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Background: Machine learning analysis of complex myocardial scar patterns affords 
the potential to enhance risk prediction of life-threatening arrhythmia in stable 
coronary artery disease (CAD).

Objective: To assess the utility of computational image analysis, alongside a machine 
learning (ML) approach, to identify scar microstructure features on late gadolinium 
enhancement cardiovascular magnetic resonance (LGE-CMR) that predict major 
arrhythmic events in patients with CAD.

Methods: Patients with stable CAD were prospectively recruited into a CMR registry. 
Shape-based scar microstructure features characterizing heterogeneous (‘peri-
infarct’) and homogeneous (‘core’) fibrosis were extracted. An ensemble of machine 
learning approaches were used for risk stratification, in addition to conventional 
analysis using Cox modeling.

Results: Of 397 patients (mean LVEF 45.4 ± 16.0) followed for a median of 6 years, 
55 patients (14%) experienced a major arrhythmic event. When applied within an 
ML model for binary classification, peri-infarct zone (PIZ) entropy, peri-infarct 
components and core interface area outperformed a model representative of the 
current standard of care (LVEF<35% and NYHA>Class I): AUROC (95%CI) 0.81 (0.81–
0.82) vs. 0.64 (0.63–0.65), p = 0.002. In multivariate cox regression analysis, these 
features again remained significant after adjusting for LVEF<35% and NYHA>Class I: 
PIZ entropy hazard ratio (HR) 1.88, 95% confidence interval (CI) 1.38–2.56, p < 0.001; 
number of PIZ components HR 1.34, 95% CI 1.08–1.67, p = 0.009; core interface area 
HR 1.6, 95% CI 1.29–1.99, p = <0.001.

Conclusion: Machine learning models using LGE-CMR scar microstructure improved 
arrhythmic risk stratification as compared to guideline-based clinical parameters; 
highlighting a potential novel approach to identifying candidates for implantable 
cardioverter defibrillators in stable CAD.
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1. Introduction

Despite well-documented limitations, existing clinical strategies to 
determine sudden cardiac death (SCD) risk and guide implantable 
cardioverter defibrillator candidacy remain centered on left ventricular 
ejection fraction (LVEF) (1). This approach is insensitive and non-specific 
with the majority of SCD occurring in patients not incorporated in current 
clinical guidelines and only a small proportion of the patients who undergo 
device implantation receiving an appropriate shock (2, 3). Conversely, 
there is increasing data supporting the utility of myocardial scar 
quantification by LGE-CMR to predict SCD (4, 5). This body of work is 
importantly underpinned by the plausible causal relationship between 
myocardial fibrosis and ventricular arrhythmia. Furthermore, there is 
growing research detailing the prognostic role of shape-based scar 
microstructure features. Our group recently published (6–9) the role of 
morphological and texture-related scar features in both ischaemic heart 
disease (4) and dilated cardiomyopathy (6–9). The characterization of these 
features is, however, complex with multiple potential methods to quantify 
and aggregate the signal from the core scar and peri-infarct zone (PIZ). To 
circumvent these issues, computational analysis techniques can be used to 
rapidly assess multiple methodologies of LGE characterization. 
Additionally, there exist numerous limitations in the application of 
traditional regression analysis to inform changes in clinical practice. 
Conversely, machine learning approaches have the potential to explore 
nonlinear relationships and provide binary decisions. This has notable 
potential utility concerning guiding implantable cardioverter 
defibrillator recommendations.

Previous studies suggest that the heterogeneous texture of scar 
provides a significant pro-arrhythmogenic substrate (9–12). Specifically, 
prior research has shown LGE scar heterogeneity to be an independent 
risk predictor on a small cohort of ischemic cardiomyopathy (13), and 
that the peri-infarct region provides incremental prognostic value above 
clinical benchmarks (10, 12). In a non-ischemic cohort (8, 9), the 
LGE-myocardial interface area, along with features such as entropy and 
number of fibrotic components, were shown to be  associated with 
arrhythmic risk. Finally, computer vision analysis through local binary 
patterns have shown early promise in a small cohort (14) of post-MI 
patients, despite being more challenging to interpret clinically. These 
findings suggest that a more granular examination of the heterogeneous 
(‘peri-infarct’) and homogeneous (‘core’) fibrosis, could uncover more 
robust image-based biomarkers, which when used within commonly 
adopted machine learning (ML) strategies, could enable the exploration 
of complex feature combinations leading to improved discrimination 
above traditional clinical modeling methods.

