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Mitochondria-associated endoplasmic reticulum membranes (MAMs) are formed

by physical connections of the endoplasmic reticulum and mitochondria. Over

the past decades, great breakthroughs have been made in the study of ER-

mitochondria communications. It has been identified that MAM compartments are

pivotal in regulating neurological function. Accumulating studies indicated that

MAMs participate in the development of cardiovascular diseases. However, the

specific role of MAMs in heart failure remains to be fully understood. In this article,

we first summarize the structural and functional properties of MAM and MAM-

associated proteins. We then focus on the roles of MAMs in myocardial infarction,

cardiomyopathy and heart failure, and discuss the involvement of MAMs in disease

progression and treatment. Elucidating these issues may provide important insights

into therapeutic intervention of heart failure.
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Introduction

Mitochondria and endoplasmic reticulum (ER) are the two essential organelles which are
tightly intertwined in eukaryotic cells (1). Mitochondria are the core parts of cell energy
metabolism in maintaining the cellular function. Whereas ER, also known as sarcoplasmic
reticulum (SR) in myocytes, participates in calcium storage, protein folding and processing, lipid
metabolism (2). Mitochondria-associated ER membranes (MAMs), membranous contact sites
between mitochondria and ER, bidirectionally regulates organelle physiological functions like
lipid and Ca2+ homeostasis, mitochondrial dynamics, autophagy and apoptosis. Interruption
of ER-mitochondria communication is a major cause of altered cellular homeostasis, which
can lead to serious diseases including cancer, neurological diseases and cardiovascular diseases
(CVDs) (3).

Cardiovascular diseases are the leading cause of death in the world, which consists of
hypertension, acute myocardial infarction (AMI), cardiomyopathy, heart failure and other
cardiac problems (4). Heart failure, the common end-stage of most cardiovascular diseases, is
caused by hypertension, myocardial infarction (MI), ischemia and cardiomyopathies (5). In this
article, we first describe the structural and functional properties of MAMs in cardiomyocytes,
and then focus on their function in the development of heart failure. Interpretation of these
issues may provide important diagnostic value and potential targets for heart failure.
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Structure and composition of MAMs

Mitochondria-associated ER membranes, composed of ER
subdomains placed alongside with the outer membrane of
mitochondria (OMM), can fluctuate dynamically. Electron
microscopy revealed a distance of approximately 10–25 nm
between the ER and OMM (6). The two organelles maintain stable
and dynamic communications by the protein tethers. Proteomics
evaluation demonstrated that MAMs components, highly conserved
among different species and different tissues, play a direct physical
tethering connection role or act as modulators of the tethering
complexes in MAMs (7).

IP3Rs—GRP75-VDACs complex
The ER Ca2+ channel inositol 1,4,5-triphosphate receptors

(IP3Rs) physically connect with OMM voltage-dependent anion
channels (VDACs) via the cytoplasmic chaperone glucose-regulated
protein 75 (GRP75), forming a tripartite complex to modulate ER-
mitochondria juxtaposition (8). In mouse primary neurons, GRP75
promotes ER-mitochondria tethering and mitochondrial Ca2+, thus
enhancing ATP production (9).

VAPB–PTPIP51 or ORP5/8 complex
The ER membrane protein vesicle-associated membrane

protein associated protein B (VAPB), binds to the OMM
protein tyrosine phosphatase-interacting protein-51 (PTPIP51),
forming VAPB-PTPIP51 tethering complex which regulates
ER-mitochondria Ca2+ transmission (10). Disruption of their
interaction causes MAMs dissociation, and disturbs mitochondrial
Ca2+ import and ATP synthesis (11). Besides, oxysterol-binding
protein-related protein 5/8 (ORP5/8), enriched at MAMs in
mammalian cells, physically interacts with PTPIP51. Inhibition of
ORP5/ORP8 contributes to mitochondria morphology defects and
respiratory dysfunction (12).

MFN2–MFN1/2 complex
Mitofusin2 (MFN2), mitochondrial fusion regulator, is

recognized as an important constituent of MAMs. ER-resident
MFN2 forms homodimer or heterodimer with either mitofusin
(MFN1) or MFN2 on the OMM (13). MFN2 depletion promotes the
ER-mitochondria connections and mitochondrial Ca2+ uptake from
ER, indicating that MFN2 is more than a physical tether (14, 15).

