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Stress is an important risk factor for modern chronic diseases, with distinct
influences in males and females. The sex specificity of the mammalian stress
response contributes to the sex-dependent development and impacts of
coronary artery disease (CAD). Compared to men, women appear to have
greater susceptibility to chronic forms of psychosocial stress, extending beyond
an increased incidence of mood disorders to include a 2- to 4-fold higher risk
of stress-dependent myocardial infarction in women, and up to 10-fold higher
risk of Takotsubo syndrome—a stress-dependent coronary-myocardial disorder
most prevalent in post-menopausal women. Sex differences arise at all levels of
the stress response: from initial perception of stress to behavioural, cognitive,
and affective responses and longer-term disease outcomes. These fundamental
differences involve interactions between chromosomal and gonadal
determinants, (mal)adaptive epigenetic modulation across the lifespan
(particularly in early life), and the extrinsic influences of socio-cultural,
economic, and environmental factors. Pre-clinical investigations of biological
mechanisms support distinct early life programming and a heightened
corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males,
among implicated determinants of the chronic stress response. Unravelling the
intrinsic molecular, cellular and systems biological basis of these differences,
and their interactions with external lifestyle/socio-cultural determinants, can
guide preventative and therapeutic strategies to better target coronary heart
disease in a tailored sex-specific manner.
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CAD, coronary artery disease; MDD, major depressive disorder; CVD, cardiovascular disorder; AMI, acute
myocardial infarction; SHEEP, Stockholm Heart Program; HPA, hypothalamic -pituitary- adrenal; ANS,
autonomic nervous system; RAAS, renin-angiotensin-aldosterone; CRH, corticotropin-releasing hormone;
AVP, arginine vasopressin; ACTH, adrenocorticotropin-releasing hormone; LC, locus coerulus; BDNF, brain
derived neurotropic factor; CNS, central nervous system, NAD+, nicotinamide adenine dinucleotide; PARP,
poly-ADP-ribose polymerase; GABA, gamma-aminobutyric acid; NPY, neuropeptide y; GP, glycoprotein;
ER, estrogen receptor; LPS, lipopolysaccharide; TNF, tumour necrosis factor; FC, frontal cortex; IL,
interleukin; LDL, low-density lipoproteins; VLDL, very-low density lipoproteins; HDL, high-density
lipoproteins; NO, nitric oxide; eNOS, endothelial nitric oxide synthase; HFpEF, heart failure with preserved
ejection fraction; Apo, apolipoprotein; ROS, reactive oxygen species; NADPH, nicotinamide adenine
dinucleotide phosphate; HRV, heart rate variability; NFATs, nuclear factor of activated T-cells; AKT,
protein kinase B.
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1. Introduction

The mammalian stress response modulates whole body

physiology and behaviour to enhance survival in the face of acute

environmental threats. Unfortunately, prolonged or repetitive

activation of this survival response—via a diversity of

psychosocial, economic and environmental stressors prevalent in

modern society—detrimentally impacts physiology, mood and

behaviour to promote major diseases “plaguing” modern

populations. These psychosocial stress dependent diseases include

major depressive disorder (MDD) (1), obesity, metabolic

syndrome and diabetes (2), osteoporosis (3), cancers (4) and

cardiovascular disease (CVD) (5). They are also frequently co- or

multi-morbid, consistent with these “diseases of modernity”

sharing mechanistic networks (6). Modern stress-dependent

syndemics are also emerging, with attention to stress and CVD

linked synergistic conditions (7, 8), and most recently to stress

and the COVID-19 mental health syndemic (9–11).

A primary focus in stress research has been the development of

mood disorders, and though the mechanistic basis of stress-

dependent MDD remains elusive, these studies provide a

(growing) catalogue of the biological influences of chronic stress,

including mechanisms likely participating in the positive

relationship between stress and CAD. These include changes in

nervous and endocrine control of the cardiovascular system,

whole body metabolism, immuno-inflammatory function and gut

biology, together with affective/behavioural responses that

reinforce cardiometabolic disease development (including

inactivity, hyperphagia and biased selection of palatable sugar-

and fat-rich foods). Critically, the mammalian stress response

and its systemic influences are highly sex-dependent, a

fundamental yet still under-studied basis for sex specific disease

risks and outcomes (12).
2. Stress, sex and CAD

Psychosocial and other forms of stress are powerful

“unconventional” risk factors for CVD (5). Indeed, animal

studies suggest stress may be a stronger determinant of coronary

disease than cholesterol and associated lipid levels (13). This

pathogenic influence was initially flagged by Selye shortly after

his pioneering work defining stress, postulating that chronic

stress may be linked to cardiovascular disease (14). Since that

time the cardiovascular impacts of stress have been interrogated

in pre-clinical, clinical and epidemiological investigations. The

latter identify significant influences of diverse stressors on CVD.

Psychosocial stress promotes atherosclerosis, CAD and acute

myocardial infarction (AMI) (15–17). The INTERHEART study,

for example, found risk of AMI was more than 2-fold higher in

people reporting “permanent stress” (18). Both personal and

work stressors have been linked to up to a 50% increase in CAD

(5). The Stockholm Heart Program (SHEEP study group) found

AMI patients were more likely to have high level work stress

(high work demands vs. low control) (19). The Whitehall II
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study of British civil servants revealed a >2-fold increase in CVD

risk in men experiencing a mismatch between work effort and

reward (20), and 1.4-fold increased CAD risk in both men and

women experiencing job insecurity (21). Analysis of Jackson

Heart Study data indicates a 2.4-fold increased risk of CAD with

medium to high level financial stress (an association largely

explained by depression, together with smoking and diabetes) (22).

Non-obstructive forms of coronary disease are also significantly

related to psychological stress and a “distressed” personality (23).

Acute episodes of mental stress, more commonly encountered

than chronic forms of stress, are also strongly linked to incidence of

cardiovascular events (24, 25). Indeed, the pathological influences

of acute “trigger” stressors can appear stronger than pro-disease

effects of chronic stress (24). For example, earthquake has been

linked to up to a 5-fold increase in sudden cardiac death (26).

Acute emotional upset is frequently reported by patients in

the hrs immediately prior to AMI (27, 28). Analysis of

INTERHEART data suggests emotional upset increases the risk

of AMI almost 2.5-fold (27), while meta-analysis supports an

almost 5-fold increase in risk of infarction or acute coronary

syndrome (ACS) within 2 h of an acute anger episode (29).

While still incompletely understood, the pathophysiology of

spontaneous coronary artery dissection (SCAD)—an important

determinant of AMI and sudden death—may also involve acute

psychosocial or physical stress (30, 31).