Our study aimed to assess the use of computational modeling of scar 
microstructure features, in combination with a machine learning analytical 
approach, to improve the prediction of major arrhythmic events (MAE). 
We seek to identify new scar microstructure insight than in previous 
works (9).

2. Methods

2.1. Patient recruitment

Patients referred to our center at the Royal Brompton & Harefield NHS 
Hospital trust for late gadolinium enhancement cardiovascular magnetic 
resonance (LGE-CMR) evaluation of ischaemic heart disease were 
recruited between 2009 and 2016. All patients provided written consent. 
CMR was performed on a 1.5 Tesla scanner (Sonata/Avanto, Siemens). 
LGE images were acquired following intravenous injection of a gadolinium-
based contrast agent (0.1 mmol/Kg). An inversion recovery gradient echo 
sequence was subsequently undertaken at 10 min, as described previously 
(15). The slice thickness was 8 mm with a 2 mm gap. Inversion times were 
optimized to ensure adequate nulling of normal myocardium 
(characteristically between 280 ms and 400 ms). LGE quantification of the 
core infarct and PIZ was performed by a Level 3 accredited CMR operator 
(SH) blinded to the clinical outcomes. The LGE slices were then separately 
reviewed by a second accredited CMR operator (RJ).

The inclusion criteria for the study were significant epicardial CAD 
(≥75% stenosis in the left main stem/proximal left anterior descending 
artery or ≥ 75% in 2 other epicardial coronary arteries), prior coronary 
revascularization, or clinical history of prior myocardial infarction 
(confirmed on CMR). Exclusion criteria were a class I indication for a 
secondary prevention ICD, myocardial infarction (MI) within 40 days 
prior to CMR, severe organic valve disease, absence of LGE, previous 
valvular intervention, or primary dilated, hypertrophic or 
infiltrative cardiomyopathy.

Of 734 eligible patients, 257 were excluded on diagnosis, 9 for 
technical reasons, 31 lost to follow-up and 40 to no scar. This allowed 397 
high quality LGE-CMR patients with complete follow-up for our study.

2.2. Late gadolinium enhancement 
quantification

Epicardial and endocardial contours were drawn using CVI42 
(Circle Cardiovascular Imaging Inc., Calgary, Canada) from the short-
axis LGE slices. Expert CMR level 3 readers marked core infarct, peri-
infarct zone (PIZ) and remote regions. Quantification was by Full 
Width Half Maximum (FWHM) and Standard Deviation (SD) 
methodologies. A 10% endocardial and epicardial erosion was used. In 
the FWHM analysis, core infarct was defined as any region with a signal 
intensity (SI) of >50% of maximal SI and the peri-infarct zone (PIZ) a 
35–50% of the maximum SI. For the standard deviation methodology, 
2 approaches were used:

 - (2,3 SD), core infarct was defined as >3SD of the mean remote 
myocardium SI and PIZ as 2-3SD of the mean remote myocardium SI.

 - (2,5 SD), core infarct was defined as >5SD of the mean remote 
myocardium SI and PIZ as 2-5SD of the mean remote myocardium SI.

2.3. 2-Dimensional scar microstructure 
features

We used LGE-CMR images and corresponding quantification masks 
to extract 2D morphological and texture-related scar features (Figure 1). 
All values (except PIZ islets) were calculated for the core scar, PIZ and 

Abbreviations: CAD, coronary artery disease; LGE, late gadolinium enhancement; 

CMR, cardiovascular magnetic resonance; ML, machine learning; LVEF, left ventricular 

ejection fraction; NYHA, New York Heart Association; CI, confidence interval; PIZ, 

Peri-infarct zone; SCD, sudden cardiac death; ICD, implantable cardioverter 

defibrillator; MAE, major arrhythmic events; VT, ventricular tachycardia; 2D, 

2-Dimensional; FWHM, full width half maximum; SD, standard deviation; LV, left 

ventricle; AUROC, area under the receiver operating characteristic; IQR, inter-quartile 

range; HR, Hazard ratio.
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the combined core scar and PIZ segmented regions (Table 1). Graphic 
descriptions of these metrics are shown in Figure 1 for an example patient.