BAP31-Fis1 complex
During the apoptotic process, the ER-located B-cell receptor-

associated protein 31 (BAP31) is associated with OMM protein, the
mitochondrial fission 1 protein (Fis1), acting as another tether for
MAMs to induce apoptosis (16). Besides, phosphofurin acidic cluster
sorting protein 2 (PACS-2), the first MAM protein identified to be
involved in MAM formation, regulates the tethering of mitochondria
with ER in a BAP31-dependent manner (17).

Function of MAMs

Increasing evidence suggests that MAMs provide a platform for
maintaining intracellular homeostasis and biological functions (18)
(Figure 1).

Lipid synthesis and transfer
MAMs are abundant in proteins involved in lipid metabolisms

including phosphatidylserine synthase (PSS), fatty acid CoA
ligase 4 (FACL4), phosphatidylethanolamine N-methyltransferase 2
(PEMT2), phosphatidylserine decarboxylase (PSD) (19), as well as
in phospholipid, triacylglycerol synthesis and steroidogenesis (20).
Caveolin-1 (CAV-1) is an integral component distributed abundant
on MAMs, which promotes lipid and cholesterol metabolism (21).

Ca2+ transfer and signal transmission
Ca2+ is a second messenger modulating multiple cellular

activities such as cell metabolism and apoptosis (22). As mentioned
above, the effective Ca2+ transmission at MAMs is regulated
by multiple protein complexes. IP3R1-GRP75-VDAC1 tethering
complex forms a Ca2+ regulatory axis with mitochondrial calcium
uniporter (MCU), which mediates Ca2+ transmission from ER to
mitochondria (23). In addition, ER chaperone proteins like Sigma-
1 receptor (Sig-1R) physically associate at MAM, and regulate Ca2+

transmission through IP3R3 (24).

Mitochondrial dynamics
Mitochondrial dynamics include mitochondrial fission and

fusion, which are crucial for maintaining cellular homeostasis.
Proteins involved in mitochondrial dynamics are enriched in MAMs
(25). MFN1 and MFN2 regulate OMM fusion, while Optic atrophy
1 (OPA1) modulates IMM fusion. The mitochondrial fission process
is regulated by dynamin-related protein1 (Drp1), Fis1, mitochondrial
fission factor (Mff), and mitochondrial dynamic proteins of 49 and
51 kDa (MiD49/51). A recent study emphasized that MAMs are the
origin sites of mitochondrial fission (26).

Autophagy and apoptosis
Many autophagic proteins are located in MAMs and

autophagosomal membranes may originate from MAMs (27).
Under starvation, the pre-autophagosome marker autophagy-
related 14-like (ATG14L) promotes relocalization of the autophagy
induction factor mammalian target of rapamycin complex 2
(mTORC2) to MAMs and initiates autophagosome formation (28).
It is reported that decreased MAMs tethering complexes result in
abnormal hippocampal autophagy in rats (29). Moreover, MAMs
modulate apoptosis via Ca2+ regulation. Evidence showed that Ca2+

overload can induce mitochondrial permeability transition pore
(mPTP) opening and apoptosis (30). BAP31-Fis1 tethering complex
recruits procaspase-8, which promotes the release of Ca2+ stores in
ER and causes apoptosis (16).

Role of MAM-associated proteins in CVDS

Ischemia-reperfusion injury
MI is an acute syndrome of CVD with high death rate (31).

Myocardial ischemia/reperfusion (I/R) injury, a pathophysiological
status after the ischemic myocardium returns to normal perfusion, is
commonly deemed as a serious risk factor for coronary artery disease
(32). MI is characterized by cardiac injury, myocardial cell death and
abnormal cardiac function, which will lead to heart failure and death
(33). Myocardial I/R injury is mainly associated with oxidative stress,
ER stress and mitochondrial dysfunction (34). Among these, calcium
overload is the leading cause of disordered oxidative phosphorylation
and contributes to mitochondrial dysfunction (25).
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FIGURE 1

The role of MAMs in heart failure development. Proteins located on the ER surface, such as IP3R, VAPB, MFN2, and BAP31 interact with their counterparts
on the OMM like VDAC, PTPIP51 or ORP5/8, MFN1/2, and Fis1, forming four major tethering complexes at MAMs in mammalian cells. Depletion of MAMs
can lead to Ca2+ overload, ES stress, mitochondrial dysfunction, autophagy and apoptosis, which is involved in the development of heart failure.