The associations between stress and chronic disease

development are strongly sex-dependent, however the

importance of sex in these linkages remains understudied.

Recognising the need to address this historic paucity of research,

investigators have belatedly focussed attention on sex differences

(32), including in stress biology and its influence on

cardiovascular or mood disorder development (33). Although

females may be conferred some protection against CAD

development, this is evident prior to menopause (34), whereas

post-menopausal women may be at greater risk of AMI than

men and suffer greater morbidity and mortality (35). Both

short- (36) and long-term outcomes (37) appear worsened in

women, though these differences may reflect in part higher age

and co-morbidities (38) and are minimised in high-quality

clinical settings (39). Nonetheless, considerable evidence

indicates that short- and long- term outcomes in acute coronary

syndromes are consistently worse in young to middle-aged

women relative to age-matched men (40, 41). A greater

prevalence of anxiety and depression in women also reduces

adherence to cardiac rehabilitation (42), contributing to

worsened long-term outcomes. Sex differences in stress biology

contribute to these biased outcomes. Indeed, while psychological

stress significantly predicts coronary events in women, this is

less evident in men (17). Women are at particularly heightened

risk of stress-dependent SCAD (30, 31) and myocardial

infarction (43,44), together with Takotsubo syndrome—a

coronary-myocardial disorder induced by profound stress (45, 46).

A higher female prevalence of heart failure with preserved ejection

fraction (HfpEF) adds further support to the importance of sex in

coronary related disorders, given the involvement of microvascular

dysfunction and inflammation in this condition (47).
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1072042
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Helman et al. 10.3389/fcvm.2023.1072042
In this review we briefly outline the mammalian stress response

and consider how it differs fundamentally between the sexes,

before discussing the mechanistic basis of psychosocial stress-

dependent heart disease and evidence these processes are also

highly sex-dependent.
3. The stress response: distinct in
males and females

3.1. The mammalian stress response

Physical and psychological stimuli threatening or perceived to

threaten wellbeing (stressors) induce a systemic stress response—

a centrally controlled, integrated adaptation aimed at maintaining

homeostasis and enhancing survival (Figure 1). This well

conserved mammalian stress response involves 2 primary central

mediators—the hypothalamic-pituitary-adrenal (HPA) axis and

the autonomic nervous system (ANS). The renin-angiotensin-

aldosterone system (RAAS) is also involved, linking stress to

regulation of blood pressure and volume.

The paraventricular nucleus (PVN) of the hypothalamus is the

first brain region to respond to a real or perceived stressor, in turn
FIGURE 1

The mammalian stress response, and roles of sympathetic nervous system (S
noradrenaline from the splanchnic nerve (originating from sympathetic c
activation of the sympathomedullary pathway (2a)]. Activation of the HPA ax
“releasing” hormones [including arginine vasopressin (AVP)] from paraventric
hormones acts on the anterior pituitary, resulting in release of β-endorphin (
the adrenal cortex to promote synthesis and release of glucocorticoid hormo
with arrow = act on; dashed line with arrow= release of; solid line = descriptio
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promoting HPA axis and sympathetic nervous system (SNS)

activities (Figure 1). Release of noradrenaline from peripheral

nerves and adrenaline from the adrenal medulla is coupled with

a decline in parasympathetic nervous system (PNS) activity,

contributing to an autonomic imbalance. While normally tightly

controlled, prolonged or chronic stress and HPA activation

stimulates additional brain regions, including the amygdala and

medulla oblongata, and leads to a hyper-stimulation of the PVN

and the HPA axis. Hypothalamic neurons are stimulated to

synthesize corticotropin releasing hormone (CRH) and arginine

vasopressin (AVP). At the hypothalamic-pituitary unit of the

axis, CRH is released into the hypophyseal portal system,

with adrenocorticotropic hormone (ACTH) cleaved from its

pro-opiomelanocortin precursor, simultaneously generating

β-endorphin. This surge in ACTH stimulates adrenal cortical

cells to release glucocorticoids and adrenal androgens (Figure 1).

The primary glucocorticoid is species dependent—cortisol in

humans and corticosterone in rodents—though functions and

activities are similar.

Importantly, the initial perception of stress, activation of these

stress pathways and their subsequent influences on physiology and

behaviour appear to be highly sex-dependent. Transcriptomic

profiling of brain responses to stress is informative regarding the
NS) and hypothalamic-pituitary-adrenal (HPA) axis. The SNS releases (1)
hain ganglia) and (2b) Adrenaline from the adrenal medulla [through
is involves release of corticotropin-releasing hormone (CRH) and other
ular nucleus of hypothalamus (3). The release of CRH, AVP and other
4) and adrenocorticotropin-releasing hormone (ACTH) (5). ACTH acts on
nes; cortisol in humans and corticosterone in rodents (6). NB: solid line
n; solid line with circle = zoom in.
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extent of these differences (48, 49), which appear to be of a similar

magnitude to the differences between rodent and human biology

(50). Disentangling the integrated elements underlying the sex-

specific stress response remains a major challenge. Sex differences

involve a complex interplay between proximate biological

mechanisms, including chromosomal and gonadal determinants

of nervous system structure and function (51–53) that act

developmentally and post-developmentally (54), molecular

transduction of life history via epigenetic control across the

lifespan (particularly in early life) (55, 56), and the influences of

(sex-biased) socio-cultural (57), economic and environmental

factors. Women may generally experience higher degrees of

background stress in day-to-day life, for example as a result of

ongoing inequities in unpaid domestic work and other stressors

(58–61). In addition, social support and ranking substantially

influence stress resilience and reactivity, however such effects

differ considerably between the sexes (62, 63). Indeed, as argued

by Cohen et al. (57), social construction of gender roles may

largely explain sex differences in psychosocial stress reactivity.