The scar features were computed for each slice (core infarct, PIZ and 
combined core + PIZ) and then aggregated across the short-axis stack 
to better detail the LGE throughout the LV. As an example, myocardium 
interface length (mm) is calculated for a slice and then multiplied by the 
slice thickness to calculate an interface area of the slice (mm2). This is 

then aggregated across the patient slices to obtain a single metric for the 
whole LV for an individual patient. This is repeated for each 
quantification method (FWHM; 2,3SD and 2,5SD).

2.4. Clinical endpoint

Patients were followed using health questionnaires in addition to 
primary and secondary care documentation. ICD reports, death 
certificates and post-mortem results were requested where necessary. 
Survival status was confirmed via the UK NHS Digital service to ensure 
that no deaths were missed. The duration of follow-up was determined 
from the date of CMR prior to consent until an endpoint was confirmed 
or until the most recent patient contact date. Event times were calculated 
from the date of the preceding CMR date for ≤10 years. All clinical 
outcomes were adjudicated by an independent panel of cardiologists 
blinded to the LGE data.

The endpoint was a composite of major arrhythmic events (MAE). 
This comprised SCD, aborted SCD or hemodynamically unstable 
VT. The time-to-event was taken as the earliest from any of the 
parameters. SCD was defined as a death that occurred unexpectedly, 
including scenarios where symptom duration was ≤1 h, following an 
identified arrhythmia/unsuccessful resuscitation or in circumstances 
where the patient was witnessed alive ≤24 h prior to death and without 
another identifiable cause of death (20). Aborted SCD was defined as 
appropriate ICD shock for a ventricular tachyarrhythmia, effective 
resuscitation following ventricular fibrillation or hemodynamically 
unstable VT requiring electrical cardioversion (19, 20).

2.5. Statistical methods

For baseline characteristics in the total cohort, frequency (%) was 
used for categorical variables compared with Fisher exact tests, and 

A B C D E F G H

FIGURE 1

Extraction methodology for a single patient LGE-CMR DICOM slice to obtain the corresponding FWHM, 2,3SD and 2,5SD quantification masks, where core 
scar is shown in red and PIZ in pink. All scar features are then extracted and shown for the FWHM mask only. (A) Core transmurality by ray tracing (a small 
subset of rays are shown) (B) PIZ islets, shown by the blue arrow, surrounded by red core infarct (C) core entropy (D) core radiality (E) PIZ interface length 
shown in yellow, bounded by core scar and healthy myocardium (F) local binary pattern for total scar (G) gradient of total scar (H) core components, with 
blue and green regions depicting two separate areas of core scar.

TABLE 1 2D LGE-CMR microstructure feature descriptions.

Feature name Description

Entropy (9, 13, 16) The level of disorder within the LGE. 

Calculated by applying standard Shannon 

entropy.

Transmurality (9, 17) The extent of spread of LGE emanating 

outwards from the endocardium to 

epicardium, calculated using a ray tracing 

method.

Radiality (9) Quantification of the angular spread of 

LGE in relation to the centre of the LV 

blood pool.

PIZ islets (18) Regions of PIZ contained within core scar 

or an area of PIZ encapsulated by core 

scar and either endocardial or epicardial 

boundaries.

Number of components (9) The degree of connectivity between LGE 

across the LV.

Interface area (9) The extent of the border between 

myocardium and LGE.

Gradient (10, 14) The rate of change in LGE intensity.

Local Binary Patterns (14) Visual descriptor of texture with a 

selection of neighborhood radius sizes.
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mean standard deviation (SD) compared with Mann–Whitney test for 
continuous variables. We  performed time-to-event analysis and a 
separate binary classification discrimination. As all patients in the 
cohort had fibrosis on CMR, fibrosis presence was not considered as a 
variable for inclusion in the multivariable models. Analysis was 
performed on Python v3.7.4 and a p-value ≤ 0.05 was taken 
as significant.

For time-to-event analysis, we applied a univariate cox proportional 
hazard regression method to examine the association between the 
endpoint and various LGE quantification and microstructure 
aggregation techniques. Results are presented as hazard ratios (HRs) 
with 95% confidence intervals (CIs). Multivariate cox proportional 
hazard regression was also performed using covariates currently used 
(1) to risk stratify patients for ICD implantation; New  York Heart 
Association (NYHA) functional class>1 and LVEF<35%. In additional 
analysis, we also investigated the importance of incorporating functional 
ECG covariates into the clinical benchmark. We  assessed model 
performance using Harrel’s C-statistic.