Several components of ER/SR-mitochondria tethering complex
participate in Ca2+ homeostasis and mediate mPTP opening and
I/R damage. Cyclophilin D (CypD), encoded by Ppif, is located
in the mitochondrial matrix and acts as a crucial regulator for
mPTP opening and necrosis. CypD interacts synergistically with
the VDAC1-Grp75-IP3R1 complex and enhances ER Ca2+ efflux
into mitochondria (Table 1) (35). CypD overexpression induced
mPTP opening without stimulating cell death, whereas CypD
inactivation significantly reduced myocardial infarct size during I/R
and ameliorated myocardial injury via impeding Ca2+ overload (36,
37). Notably, the protective effect of preconditioning was absent
in Ppif−/− mice, which were more susceptible to heart failure,
indicating that CypD plays a dual function in I/R (38, 39).

Glycogen synthase kinase-3 beta (GSK-3β), a new Ca2+

regulator located in the SR/ER, specifically interacts with the
IP3R Ca2+-channeling complex and regulates Ca2+ transfer in
cardiomyocytes (40). GSK-3β inhibition diminished Ca2+ overload
and reduced myocardial apoptosis resulted from I/R, thereby
providing cardioprotection (40). Moreover, GSK-3β inhibitors
attenuated infarct size in mice and rabbits, indicating drug
administration was a feasible method (41). VAPB-PTPIP51 is
a widely accepted tethering complex in MAMs. PTPIP51 is
markedly increased in mice I/R hearts. PTPIP51 overexpression

mediated excessive mitochondrial Ca2+ uptake, but reversed by
MCU inhibition, which protected cardiomyocytes against PTPIP51-
mediated apoptosis (42). Cardiac knockdown of PTPIP51 strikingly
alleviates cardiac injury after myocardial I/R, indicating that PTPIP51
might be a potential target for ischemic heart disease. Furthermore,
downregulation of VAPB or PTPIP51 promotes autophagy by
reducing mitochondrial Ca2+ levels (43).

Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), the main
pump for Ca2+ uptake in the ER, regulates calcium homeostasis by
interacting with calnexin. SERCA ameliorated reperfusion-induced
myocardial injury by employing gene delivery strategies targeting
SERCA (44, 45). Mitochondrial dynamics is crucial in myocardial
I/R by regulating mPTP opening (46). MFN1-MFN2 complex is
implicated in modulating mitochondrial fission and maintaining
ER-mitochondria microdomain (13). Acute deletion of Mfn1 and
Mfn2 prevented myocardial I/R injury and reduced infarct size (47).
Mfn2 knockout hearts exhibited resistance to I/R injury, however
long-term Mfn2 deletion contributed to cardiac dysfunction (47, 48).

Cardiomyopathy
Cardiomyopathy, myocardial disorder with abnormal cardiac

muscle, can be either acquired or inherited. Hypertrophic
cardiomyopathy (HCM) and dilated cardiomyopathy (DCM)
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TABLE 1 The roles of MAMs related proteins in CVDs.

Disease Protein Function in MAM Model Expression Role in CVD References

Ischemia-
reperfusion
injury

CypD Ca2+ transmission Mice ↑ CypD inactivation significantly ameliorates
myocardial injury

(36, 37)

GSK3β Ca2+ regulatory Mice
Rabbit

↑ Inhibition of GSK3β diminished Ca2+ overload
and reduced myocardial apoptosis

(40, 41)

PTPIP51 Calcium homeostasis Rat
Mice

↑ Cardiac deletion of PTPIP51 strikingly alleviates
cardiac injury

(42, 43)

SERCA ER Ca2+ uptake pump Mice ↑ Overexpression of SERCA protects
microcirculation against cardiac I/R injury

(44, 45)

MFN1/2 Calcium homeostasis Rat
Mice

↑ Mfn1/2 deletion protects the heart against ischemia
and reperfusion injury

(47, 48)

Cardiomyopathy MFN2 Mitochondrial fusion Mice ↑ Mfn2-deficient mice exhibits abnormal
mitochondria, which induces respiratory
dysfunction and causes DCM

(50, 51)

Drp1 Mitochondrial fission Mice ↑ Cardiac knockout of Drp1 induces DCM with
disregulated mitochondria

(53, 54)

GSK3β Calcium homeostasis Mice / Cardiac deletion of GSK-3 causes DCM and death (49, 55)

VDAC Ca2+ channel on OMM Mice ↑ Cardiac VDAC2 knockout mice showed defected
cardiac function and DCM

(56, 57)