Nonetheless, the mammalian stress response itself appears to

be characterised by sex-specific features across organisational

levels (64): from the initial perception and processing of

stressors; to differing fear, cognitive and coping responses;

functionality and reactivity of integrated HPA axis, sympatho-

adrenergic and inflammatory pathways (including the locus

coeruleus-noradrenaline-neuroinflammatory axis); neurotrophin

signalling and neuroplasticity; and signalling via multiple

endocrine and neurotransmitter systems. The gut microbiome,

the gut-brain axis and its involvement in stress-related disease,

also appear sex-dependent, as are the influences of early life

programming/epigenetic control, and the conditioning effects of

prior stress. Our own recent work supports greater biological

stress or allostatic load in female vs. male rodents subjected to

chronic social stress, with evidence of greater coronary

dysfunction, anxiety-like behaviour, weight loss and

inflammation in females (12). However, mixed findings emerge

from different animal studies, including evidence females are

more susceptible to neuroendocrine and behavioural disruption

(and selectively more sensitive to the cardiovascular/autonomic

effects of homotypic stress) while males are more vulnerable to

somatic effects of chronic stress (65).
3.2. Evolutionary perspective

Since advantageous psychological traits differ between males

and females during human evolution, Darwinian sexual selection

provides a mechanistic basis for the emergence of behavioural/

cognitive differences between the sexes (66). This process selects

for traits that increase competitiveness in acquiring and fertilising

mates. A general pattern is that females, with slower

reproduction rates, invest more in parenting and mate selection,

and less in intra-sexual competition for mates; while males with

a faster reproduction rate invest less in parenting/mate selection,

and more in competition. In Palaeolithic life females shared care

of infants, food gathering and female-female social interactions,
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whereas males had differing roles and pressures, including social

isolation for extended periods. Females thus invest in developing

social support, and attracting supportive mates for reproduction,

while males engage in rank behaviour to enhance access to

multiple mates, acquire resources and maintain social status (67).

Intra-sexual competition for mates favours aggression/

territoriality. Sex-dependent responses to prenatal stress may also

have an evolutionary origin: it may be adaptive for females to be

more alert to dangers, thus more stress responsive (potentially

predisposing to stress-related disorders) (68). As detailed below,

males and females differ substantially in their initial perceptions

of stress, stress reactivities, and cognitive and coping responses.
3.3. Sex influences stress perception,
reactivity, and cognitive responses

Differing perception of stress, and heightened reactivity,

arousal and negative valence may contribute to the sex-

dependence of stress-related disease development. Distinct

cognitive and coping responses influence stress resilience and

systemic outcomes.
3.3.1. Stress perception and hyperarousal
What is perceived as a threat or stressor can be highly diverse at

an individual level, influenced by extrinsic environmental (social,

cultural, economic) and intrinsic (chromosomal, gonadal)

determinants, together with the epigenetic transduction of life

history and experience. Evidence has shown that females have a

generally greater perception of stress [and also pain (69)], which

may influence disease processes (70–73). Interestingly, while

perceived stress and coping have been linked to stress-

inflammatory function, there is also evidence of an inverse

relationship in Japanese men (74, 75). The differing stress

perception may contribute to hyperarousal, a maladaptive state

leading to agitation, restlessness and cognitive disruption. A core

feature of stress-related psychiatric disorders, hyperarousal is

more pronounced in women than men (76, 77).
3.3.2. Fear conditioning and extinction
Fear conditioning and extinction, important in mitigating

effects of repeated stressors, is mediated in animals and humans

by circuitry linking prefrontal cortex and amygdala (78, 79). Fear

responses and these neuronal circuits differ between the sexes

(80–82), which may reflect differing neurogenesis responses (83),

and predispose to a heightened stress reactivity in females.
3.3.3. Cognitive responses
Cognitive responses to stress influence outcomes, with evidence

improved cognitive function reduces inflammatory reactivity. For

example, Shields et al. (84), shows better cognitive control

reduces salivary cytokine levels in response to a video stressor.

Sex significantly influences cognitive strategies (85). Cognitive

responses to stress differ between the sexes, involving in part

gonadal hormone differences (86–88). There is evidence stress
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1072042
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Helman et al. 10.3389/fcvm.2023.1072042
may impair decision making to a greater extent in females than

males (89).
3.4. Biological basis of sex-dependent stress
responses

Determinants of sex-dependent stress responses encompass

sex-specific genetic interactions (90), sex hormones (91) and

associated endocrine changes (92). Animal studies confirm the

importance of both gonadal and genetic sex (90), for example

employing the four-core genotype mouse model (95, 96). Sex

also oppositely affects gene modules related to stress (96), a

finding also evidenced in humans (97). Immuno-inflammatory

reactivity differs, with female-specific changes in peripheral (93)

and central inflammation (94), and links between inflammation

and behaviour (93, 98). Overall, differing behavioural and

physiological influences of stress may be explained by sex

differences in brain architecture and circuitry, the function and

reactivity of the HPA (99, 100) and a locus coeruleus–

noradrenergic-neuroinflammatory axis (101), together with

neurotrophin signalling and the influences of early life experience

and adversity (among other factors).
3.4.1. Brain structure and circuitry
Recent neuroimaging studies support sexual dimorphisms in

brain structure. The most agreed-upon difference is the macroscopic

observation of a larger brain volume in men (102, 103), even after

accounting for body size difference (103–105). Differences are also

evident with respect to cortical and sub-cortical regions, including

larger planum temporale and Sylvian fissure in males (106, 107),

whereas a larger hippocampus, superior temporal cortex, Broca’s

area and caudate are observed in females (108, 109). Women also

appear to have a proportionally higher grey:white matter ratio than

men (110, 111). Relevant region-specific differences are also evident.

For example, higher grey matter percentages or grey:white ratios are

evident within the dorsolateral prefrontal cortex (112), superior

temporal gyrus (112), and parietal lobe (104, 113) of the

female brain. How such architecture differences might influence the

stress response is unclear, however there is evidence linking

stress resilience to neuro-anatomy, for example differences in

limbic region structure and connectivity (114–116). A reduced

hippocampal volume is also characteristic of stress-related

depression in both men and women (117, 118).

Differences within specific neural circuits underlying emotional

control and expression may be important: regions associated with

negative valence, including the amygdala, frontal cortex and

hippocampus, exhibit significant sex differences (119, 120). The

magnitude of corticolimbic responses to emotional stimuli may

also differ between sexes. Domes et al. (121) found that initial

aversive stimuli increased amygdala activity to a greater extent in

women than men. Stevens et al. (122) also observed sex

differences in the amygdala response to emotional stimuli, with

women favouring negative and men positive emotion. Negatively

valanced words activate left perirhinal cortex and hippocampus
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in women and the right supramarginal gyrus in men (123).

Garret et al. (124) found that chronic stress induces opposing

dendritic atrophy and hypertrophy in the frontal cortex of male

and female rats, respectively. Stressed females also exhibit longer

and more complex dendrites in basolateral projecting neurons

(125), an outcome not evident in males (126). These regional

activity and circuitry differences contribute to sex specific stress

axis activity and responses.
3.4.2. Differences in stress axis and
neuroinflammatory reactivities

Prominent sex differences emerge in the HPA axis response to

stress (127). In healthy participants, baseline cortisol levels may be

comparable in women and men (128, 129), although this is

challenged by recent reports of higher baseline concentrations in

women (130, 131). This may be related in part to higher

background levels of stress in women (59–61). Women with

stress-related MDD also have higher cortisol levels than male

patients (133). Rodent studies support both higher basal and

stress-induced corticosterone levels in females vs. males (134–136),

with females secreting higher corticosterone in response to either

physical or psychological stressors (135, 137–148). Enhanced

corticosterone responses in females involve both a more rapid

elevation in the initial minutes of stress exposure (143, 149, 150),

and a more sustained elevation in corticosterone levels (135, 149,

151). Sex differences in the corticosterone response are paralleled

by higher stress-dependent ACTH levels in females (134, 144, 145,

149, 152, 153).