Currently, an ICD recommendation is a binary decision usually 
made clinically from the intersection of LVEF (<35%) and NYHA 
(>Class I). Thus, a binary classifier that outperforms LVEF (<35%) and 
NYHA (>Class I) represents a promising investigation with real value. 
Feature class means were compared using Mann–Whitney tests.

We used the selection of ML classification methods to ensure the 
features selected are classifier independent: 5-Nearest Neighbors vote, 
Polynomial Support Vector Machine, Gaussian Process, Random 
Forest, Multi-layer Perceptron, Gaussian Naïve Bayes, Logistic 
Regression, Extra Trees ensemble and Linear Discriminant Analysis. In 
addition, given the importance of time-to-event modeling, 
we  separately investigated the survival forests method across the 
feature space.

We sampled with a shuffled 10-fold cross-validation, evaluating 
performance using the Area Under the Receiver Characteristic Curve 
(AUROC). We consider differences between AUROC for MAE as 
significantly higher if 95% confidence intervals (CI) do not overlap.

We determined outliers and applied a selection of class balancing 
methods and averaged results across them, including random oversampling 
with replacement, Synthetic Minority Oversampling Technique (SMOTE) 
(21) and Adaptive Synthetic Sampling Method (ADASYN) (22).

We used a collection of methods to obtain a subset of features that 
provide the best descriptors for the arrhythmic endpoint, including 
Extra Trees importance, Backward Elimination, Recursive Feature 
Elimination and Embedded Features. It is possible to use other 
measures such as AIC, or stepwise regression, however as we repeated 
our tests with variation, we satisfy ourselves that no new insight would 
be  gained from any additional measures for feature ranking. Scar 
microstructure features aim to measure and explain the same region of 
interest in different ways, and as expected some of these measurements 
share a high degree of correlation with one another, especially where 
we investigated different methods of aggregating the 2D LGE-CMR 
scar features across the stack of the LV, i.e., by averaging or summing. 
While removing features with >0.9 correlation, we keep features which 
remain correlated but measure different aspects of the scar areas. For 
example, the LGE-myocardium interface area is correlated with PIZ 
level of disorder (entropy), but both features are inherently different in 
how they are calculated and what they present. Co-linearity between 
features was assessed by variance inflation factor (VIF) with a value 
between 1 and 5 acceptable. All final model variables were within this 
acceptable range.

3. Results

3.1. Population characteristics

A total of 397 patients were included (mean age 64.4 ± 9.8 years, 346 
(87%) male, and mean LVEF 45.4 ± 16%). The baseline characteristics of 
the study cohort are shown in Table 2. The patients were followed up for 
a median (IQR) of 6 (3) years, during which 55 (14%) patients 
experienced MAE. The patients that experienced MAE were older 
(p = 0.026), had a higher body surface area (p = 0.028) and a higher 
proportion were prescribed aldosterone antagonists (p = 0.003), loop 
diuretics (p = 0.002) or amiodarone (p = 0.021).

The mean (SD) LVEF for patients who experienced MAE was lower 
than for those that did not [37.1% (13.2) vs. 46.7% (16.0)], yet there was 
no difference in NYHA class. Over the course of follow-up, 108 (27%) 
patients received an ICD, 105 (26%) of whom also received cardiac 
resynchronization therapy.

3.2. Time-to-event cox proportional hazards

Univariate cox proportional hazard models for the scar 
microstructures demonstrated a substantial number of features 
which were associated with the primary endpoint irrespective of the 
FWHM, 2,3SD and 2,5SD quantification methods used. 2D scar 
microstructure features were retained if the C-statistic was above the 
clinical benchmark (LVEF <35% and NYHA >1) and the feature 
remained significant (p ≤ 0.05). The best-performing features are 
presented in Figure 2. Overall, we  identified that aggregating the 
features using the sum of the feature value resulted in higher model 
discrimination when compared to using the mean in the majority of 
scar features.

On multivariate cox regression analysis, we  iterated across all 
features that were significant in the univariate cox models, and the 
features presented in Figure 3 remained significant (p ≤ 0.05), improved 
performance over the clinical benchmark LVEF (<35%) and NYHA 
(>Class I) C-index 0.629, and had the lowest correlation among the 
other features. These features were independent of the LGE 
quantification method. Therefore, following from the results in 
Figures  2, 3, we  identify a subset of viable microstructure features 
which improve upon the clinical benchmark and could hold utility in 
a binary predictive model for MAE.