Heart failure IP3R ER Ca2+ channel Mice
Rat
Human

↑ Inhibition of IP3R1 alleviates myocardial injury
and heart failure

(66, 67)

FUNDC1 Regulate Ca2+ and
autophagy

Mice
Human ↓

FUNDC1 deletion causes mitochondrial
dysregulation, cardiac dysfunction and heart
failure

(68, 69)

SIG-1R ER chaperon Mice ↓ Sig-1R knockout mice demonstrate mitochondrial
dysfunction and heart failure

(70, 71)

MFN2 Ca2+ transmission Rat
Mice
Human

↓ Cardiac deletion of MFN2 mice developed cardiac
hypertrophy and diastolic dysfunction

(74–76)

Drp1 Mitochondrial dynamics
and mitophagy

Mouse ↑ Cardiac deletion of Drp1 showed progressive
ventricular enlargement and functional
decompensation, leading to heart failure

(79–81)

OPA1 Mitochondrial dynamics Rat
Human

↓ Reduced OPA1 promoted apoptosis and
mitochondria fragmentation, which causes heart
failure progression

(83, 84)

are the most common cardiomyopathies. Among these, DCM is
the most common cause of heart failure, which is characterized
by structural thinning and dilation of heart chambers with a
progressively defected cardiac function (49).

It has been reported that cardiac deficiency of Mfn1 and Mfn2
exhibits progressive DCM and heart failure in succession (50).
Structural and functional abnormal mitochondria were observed
in Mfn2-deficient mice, which induced respiratory dysfunction
and caused DCM (51). Moreover, mice with Drp1 mutation
demonstrated cardiomyopathy with punctuate calcification in the
heart (52). Cardiac depletion of Drp1 induced DCM after birth and
rapid death in mice (53, 54). Increased mitochondrial connection,
accumulated ubiquitinated proteins as well as reduced respiration
was observed in Drp1 knockout cardiomyocytes. These studies
indicate that Drp1 is crucial in regulating mitochondrial quality and
myocardial survival.

Adult cardiac deletion of a multifunctional regulator GSK-3
contributed to severe DCM due to cell cycle dysregulation, indicating
that GSK-3 is involved in maintaining cardiac homeostasis (49, 55).

VDAC, the most abundant mitochondrial outer membrane protein,
contains three subtypes-VDAC 1, 2, and 3 in mammalian cells (56).
It has been reported that VDAC1 is upregulated in the left ventricle
of HCM patients (57). VDAC1 inhibition significantly attenuated
mitochondrial Ca2+ overload and protected cells from hypoxia-
reoxygenation (H/O) (58). Cardiac VDAC2 knockout mice showed
decreased ejection fraction and increased brain natriuretic peptide
(BNP) level and cardiac fibrosis, which was consistent with DCM
features (56).

Heart failure
Heart failure is a complicated pathophysiological syndrome

of cardiac pumping failure (5). Conditions such as ischemia,
pressure or volume overload, cardiac hypertrophy, cardiomyopathy,
will eventually lead to heart failure (59). It is well recognized
that mitochondrial function and Ca2+ homeostasis are significant
in cardiac remodeling and heart failure (60–62). The cardiac
rhythmicity and contraction require energy, which is driven
by mitochondrial oxidative phosphorylation (63). Besides, SR, a
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membrane system with a high density of Ca2+-ATPases, maintains
optimal calcium levels for myocardial contraction. Disruption of
Ca2+ homeostasis can trigger ER stress and energy metabolism
defects, affecting the development of heart failure (64, 65).

Mitochondrial Ca2+ dysregulation is involved in cardiac
remodeling and heart failure. IP3R is a ligand-gated calcium channel
located in the ER/SR, with isoform IP3R-2 predominant in the
heart. IP3R is associated with cardiac remodeling in response to
various stress that cause hypertrophy (66). The expression and
activity of IP3R is enhanced under pathological conditions such
as cardiac hypertrophy and heart failure. Moreover, inhibition of
IP3R1 alleviates myocardial injury and heart failure (67). FUNDC1,
a highly conserved OMM protein, maintains MAM formation by
interacting with IP3R2 and regulates mitophagy (68). Compared
with healthy group, the expression level of FUNDC1 and the
number of SR-mitochondria contacts are dramatically reduced in
heart failure patients. The decreased FUNDC1 level in MAMs
contributed to impaired SR Ca2+ transportation to mitochondria
through inhibition of IP3R2 ubiquitin-dependent degradation,
resulting in perturbation of the CREB/Fis1 pathway and eventually
compromising cardiac function. Besides, FUNDC1 knockout mice
showed diastolic and systolic dysfunction (69). In contrast, FUNDC1
overexpression elevates both cytosolic and mitochondrial Ca2+ levels
in cardiomyocytes, and lowers SR Ca2+ levels. Sig-1R disassociated
from the binding immunoglobulin protein (BiP) and prolonged
mitochondria Ca2+ uptake via IP3R under ER stress (70). Sig-
1R regulates Ca2+ transfer into mitochondria to promote ATP
production (71). Sig-1R knockout mice displayed mitochondrial
dysfunction and cardiac remodeling, causing cardiac dysfunction.
Besides, Fluvoxamine, possessing high Sig-1R affinity, alleviated heart
failure in both mice and rat models subjected to TAC (72).