Differing glucocorticoid responses suggest generally increased

stress axis reactivity in females (154, 155). This is also reflected

in evidence of increased neuroinflammatory reactivity in females

(156, 157). However, the simplistic notion that increased

corticosterone/cortisol levels may underpin sex differences in

behavioural outcomes and resilience must be tempered by

evidence females may be more resistant to the effects of

corticosterone (158–160). Moreover, the biological response to

cortisol or corticosterone is itself highly sex-dependent, including

distinct behavioural, neuroendocrine and miRNA responses

(160, 161). Although corticosterone levels predict stress-

dependent behavioural changes in males, this may not be the

case in females (162).

Multiple mechanisms could contribute to differing HPA axis

responses in females vs. males. Sex hormones influence HPA axis

function (99, 154, 163–165), including up-regulation of

hypothalamic CRH, which has oestrogen and androgen response

elements in its genetic promoter region. There is also evidence of

an interaction between oestrogen and corticosteroid binding

globulin in differing sex-dependent stress reactivity (166).

Considerable evidence supports a greater reactivity of the locus

coeruleus (LC) norepinephrine system in females (101),

important in hyperarousal (167–169) and stress-inflammatory

activation. The LC of adult female rats is larger and contains

more noradrenaline containing neurons than in males (170–172)

and may receive greater synaptic input than in male rats (101).

Increased LC-noradrenaline axis reactivity in females may
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involve: gonadal hormone up-regulation of hypothalamic CRH,

which has oestrogen and androgen response elements within its

gene promoter region; increased noradrenaline content, involving

oestrogen-dependent up-regulation of synthesis/down-regulation

of degradation (101); differing locus coeruleus neuronal number/

structure and dendritic morphology, promoting reactivity to

psychosocial stimuli (173); differing trafficking of the CRH

receptor, which may not desensitise as effectively in females

(174, 175); and biased CRH signalling via CRH may increase

HPA reactivity in females, with distinct receptor-effector

coupling in each sex (175, 176).

An increased inflammatory reactivity to stress in females may

arise as a result heightened LC-noradrenaline axis (coupled with

reduced PNS) activity. Inflammatory challenge itself induces

distinct behavioural outcomes in females (177–180). However,

experimental findings are again equivocal, including evidence: of

similar behavioural outcomes (sickness behaviour) in the face of

differing levels of neuroinflammation (181); that sex differences in

neuroinflammation do not underlie diverging affective-like

behaviours; and that differences in inflammatory markers are not

linked to differing corticosterone levels (182). There is also

evidence for differing pro- and anti-inflammatory influences of

other regulatory systems in males vs. females [e.g., cannabinoid

receptor signalling (183)], complicating interpretation.

Nonetheless, an array of findings provide support for the thesis

that differing stress reactivity and disease development in females

involves at least in part greater stress-inflammatory activation (184).

3.4.3. Early life programming and life history
Experiential factors significantly influence stress resilience in

later life, and these effects may differ between the sexes (185).

Early life programming of stress reactivity and associated disease

risks are sex-dependent, involving shifts in neuro-immune and

other functions (180, 186–190), together with differences in

neurogenesis/plasticity (88, 180, 190). There is evidence adverse

childhood experience may have a greater impact on adaptive

responses to stressors in later life in women vs. men (191).

Dimorphic influences of chronic stress in later life may thus

involve both prior programming effects and extant sex

differences. Sex dependent influences of early life stress and

palatable food intake include reportedly select hyperphagia/

weight gain in females vs. metabolic programming (adrenal

growth and declining adiponectin) in males (192). Prior

experience of controllable stress also has a conditioning or

pro-resilience effect, protecting against subsequent stress.

However, animal studies suggest this benefit is effective in males

and not females, potentially reflecting differing neuroplasticity

(193). Other recent work indicates that early life influences

synaptic organization/excitability in the neonatal amygdala in a

sex dependent manner, governing anxiety and fear responses in

later life (194, 195).

3.4.4. Neurotrophin signalling and neurogenesis
Differing neurogenesis and plasticity responses are evident in

males and females, with both early life (196) and adult (197)

stressors. Experimental studies support sex specific changes in
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neurogenesis with chronic restraint (198, 199) and social stress

(197), for example. Among neurotrophins, much attention has

focused on brain-derived neurotropic factor (BDNF) in stress-

dependent disorders, and there is evidence central nervous

system (CNS) BDNF signalling is selectively or more

substantially disrupted in stressed females than males (200–203).

This dimorphism may involve epigenetic (201) and inflammatory

(203) mechanisms. Despite a focus on BDNF in CNS responses

and affective outcomes, recent evidence implicates BDNF

signalling in thrombosis and CAD (204, 205).

3.4.5. Differing pyrimidine nucleotide metabolism
and sirtuin signalling

While relatively poorly studied, sex differences in pyrimidine

nucleotide metabolism and related sirtuin signalling may be an

important determinant of differing resilience to and outcomes

from chronic stress in males and females. Stress responses,

mitochondrial energy state and metabolic homeostasis,

inflammation, oxidative stress, cell senescence and longevity are

all sensitive to pyrimidine nucleotides and sirtuin signalling.

Nicotinamide adenine dinucleotide (NAD+) is an essential

pyrimidine nucleotide that serves as a cofactor for several

hundred metabolic enzymes (206). NAD+ also plays a key role in

regulating 3 major groups of NAD+ consuming enzymes:

sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38/157

ectoenzymes. Intracellular levels of NAD+ are reduced in tissues

of physiologically aged animals (207, 208) and humans

(209–211). Low NAD+ is linked to metabolic and age-related

disorders (212), while a reduced NAD+/NADH redox state may

promote cardiomyopathy (213). Chronic catecholamine stress in

vitro reduces cellular NAD+ levels together with PARP-1

expression and activity (214), and chronic stress dependent

behavioural changes in animal models have been linked to a

NAD+–sirtuin-1 pathway (215). Maternal separation stress also

modifies whole body NAD+ metabolism, with consistently

elevated N-methylnicotinamide excretion consistent with net

NAD+ catabolism (216). Endoplasmic reticulum stress can also

repress central quinolinic acid phosphoribosyl transferase

transcription, leading to a build-up of the NMDA receptor

agonist and excitotoxin, increased oxidative stress and

inflammation, and depletion in NAD+ levels, culminating in cell

death (217, 218).