3.3. Binary major arrhythmic events 
classification

We performed Mann–Whitney tests on feature mean differences, 
identifying a large selection of features that had a significant 
(p ≤ 0.05) difference in group means and had a higher AUROC than 
the clinical benchmarks. The best-performing features are presented 
in Table 3.

3.4. Multivariate machine learning ensemble

We applied the feature selection algorithms to obtain an 
independent subset of features, which consisted of features similar to 
those identified as being top performers in the survival Cox analysis in 
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Figures 2, 3. Each feature selection algorithm provided an indication of 
the number of features and the best features to combine. Through an 
iterative search process, we identified the best average discrimination 
(no further significant improvement in 95% CI) to be with models with 
3 features. In some combinations tested, we used multiple correlated 
features (e.g., core interface, PIZ interface and combined interface area) 
to examine whether there was any beneficial reduction in measurement 
errors via averaging.

Finally, given the importance of time-to-event modeling, 
we separately investigated survival forests across the feature space, but 
did not find any new insight beyond the significant findings already 

reported within the multivariate cox regression and the binary 
classification models (see Supplementary Table S2).

3.5. Machine learning identified scar 
microstructure features

We iterated across a varying number of parameters and model sizes, 
with the best-performing ML classifier features shown in Table 4.

The best performing scar microstructure features were found to 
be PIZ entropy, number of PIZ components and core interface area. The 

TABLE 2 MAE baseline patient characteristics.

Baseline patient characteristics: major arrhythmic event

Total Cohort (n = 397) No Event (n = 342) Event (n = 55) p-value

Age, years 64.4 ± 9.8 64.8 ± 9.9 62.2 ± 8.9 0.026*

Male 346 (87.2%) 294 (86.0%) 52 (94.5%) 0.085

Body surface area (m2) 2.0 ± 0.2 1.95 ± 0.2 2.02 ± 0.2 0.028*

Heart rate (beats/min) 69.3 ± 13.2 69.1 ± 12.9 70.5 ± 14.9 0.581

Systolic blood pressure (mm Hg) 125.5 ± 18.5 125.9 ± 17.9 122.4 ± 21.6 0.147

Diastolic blood pressure (mm Hg) 72.9 ± 11.3 73.1 ± 11.0 71.3 ± 13.0 0.334

Diabetes 117 (29.5%) 100 (29.2%) 17 (30.9%) 0.874

Smoker (current) 41 (10.3%) 31 (9.1%) 10 (18.2%) 0.053

Hypertension 207 (52.1%) 179 (52.3%) 28 (50.9%) 0.885

Prior MI 302 (76.1%) 257 (75.1%) 45 (81.8%) 0.312

Family history of premature coronary artery disease 89 (22.4%) 77 (22.5%) 12 (21.8%) 1

NYHA functional class

  I 131.0 (33.0%) 117.0 (34.2%) 14.0 (25.5%) 0.22

  II 183.0 (46.1%) 154.0 (45.0%) 29.0 (52.7%) 0.31

  III/IV 81.0 (20.4%) 69.0 (20.2%) 12.0 (21.8%) 0.857

Medications

  Beta-blocker 311 (78.3%) 266 (77.8%) 45 (81.8%) 0.598

  ACE inhibitor/ARB 345 (86.9%) 293 (85.7%) 52 (94.5%) 0.084

  Aldosterone antagonist 105 (26.4%) 81 (23.7%) 24 (43.6%) 0.003*

  Loop diuretic 195 (49.1%) 157 (45.9%) 38 (69.1%) 0.002*

  Lipid-lowering 351 (88.4%) 299 (87.4%) 52 (94.5%) 0.172

  Calcium channel blocker 76 (19.1%) 68 (19.9%) 8 (14.5%) 0.46

  Amiodarone 22 (5.5%) 15 (4.4%) 7 (12.7%) 0.021*

CMR measurements

  LV ejection fraction (%) 45.4 ± 16.0 46.7 ± 16.0 37.1 ± 13.2 <0.001*

  LV end diastolic volume index (ml/m2) 109.9 ± 40.8 106.2 ± 38.1 132.9 ± 48.3 <0.001*

