arteries (31).
ber of trees, showing the decreasing trend of errors in both training and
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6. Patients with adverse events tend to have higher respiratory

rates compared to the event-free group. A similar study tried

to build a predictive model for PE and introduced both low

O2 saturation and respiratory rate ≥30 as significant

predictors for mortality and other adverse effects in PE (32).

7. Leukocytosis is associated with poorer outcomes in many

cardiovascular diseases such as acute coronary syndrome,

ischemic stroke, and pulmonary embolism (33, 34). White

blood cell (WBC) count is considered as a parameter for

adverse outcome prediction in our model, which is in line

with a retrospective cohort study that assessed the prognostic

impact of WBC count in PE patients (35–37). An explanation

for this association is that leukocytosis in PE usually happens

when there is an infiltration around a myocyte injury in RV

which is an indicator for PE-related RV dysfunction, a

known predictor for adverse outcomes (38).

This study had some limitations. First, single-center studies always are

threatened by a lack of generalizability. However, Tehran Heart Center

is a referral hospital in Iran, and many patients from diverse socio-

demographic features are admitted. Second, the sample size was not

high enough to precisely test and train the model. The power of the

study was not high due to the low event rate. Further research with

a larger sample size is needed in this field. On the other hand, the

absence of external validation is another limitation of this study.

Our clinic is one of the few national referral centers for PE patients,

and other centers don’t have data as organized as our center does

for these patients. As a result, we were unable to obtain other

structured data for accurate external validation. Nevertheless, we are

discussing with centers in other countries over this issue. Ultimately,

the use of non-baseline parameters in the models limits their utility

at the very first hours of initial medical contact. To further our

work, we intend to eliminate these variables while still sustaining a

high level of model performance.

Conclusion and future prospective

ML-based models have notable prediction ability in PE

patients. Personalized medicine is the main area that may benefit

from these algorithms. These algorithms may help physicians to

detect high-risk patients earlier and take appropriate preventive

measures.
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