Supporting casual roles for NAD+ in stress-related disorders,

nicotinamide mononucleotide supplementation reduces

depressive-like behaviour in association with improved NAD+

levels, sirtuin-3 activity and mitochondrial energy metabolism in

a model of chronic corticosterone stress (219). Schroeder and

colleagues document dysregulation of NAD+ generation in the

brains of chronic prenatally stressed mice, with NAD+ therapy

preventing axonal degeneration, cognitive and depressive

outcomes (220). The same NAD+ stabilising therapy counters

aberrant maternal care behaviours arising with chronic

gestational stress (221).

The sirtuins are at least partly responsible for the effects of

NAD+ on responses to stress. Sirtuins have been reported to

induce stress resistance in lower organisms and mammals (222).
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1072042
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Helman et al. 10.3389/fcvm.2023.1072042
Sirtuin-1 is regulated by NAD+-dependent PARP-1 and modulates

stress responses and resilience, with effects on inflammation,

oxidative stress, mitochondrial genesis and metabolism,

endothelial dysfunction, coagulopathy, cell senescence and

longevity (223, 224). They also play a cardinal role in improving

glucose metabolism and insulin secretion (225, 226) via

increasing NAD+ levels (227). Stress related reductions in NAD+

therefore have broad implications for these sirtuin sensitive

processes. However, stress also directly modifies sirtuin

expression and results in inhibitory post-translational

modifications, with these changes linked to neurodegenerative

and other age-related diseases (228). Oxidative stress and CAD

risk factors such as cigarette smoke are known to post-

translationally inhibit sirtuin-1 and enhance degradation.

Support for the important of sirtuin-1 in chronic stress resilience

includes a significant association between depression and a SIRT1

gene variant identified in a genome-wide sequencing study within a

large population of Chinese women (229). Animal studies reveal

reductions in hippocampal sirtuin-1 with chronic stress (230–232)

and show that pharmacologic or genetic inhibition of sirtuin-1

increases stress-dependent behavioural changes and dendritic

atrophy, while activation blocks these outcomes (231). Sirtuin-1

protection against these chronic stress effects may involve a

microglial shift toward the anti-inflammatory M2 phenotype (233).

Long-term cognitive impairment in response to chronic

unpredictable stress in adolescent mice is also associated with

increased cortical expression of the 50 kD vs. 110 kD sirtuin-1

isoforms and respective mRNAs (234). Other investigations identify

roles for sirtuin-1 dependent pathways in protecting against stress-

dependent behavioural dysfunction (235), while the beneficial CNS

and behavioural effects of environmental enrichment (236) and

hydrogen sulphide (237) have both been linked to sirtuin-1

dependent signalling in rat models of chronic unpredictable stress.

The ability of resveratrol treatment to improve chronic stress

resilience and outcomes is also linked to changes in central sirtuin-

1 signalling (238). On the other hand, Ferland et al. (239), show

select infusion of the sirtuin-1 inhibitor sirtinol into the dentate

gyrus prevents chronic stress-dependent changes in stress kinase

signalling and histone acetylation, corresponding with improved

behavioural outcomes. This agrees with evidence sirtuin-1

inhibition may enhances neuroprotection against stress-related

depressive behaviour, inflammation and oxidative stress (246).

Regional differences in sirtuin changes are important, and may

explain differing outcomes. As opposed to a fall n hippocampal

sirtuin-1 and sirtuin-3, chronic stress reportedly increases sirtuin-1

in nucleus accumbens, and both pharmacological sirtuin-1

activation or sirtuin-1 overexpression within this region increases

depression- and anxiety-like behaviours, while sirtuin-1 antagonist

infusion counters these changes (240).

Chronic stress dependent reductions in hippocampal sirtuin-2

are also relevant, with associated depressive outcomes and

impaired neurogenesis countered by hippocampal sirtuin-2 over-

expression and mimicked by sirtuin-2 inhibition (241). Zhang

et al. report that depressive outcomes in chronically stressed mice

are associated with CDK5 mediated phosphorylation of sirtuin-2,

and are blocked either by gene deletion of sirtuin-2 or inhibition
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of this phosphorylation process (242). Depressive-like symptoms

in rats, and associated oxidative stress and telomere shortening

may also involve inhibition of sirtuin-3 and a resultant decline

anti-oxidant enzyme activity (243).

3.4.5.1. Sex effects
The importance of sex in stress-dependent changes in pyrimidine

metabolism and sirtuin signalling are not well studied. However,

a handful of studies support sex differences in NAD+

metabolism, and a number have revealed sex specific aspects of

sirtuin signalling and stress responses in different tissues.

Schwarzmann et al. (244) recently tested for sex differences in

NAD+ and the NAD+ redox ratio in 91 men and 114 women

between 18 and 83 years of age. Despite no significant

differences in total plasma NAD+, a higher NAD+/NADH ratio

was evident in women vs. men, a difference that declined with

age. Thus, the ratio was higher in adult but not elderly women

compared to age-matched men. The authors speculate there may

be less cellular NAD+ release via connexin 43 hemichannels and/

or increased NAD+ consumption via enzymes such as CD38 in

men. In contrast, Yang et al. (2022) report higher circulating

NAD+ levels in men than women in a study of 1,518 participants

from the Jidong community, 18 years of age and over (245).

Breton et al. (246), found no sex differences in blood NAD+

levels in a smaller French study, although there was a trend to an

age-dependent decline in NAD+ in males and not females.

Relationships between NAD+, sex hormones, and stress have yet

to be explored in detail.

A larger, albeit still limited, body of evidence exists regarding sex

and sirtuins, which play a role in differing susceptibilities of males

and females to CVD (247) and other disorders. Analysis of

human ventricular tissue from young and old subjects shows a

sex- and age-dependent decline in cardiac sirtuin-1 and -3

expression in females but not males, consistent with declining

mitochondrial antioxidant defences and increasing inflammation

in female (not male) hearts (248). This may reflect reductions in

oestrogenic induction of sirtuins in females. Sirtuin-1 induces

sexually dimorphic effects on depressive behaviours in mice, with

deletion in forebrain excitatory neurons inducing a depression-like

phenotype specifically in male mice (249). Down-regulation of

sirtuin-1 contributes to ovariectomy -induced arterial senescence

and atherosclerosis in female apolipoprotein (Apo)E−/− mice,

whereas oestrogen or a selective oestrogen receptor modulator

up-regulate sirtuin-1 and counter these changes (250). Thus,

protection against vascular dysfunction and atherosclerosis in

females may involve the activity of an oestrogen/sirtuin-1 axis.