  LV mass indexed (g/m2) 80.3 ± 25.1 78.7 ± 24.4 89.8 ± 26.7 0.002*

  RV ejection fraction (%) 57.6 ± 12.9 58.1 ± 12.6 54.7 ± 14.4 0.059

ECG measurements

  Ventricular rate 70.7 ± 15.0 70.3 ± 14.4 73.0 ± 18.1 0.443

  PR interval (ms) 171.4 ± 32.1 170.6 ± 31.3 176.3 ± 35.8 0.264

  QRS duration (ms) 106.4 ± 23.2 105.7 ± 23.3 110.9 ± 21.7 0.032*

  QTc interval (ms) 436.6 ± 35.4 435.0 ± 35.0 446.9 ± 35.7 0.016*

Mean ± SD, compared with Mann–Whitney tests, or n (%), compared with Fisher exact tests. *Statistically significant (p < 0.05). ACE, angiotensin-converting enzyme; ARB, angiotensin receptor 
blocker; CMR, cardiac magnetic imaging; LV, left ventricular; RV, right ventricular; NYHA, New York Heart Association.
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simplest model (least parameters) which outperformed the clinical 
benchmark model comprised of the number of PIZ components and 
PIZ entropy; the addition of the core interface area provided the best 

discrimination for the least number of parameters, where after 
subsequent additional parameters were unable to significantly improve 
the performance (95% CI overlap).

FIGURE 3

Subset of multivariate cox proportional hazard regression models with the clinical benchmark, LVEF<35% and NYHA >Class I, as covariates. All 
microstructure features remained significant (p ≤ 0.05). The values shown are for FWHM only.

FIGURE 2

Subset of univariate cox proportional hazards regression models for microstructure features and the clinical benchmark. Hazard Ratios (95% CI) and 
C-index. NYHA (>Class I) was not significant (p = 0.08), while all other features were significant at p ≤ 0.05. The values shown are for FWHM only.
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We found that the addition of the core interface area to PIZ 
entropy and PIZ components was not unique and that similar 
improvements (no significant p ≤ 0.05 difference between AUROCs) 
could be  made by replacing the core interface area with another 
microstructure (Table  5). Therefore, we  interpret this as the PIZ 
entropy and PIZ components being the driving features for the 
majority of the improvement above the clinical parameters for 
MAE classification.

3.6. Risk in high and low left ventricular 
ejection fraction patients

In addition, we also considered the performance of the models 
in the sub-groups of patients with both preserved and severely 
impaired systolic function. In the cohort of preserved LVEF above 
50%, 159 patients with 11 (7%) had a MAE. The clinical benchmark 
of LVEF and NYHA was outperformed (C-index 0.6 to 0.8) by PIZ 
entropy (p = 0.001) (See Supplementary Table S3). In the severe 

systolic dysfunction sub-group LVEF <35%, 28 (24%) of 115 patients 
had a MAE, and the number of PIZ components (p = 0.014) 
outperformed (C-index 0.54 to 0.66) the clinical benchmark (See 
Supplementary Table S4). Note that, although instructive, the smaller 
populations in this sub-group analysis, combined with the relatively 
low overall event-rate in our population as a whole (compared to, for 
example, an ICD-cohort), meant that we  did not have sufficient 
statistical power (0.8) to draw robust conclusions in these 
sub-groups.

TABLE 3 Subset of the univariate analysis of scar microstructure for core 
and PIZ scar, shown for FWHM values.

Univariate significant microstructure features: major 
arrhythmic event

Feature 
across 
whole LV

No event 
mean (n = 342)

Event mean 
(n = 55)

AUROC

Combined 

transmurality

4.22 ± 1.91 5.7 ± 1.61 0.73 ± 0.14

Core entropy 23.29 ± 8.96 29.61 ± 6.63 0.73 ± 0.12

Core 

transmurality

3.43 ± 1.66 4.69 ± 1.5 0.72 ± 0.13

Core interface 

area

9420.09 ± 5,840 14475.93 ± 6792.99 0.72 ± 0.14

PIZ 

transmurality 

(standard 

deviation)