Mitochondrial dynamics is participated in cardiac hypertrophy
and heart failure progression. Cardiac depletion of Mfn1/2 in mice
showed impaired heart function with increased left ventricular
end-diastolic volume and decreased fractional shortening (48,
73). Accumulating studies have demonstrated that MFN2 was
downregulated in heart failure models induced by spontaneously
hypertensive rats (SHR) or TAC (74). Consistently, MFN2 was
decreased in hypertrophic cardiomyocytes induced by Angiotensin
II (Ang II), accompanied by the alterations of mitochondria
morphology (75). A study showed that MFN1/MFN2 double
knockout mice died at the embryonic stage due to heart failure
(50). Besides, cardiac deletion of MFN2 mice developed cardiac
hypertrophy and moderate diastolic dysfunction (76). Conversely,
MFN2 overexpression alleviated Ang-II induced cardiac hypertrophy
(77). Intriguingly, sex hormones (estrogen and testosterone) can
increase cardiac expression of Mfn1 and Mfn2, suggesting that
further study is needed on the regulatory effect of the sex hormones,
and their cardioprotective effects (78). Drp1, mitochondrial fission
regulator, is upregulated in damaged cardiac tissues induced by
doxorubicin. A study showed that Drp1 inhibitor will be a
promising pharmacological agent, which inhibits the excessive
mitochondrial fission mediated by doxorubicin and ameliorates its
cardiotoxicity (79). Drp1 deficiency in adult mouse hearts showed
the pathophysiological consequences of progressive ventricular
enlargement and functional decompensation, resulting in heart
failure (80). Drp1-dependent mitochondrial autophagy exerts a
protective role in mitochondrial dysfunction and heart failure
resulted from pressure overload (81). At present, microRNAs (miR)
are being studied as therapeutic targets for CVDs. It is reported that

miR 499 protects heart against MI by inhibiting mitochondrial fission
mediated by Drp1 (82). OPA1, mediates IMM fusion and acts as
a crucial regulator of morphological change in cardiac physiology.
Altered OPA1 function was proposed to lead to the pathogenesis
of heart failure (83). Studies have shown that protein levels of
OPA1 were reduced in both rat and human heart failure models
accompanied with mitochondrial fragmentation. Reduced OPA1
promoted apoptosis and mitochondria fragmentation, which may
contribute to heart failure progression with progressive loss of cardiac
myocytes (84). Together, mitochondrial dynamics are essential to
maintain cardiac structure and function, which may act as a potential
strategy to prevent myocardial hypertrophy and heart failure.

Conclusion

MAMs, membranous contact sites between mitochondria and
ER, regulate various cellular processes including Ca2+ homeostasis,
mitochondrial dynamics, autophagy and apoptosis. Heart failure is
the final stage of diverse CVDs. Accumulating studies have defined
the essential function of MAMs in the development of heart failure.
For instance, depletion of CypD contributed to reduced myocardial
infarction and ameliorated cardiac function (36). Upregulation of
PTPIP51 caused cardiac injury by promoting mitochondrial Ca2+

overload and apoptosis, whereas PTPIP51 depletion significantly
protected the heart from I/R injury (42). Besides, Mfn2 knockout
mice developed dilated cardiomyopathy (51). Dysregulation of Drp1
in cardiomyocytes contributes to myocardial injury and heart failure
(82). These studies indicate that MAMs may act as biomarkers
and potential therapeutic targets in heart failure. The function of
MAMs in cardiovascular diseases worth more attention due to their
multifunctional. The improved understanding of MAMs integrity
regulation or MAMs targets identification might provide significant
therapeutic strategies for cardiovascular diseases.
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