Sex-dependent sirtuin-3 signalling produces distinct effects on

energy metabolism, coronary and myocardial diastolic function,

and tissue stress resistance. Sirtuin-3 depletion in arcuate pro-

opiomelanocortin neurons—critical regulators of metabolism—

induces a negative energy balance (decreased body weight and

adiposity, increased energy expenditure) specifically in male mice

on a normal diet, and not in males fed a high fat diet or females

on either regimen (251). Such effects may contribute to differing

risks of obesity or weight loss with chronic stress in males and

females. Sex-specific involvement of endothelial sirtuin-3 in
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determining blood pressure, coronary flow reserve and diastolic

function in female vs. male mice (252) suggests age- or disease

related coronary and diastolic dysfunction in females may involve

reductions in this signalling. Sex differences in the stress

resistance of other tissues is also related to sex-dependent sirtuin-

3 levels and activity, which are increased with estradiol and

reduced by testosterone (253).

3.4.6. Additional sex-dependent determinants
While focussing on elements of the stress axis and response,

other sex differences likely influence the responses to/impacts of

acute and chronic stressors. These include differences in

monoamine, gamma-aminobutyric acid (GABA), neuropeptide Y

(NPY) and adipokine signalling, together with gut biology.

3.4.6.1. Monoamine signalling
Central serotonin activity may be differentially stress responsive in

males and females. For example, social stress reportedly decreases

action potential frequency in serotoninergic nerves of males

while increasing frequency in females (254). Females also appear

sensitised to the behavioural effects of serotonin deficiency (255).

The sensitivity of the dopamine system to acute and repeated

stressors may be greater in females compared to males (256).

Different models of stress are associated with sex-dependent

changes in dopamine signalling: the forced swim test increases

dopaminergic activity in prefrontal cortex and hippocampus in

males compared to females, while chronic mild stress decreases

dopaminergic activity in the prefrontal cortex of females (257).

3.4.6.2. GABA signalling
Differences in GABA signalling may also participate in sex-

dependent stress reactivity and resilience. Differing behavioural

effects of chronic unpredictable stress in male and female mice

have been linked to selective changes in pre-synaptic GABA

activity in females (258). Others report greater down-regulation

of the GABA neuronal marker somatostatin in women with

MDD, that somatostatin and GABA-synthesizing enzymes are

sensitive to X-chromosome polymorphisms, and that genetic sex

modulates both GABA related gene expression and anxiety

behaviours (259). Stress dependent up-regulation of GABA

related genes is also evidenced in male but not female rats (260).

3.4.6.3. Neuropeptide Y signalling
Neuropeptide Y, linked to and regulating HPA and LC-

noradrenaline axis activities, may play a role in the sex-

dependent stress response. Studies in rodents support lower

central NPY levels in females, including in specific stress-

sensitive regions (261). However, there is little information on

the sex dependence of NPY within the LC. Gonadal hormones

(and fluctuations in their levels) may be important in this regard,

with oestrogen increasing NPY neuronal numbers, and

hippocampal NPY transcription and release (262–264). Gene

deletion studies indicate NPY has a greater role in anxiety

behaviours in males vs. females (265, 266). Moreover, the

anxiolytic effect of exogenous NPY is evident in males and not

females (267). Stress-dependent regional changes in NPY levels

also differ between the sexes, though age is an important factor
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(261). Interestingly, NPY levels increase with age in women

(268, 269) while declining in males (270–272).

3.4.6.4. Adipokines
Sex-dependent roles for adipokines warrant study. Chronic stress

may differentially modify ghrelin levels and signalling in male

and female mice (273), and there is also evidence social isolation

stress preferentially inhibits central leptin signalling in female vs.

male rats (274). In contrast, restraint stress selectively increases

hypothalamus leptin in females (275). We recently report a fall

in circulating leptin in socially stressed male but not female mice

(12). Increases in leptin, potentially reflecting emerging leptin-

resistance, are linked to detrimental cardio-metabolic outcomes

(276, 277), and have been linked to disturbed ANS control and

reduced heart rate variability (278). Leptin levels appear to be

generally higher in women than in men (279, 280).

Adiponectin levels are also higher in females vs. males (279,

281, 282), though this may reflect differing body compositions

(279). Adiponectin levels may decline with chronic stress (283),

an effect likely to favour cardiac hypertrophy. Adiponectin was

recently shown to limit cardiac sympathetic and myocardial

remodelling after infarction in dogs (284). Sex differences in

adiponectin responses to stress have yet to be examined in detail.

Analysis of adiponectin and PTSD in woman supports a

protective role for higher circulating adiponectin (285).

Oestradiol may increase adiponectin levels in association with

improved mitochondrial biogenesis in skeletal muscle (286), a sex

dependent protective path potentially extending to the heart.

Oestradiol and testosterone have also been shown to induce

opposing stimulatory vs. inhibitory effects on mitochondrial

biogenesis and adiponectin levels in white adipose tissue (287).

3.4.6.5. Cell death mechanisms
Differences in cell death will influence the response to chronic

forms of stress. Previous studies report sex differences in cell

death pathways, for example in response to ischemic stress (288).

Although caspase-dependent pathways play a dominant role in

the female brain, caspase-independent processes associated with

activation of PARPs are likely to play a more important role in

the male brain (289–293). This is supported by the finding that

gene knockdown of PARP-1 reduces infarction volume in the

male brain but increases cell death in PARP-1 knockout females

(294). Similarly, neuroprotective effects of an NAD+ precursor

and endogenous PARP inhibitor are evident in male mice but

not in females (294). Sex differences in the neuroprotective

response has been previously reported in a murine model for

reperfusion injury but not in an embolic clot model (295). It is

likely that sex differences exist in the links between cellular

energy homeostasis and cell death processes.

3.4.6.6. Gut biology and microbiome
Finally, the gut microbiome and gut-brain axis are key players in

stress related diseases including cardiovascular, metabolic and

mood disorders (296–298), and are sex-dependent and sensitive

to gonadal hormones (299–304). Indeed, an oestrogen-gut

microbiome axis is implicated in sex and oestrogen sensitive

chronic disease (305).
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4. Sex-dependent stress responses
broadly promote CAD

While a summary only of extensive sex differences within the

mammalian stress response, it is clear from this overview that

the biology of stress (and its influences on health and disease)

must be viewed as distinct in males and females. Focussed

research is thus essential in identifying and understanding these

mechanistic processes within each sex. A historic view of

cardioprotection in women vs. men belies evidence of worsened

CVD outcomes in women (306–308), and a relative increase in

CVD risk in females over recent decades vs. reductions in males

(309). Younger women have a particularly poor prognosis in

ACS (310). Stress-dependent disorders, including obstructive and

non-obstructive CAD and myocardial infarction (30, 31, 43, 44,

311, 312) and Takotsubo cardiomyopathy (45, 46, 313, 314), are

highly sex-dependent, consistent with distinct stress biology.