1.19 ± 0.52 1.53 ± 0.44 0.7 ± 0.14

PIZ entropy 16.44 ± 6.77 20.53 ± 5.09 0.7 ± 0.13

Combined 

interface area

11114.46 ± 6806.83 15909.75 ± 7769.66 0.68 ± 0.1

PIZ interface 

area

14451.89 ± 9423.88 21241.53 ± 11535.51 0.67 ± 0.1

PIZ 

components

134.08 ± 80.4 184.09 ± 88.39 0.67 ± 0.14

PIZ radiality 2.61 ± 1.62 3.68 ± 1.82 0.66 ± 0.15

Core radiality 1.86 ± 1.35 2.65 ± 1.51 0.65 ± 0.17

Combined 

gradient

5.74 ± 2.08 6.77 ± 1.7 0.65 ± 0.11

Core gradient 5.42 ± 2.02 6.25 ± 1.56 0.64 ± 0.11

Binary LVEF (<35%) 0.61 ± 0.13

Binary NYHA (>Class I) 0.55 ± 0.12

All features have a significant difference in no event vs. event means (p ≤ 0.05), irrespective of 
the quantification method (FWHM; 2,3SD; 2,5SD). Mean ± SD, all significant (p < 0.05) when 
compared with Mann–Whitney tests. LVEF, left ventricular ejection fraction; NYHA, New York 
Heart Association.

TABLE 4 Subset of top-performing core and PIZ features using a selection 
of ML models.

ML ensemble: major arrhythmic event

Feature names Features (n) Mean AUROC 
(95% CI)

Core transmurality, 

Combined interface area, 

Combined entropy, Core 

interface area, Core 

gradient, Core radiality, 

LVEF (<35%), NYHA 

(>Class I)

8 0.815 (0.808,0.8222)

Core transmurality 

(standard deviation), Core 

radiality, Combined 

interface area, PIZ 

interface area, Combined 

transmurality, Combined 

entropy, Core gradient

7 0.815 (0.807,0.823)

Core transmurality 

(standard deviation), Core 

radiality, Combined 

entropy, Core interface 

area, Combined interface 

area

5 0.814 (0.807,0.821)

PIZ entropy, PIZ 

components, Core 

interface area

3 0.812 (0.806,0.819)*

Combined interface area, 

Combined transmurality, 

Combined entropy, Core 

interface area

4 0.811 (0.799,0.823)

Core transmurality 

(standard deviation), 

Combined entropy, PIZ 

interface area, Core 

interface area, Combined 

interface area, Core 

gradient

6 0.811 (0.806,0.817)

PIZ components, PIZ 

entropy

2 0.765 (0.755,0.776)

LVEF (<35%) and NYHA 

(>Class I)

2 0.643 (0.633,0.653)

The values shown are for FWHM. Mean AUROC across shuffled 10-fold cross-validation. 
AUROC are significantly higher than LVEF (<35%) and NYHA (>Class I) baseline (95% 
confidence intervals do not overlap).  
*Indicates the best performance for the number of features.
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4. Discussion

There is increasing data detailing the use of complex myocardial 
scar modeling to identify patients at increased risk of life-threatening 
ventricular arrhythmia. In this study, we  demonstrate the use of 
machine learning to identify scar microstructures that are significantly 
associated with arrhythmic risk. Numerous features were independent 
of the scar quantification method used and stratified patients beyond 
the current clinical benchmark of LVEF <35% and NYHA >1 with 
two features of particular interest: Number of PIZ components and 
PIZ entropy.

4.1. Machine learning approach

The features identified through the binary classification ML models 
corroborate with the features identified in the time-to-event Cox 
regression results, demonstrating the model-agnostic high 
discriminative power for PIZ entropy and the number of PIZ 
components. Importantly these features are independent of the LGE 
quantification method, remaining significant using FWHM, 2,3SD and 
2,5SD techniques. This is important as there can be  a considerable 
difference in the quantity of LGE that is identified depending on the type 
of signal intensity quantification method used.

4.2. Measuring disorder within the 
peri-infarct zone: Entropy

Entropy describes the level of disorder within the region of a scar. 
This metric was included in all 4 best performing models as either PIZ 
entropy or combined entropy (Table 4), and suggests that patients with 
higher arrhythmic risk have a more complicated composition of viable 
myocytes and fibrotic components in the PIZ region (Figure 4). The 
strength of PIZ entropy is in identifying subtle tissue characteristics by 
filtering out image noise and accentuating key features. Entropy has 
previously been shown to associate with ventricular arrhythmia (13, 16) 
and is potentially more reproducible than other measures of tissue 
characterization including T1 mapping (13).

Local binary patterns (LBP) may be considered another measure of 
disorder and have been reported as good discriminators of arrhythmic 
risk (14). While in our analysis we  note that such features remain 
significant on multivariate analysis, they do not provide incremental 
information compared to other, more readily interpretable and easier to 
compute, scar features.