Acute and chronic stressors may influence CAD development

and coronary events via multiple sex sensitive mechanisms.

However, much remains to be unravelled regarding the

relationships between sex, stress and CAD.
4.1. Acute stress—a powerful trigger

While sustained or repetitive stress promotes the development

of chronic diseases including CAD, acute mental stress is also

strongly linked to cardiovascular events (24, 25), acting as a

potent trigger (24, 26, 315). This acute response may involve

shifts in vascular structure and control, inflammation and

thrombosis. Acute stress increases vasoconstrictor activity and

sympathetic tone (316, 317). An almost instantaneous elevation

in cardiac loads (heart rate, arterial pressure) with acute stressors

(318) will simultaneously increase ischaemic vulnerability.

Episodes of emotional upset or anger are a risk factor for SCAD

(30, 31), are common in the hours immediately prior to AMI

(28, 319), and appear to profoundly increase risk of acute

coronary events (29). Autonomic changes during panic attacks

have been linked to significant defects in myocardial perfusion

(59), and sympathetic activation is implicated in SCAD (30, 31).

Experimentally, acute mental stress induces features of AMI in

hypercholesterolemic ApoE−/− mice (60), an effect initially

linked to endothelin signalling. However, more recent work

supports acute stress-dependent plaque destabilisation (61),

mechanistically linked to local noradrenaline activation of

endothelial adhesion molecule expression and chemokine release.

Acute stress can increase platelet reactivity, coagulation, and

fibrinolytic processes to ultimately enhance thrombosis (320).

Platelet activation increases with acute stress (321–323), though

there is also evidence platelet glycoprotein (GP)Ib and GPIIb/IIIa

expression and function are insensitive to acute stress in healthy

subjects (324, 325). These effects appear to be more robust in

those with CAD (325, 326). Acute stress also induces a relative

hyper-activation of the coagulation cascade, with evidence of

reduced fibrinolytic activation in CVD patients compared with

healthy controls (327–329). In terms of sex differences, acute
Frontiers in Cardiovascular Medicine 09
stress has been shown to selectively enhance FVIIa activity in

men (330) vs. increased t-PA activity in women (331).

These acute outcomes involve both glucocorticoid and

catecholamine signalling. Platelet activation and aggregation are

increased with glucocorticoid administration in healthy

subjects (332, 333), and acute catecholamine administration

also stimulates thrombopoiesis and platelet activity (via

α2-adrenoceptors) (322, 334). On the other hand, adrenaline and

β2-AR agonists may induce a pro-coagulant state (335, 336), and

sympathetic activation acts via β2-adrencoepotors to induce

endothelial release of FVIII, vWF, and t-PA (322, 337). Increased

β-adrenoceptor activity with acute stress may contribute to

endothelial dysfunction (338, 339), however this role requires

further investigation. The impacts of these glucocorticoid and

catecholamine mediated effects may be enhanced by acute

stress-dependent inflammation and endothelial dysfunction.

Inflammation is rapidly provoked by acute experimental

(340, 341) and real-life stressors, including bereavement, natural

disasters, and sporting events (342–344), and may promote

coronary ischaemia (345). Increased circulating IL-6 parallels

fibrin formation and markers of coagulation, for example (346).

The inflammatory response to acute stress may also be

exaggerated in those with CAD (347). Acute stress appears to

induce endothelial dysfunction, though findings from human

studies are mixed (348). Some report increased perfusion and

flow-mediated dilation in response to acute stress in healthy

males and females (349), while others report vasoconstriction

and impaired flow-mediated dilation (350–352). The latter

inhibitory effect may be eliminated by inhibiting cortisol release

(350), consistent with evidence cortisol reduces vascular eNOS

signalling (353, 354). This likely involves a suppressive

glucocorticoid response element in the eNOS promoter region

(355). Cortisol may also increase release of the potent

vasoconstrictor endothelin to further reduce vascular

conductance (356, 357). Human studies confirm increased

endothelin levels in response to acute stress (358, 359), and a

reduction in associated endothelial dysfunction with endothelin

antagonism (360).

4.1.1. Sex effects
The importance of sex in the cardiovascular impacts of

acute stress remain relatively understudied. Females are at a

substantially heightened risk of acute mental stress related

AMI (Table 1). This stress induced ischaemia (361), and

associated transient endothelial dysfunction (362), both

predict major cardiovascular events in those with CAD.

Vaccarino et al. determined a 4-fold higher risk of mental

stress induced ischaemia in women ≤50 years of age

compared with men of similar age or older (43). More

recent work identifies a 2-fold greater risk of mental stress

induced myocardial ischaemia in young women vs. men,

with a relationship between peripheral vascular function and

ischaemia in women only (44). This is congruent with

evidence endothelial function and vascular reactivity to

mental stress predict major adverse cardiac events in women

but not men (363). These observations collectively suggest
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TABLE 1 Summary of studies assessing sex dependent cardiovascular outcomes and disease risks.

Study In-text
reference

Number of
subjects

(female: male)

Psychological
findings

Risk profile Cardiovascular
findings

Albert CM, McGovern BA, Newell JB,
Ruskin JN. Sex differences in cardiac arrest
survivors. Circulation. 1996 Mar 15;93
(6):1170–6. doi: 10.1161/01.cir.93.6.1170.

(584) 355 (84: 271) Predictors of total and
cardiac mortality differ
between women and men
Coronary artery disease
an independent predictor
of cardiac and total
mortality in women, not
men
LV ejection fraction the
strongest independent
predictor of mortality in
men, not women

Among cardiac arrest
survivors:
Women less likely to have
underlying coronary artery
disease than men (45% vs.
80%)
Women more likely to have
other forms of heart disease
than men (P < 0.0001)
LV ejection fraction higher in
women vs. men (0.46 ± 0.18
vs. 0.41 ± 0.18, P < 0.05)
Increased triglycerides (P =
0.02) and LDL-cholesterol (P
= 0.05) in men compared to
women
Increased HDL-cholesterol in
women vs. men (P = 0.0002)

Burger IA, Lohmann C, Messerli M, Bengs
S, Becker A, Maredziak M, et al. Age- and
sex-dependent changes in sympathetic
activity of the left ventricular apex assessed
by 18F-DOPA PET imaging. PLoS One.
2018 Aug 14;13 (8):e0202302. doi: 10.1371/
journal.pone.0202302.