4.3. Characterising structural heterogeneity: 
Number of peri-infarct zone components

The number of PIZ components details the unique number of PIZ 
elements across the LV. Our ML analysis consistently demonstrated that 
the number of PIZ components had important prognostic value in 
predicting MAE (Figure  5). This result continues to build on the 
hypothesis that these regions contain the arrhythmogenic substrate 
needed to initiate and maintain ventricular arrhythmia (23–25).

The total core transmurality and the variance of core transmurality 
across the LV were the other two features shown to provide the most 
incremental improvement to the clinical benchmark of LVEF (<35%) 
and NYHA (>Class I), and remained significant (p ≤ 0.05) in the 
multivariate time-to-event Cox analysis. We suggest that the highly 
transmural scars are potentially indicative of more mature infarcts and 
that the variance in transmurality across the LV stack may be indicative 
of viable isthmuses which can sustain re-entry around the core 
infarct regions.

4.4. Limitations

We use a large cohort representing the typical presentation of 
UK patients to the Royal Brompton & Harefield hospitals. Our study 
is, however, a single center and would benefit from external 
validation using a separate patient population with suitable 
LGE-CMR quantification and adequate patient follow-up data. 
We are actively engaging with colleagues in other UK hospital trusts 
to obtain suitable datasets, however, this is a very substantial 
undertaking. Our research is currently in the early stages of 
development and additional work needs to be done to mature the 
technology ready for clinical adoption. Although automated 
segmentation tools are becoming increasingly available to identify 
epi/endo contours, the detailed analysis of the scar (which requires 
selection of exclusion regions, and regions of interest) still requires 
significant clinical input. If taken forward as clinical risk 
stratification tool, we believe that the (semi) manual analysis time 
required to accurately identify scar on patient CMR required as 
input for our methodology would represent minimal additional 
clinical input relative to the total clinical interaction time per 
patient. The right ventricular scar was not evaluated, which may 
contribute to the overall scar burden and arrhythmic substrate. 
Although electrical abnormalities, such as T-wave alternans, heart 
rate variability, as recorded by the ECG, have been linked with risk 
of MAE in CAD (26, 27), in our dataset we only had access to more 
simple ECG features (QRS width, QT interval). Our analysis showed 
that these ECG features did not provide any meaningful additional 
contribution (see Supplementary Table S1). Future work with 
prospective cohorts would be  required to thoroughly assess the 
potential importance of previously suggested more specialized ECG 
features (26, 27).

TABLE 5 Non-significant differences in AUROC for the additional parameter 
for PIZ entropy and PIZ components.

ML 3 parameters: major arrhythmic event

Feature names Features (n) Mean AUROC 
(95% CI)

PIZ entropy, PIZ 

components, Core 

transmurality (standard 

deviation)

3 0.812 (0.806,0.819)

PIZ entropy, PIZ 

components, Core 

interface area

3 0.801 (0.791,0.811)

PIZ entropy, PIZ 

components, Combined 

entropy

3 0.794 (0.789,0.802)

The values shown are for FWHM. Mean AUROC across shuffled 10-fold cross-validation. 
AUROC differences are not significant (95% confidence intervals overlap).

https://doi.org/10.3389/fcvm.2023.1082778
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Zaidi et al. 10.3389/fcvm.2023.1082778

Frontiers in Cardiovascular Medicine 09 frontiersin.org

5. Conclusion

LGE-CMR myocardial fibrosis microstructure features offer 
enhanced arrhythmic risk stratification than conventional (LVEF<35%, 
NYHA>Class I) predictors and are reassuringly robust to quantification 
method (FWHM, 2,3SD and 2,5SD). Only 2 PIZ microstructure features 
are required to significantly improve performance above clinical 
predictors; highlighting a simple model of biologically plausible features 
that that could be used to tailor risk stratification for major arrhythmic 
events and ICD recommendations.
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FIGURE 5

The quantity of PIZ components was significantly higher in patients that experienced MAE compared to those that did not, as seen above. (A,B) Identify PIZ 
components, shown in pink with core infarct in red, in a patient who did not experience MAE. (C–F) Show the variety and additional PIZ components in a 
patient who experienced MAE. Images used FWHM quantification.

A B

FIGURE 4

PIZ Entropy is significantly (p ≤ 0.05) higher in patients who have MAE, as seen in (B) compared to a non-event patient LGE CMR shown in (A). Images depict 
entropy via FWHM quantification.
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