(364) 133 (69: 64) Cardiac 18F-DOPA uptake
significantly higher in women
vs. men (P < 0.001)

Cenko E, Yoon J, Kedev S, Stankovic G,
Vasiljevic Z, Krljanac G, et al. Sex
Differences in Outcomes After STEMI:
Effect Modification by Treatment Strategy
and Age. JAMA Intern Med. (2018) 178
(5):632–39. doi: 10.1001/
jamainternmed.2018.0514.

(35) 8,834 (2,657: 6,177) Among STEMI patients
30-day mortality higher for
women vs. men (11.6% vs.
6.0%, P < 0 001); higher early
mortality risk (after adjusting
for comorbidities/treatment
covariates) in women vs. men
under 60 (OR, 1.88; 95% CI,
1.04–3.26; P = 0.02).

Chumaeva N, Hintsanen M, Juonala M,
Raitakari OT, Keltikangas-Järvinen L. Sex
differences in the combined effect of
chronic stress with impaired vascular
endothelium functioning and the
development of early atherosclerosis: the
Cardiovascular Risk in Young Finns study.
BMC Cardiovasc Disord. 2010 Jul 12;10:34.
doi: 10.1186/1471-2261-10-34

(636) 1,721 (1,002: 719) Women expressed more
negative (P = 0.02) and less
positive (P < 0.001) emotion
than men

Chronic mental stress had
more significant effect on pre-
clinical atherosclerosis
(carotid arterial compliance)
in men vs. women

Dreyer RP, Ranasinghe I, Wang Y,
Dharmarajan K, Murugiah K, Nuti SV,
et al. Sex Differences in the Rate, Timing,
and Principal Diagnoses of 30-Day
Readmissions in Younger Patients with
Acute Myocardial Infarction. Circulation.
(2015) 132 (3):158–66. doi: 10.1161/
CIRCULATIONAHA.114.014776.

(39) 42,518 (11,225:
31,293)

Among young AMI patients
30-day all-cause readmission
higher for women vs. mean
(15.5% vs. 9.7%, P < 0.0001)

Kumbhani DJ, Shishehbor MH, Willis JM,
Karim S, Singh D, Bavry AA, et al.
Influence of gender on long-term mortality
in patients presenting with non-ST-
elevation acute coronary syndromes
undergoing percutaneous coronary
intervention. Am J Cardiol. (2012) 109
(8):1087–91. doi: 10.1016/
j.amjcard.2011.11.044.

(40) 1,874 (697: 1,177) Women older with
higher incidence of co-
morbid conditions vs.
men.

Among NSTEMI patients
No overall sex difference in in-
hospital (1.4% vs. 1.6%) or
long-term (14.6% vs. 15.8%)
mortality.
However, women <60 years of
age had > 2-fold higher long-
term mortality vs. men
(P = 0.007).

Laitinen T, Hartikainen J, Vanninen E,
Niskanen L, Geelen G, Länsimies E. Age
and gender dependency of baroreflex
sensitivity in healthy subjects. J Appl

(594) 117 (“approximately
equal number of

men and women in
each group”)

Higher baroreflex sensitivity
in men vs. women in “young”
and “middle-age” groups; no
significant sex difference in
“old” group

(continued)
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TABLE 1 Continued

Study In-text
reference

Number of
subjects

(female: male)

Psychological
findings

Risk profile Cardiovascular
findings

Physiol (1985). 1998 Feb;84 (2):576–83.
doi: 10.1152/jappl.1998.84.2.576.

Martin EA, Tan SL, MacBride LR, Lavi S,
Lerman LO, Lerman A. Sex differences in
vascular and endothelial responses to acute
mental stress. Clin Auton Res. 2008 Dec;18
(6):339–45. doi: 10.1007/s10286-008-0497-
5.

(365) 87 (53: 34) No significant sex
differences in
cardiovascular disease
risk factors

Increased mean arterial
pressure in men vs. women
(11.4 ± 1.0 vs. 7.9 ±
0.9 mmHg, P < 0.001)
Increased heart rate in men vs.
women (7.60 ± 1.3 vs. 6.14 ±
0.8 beats/min, P < 0.005)
Increased endothelial-
dependent hyperemia index in
male vs. female (13.7% vs.
−0.47%, P = 0.01)

Mommersteeg PM, Arts L, Zijlstra W,
Widdershoven JW, Aarnoudse W, Denollet
J. Impaired Health Status, Psychological
Distress, and Personality in Women and
Men With Nonobstructive Coronary
Artery Disease: Sex and Gender
Differences: The TWIST (Tweesteden Mild
Stenosis) Study. Circ Cardiovasc Qual
Outcomes. (2017) 10 (2):e003387. doi:
10.1161/CIRCOUTCOMES.116.003387.

(23) Women with NOCAD
report: more psychosocial
distress vs. men (no
significant sex- group
interaction effect); more
anxiety, less positive affect
(no differences in depressive
symptoms, angina, Type D
personality vs. men)

Nickander J, Themudo R, Sigfridsson A,
Xue H, Kellman P, Ugander M. Females
have higher myocardial perfusion, blood
volume and extracellular volume compared
to males—an adenosine stress
cardiovascular magnetic resonance study.
Sci Rep. 2020 Jun 25;10 (1):10380. doi:
10.1038/s41598-020-67196-y.

(577) 41 (21:20) Higher myocardial blood
volume during adenosine
stress (not at rest) in women
vs. men.
Both higher perfusion and
extracellular volume at rest
and with adenosine stress test
in women vs. men

Ouellette ML, Löffler AI, Beller GA,
Workman VK, Holland E, Bourque JM.
Clinical Characteristics, Sex Differences,
and Outcomes in Patients With Normal or
Near-Normal Coronary Arteries, Non-
Obstructive or Obstructive Coronary
Artery Disease. J Am Heart Assoc. 2018
May 2;7 (10):e007965. doi: 10.1161/
JAHA.117.007965

(580) 898 (400: 498) Less clinical CAD risk
factors in women vs. men

Higher 10-year atherosclerotic
CVD risk in men vs. women
(19.9% vs. 13.8%)
Higher rate of obstructive
stenosis in men vs. women
(across all 4 indications
(abnormal stress, NSTEMI,
chest pain syndrome, heart
failure): women exhibit less
obstructive CAD than men

Pain TE, Jones DA, Rathod KS, Gallagher
SM, Knight CJ, Mathur A, et al. Influence
of female sex on long-term mortality after
acute coronary syndromes treated by
percutaneous coronary intervention: a
cohort study of 7304 patients. Coron Artery
Dis. (2013) 24 (3):183–90. doi: 10.1097/
MCA.0b013e32835d75f0.

(37) 7,304 (1,875: 5,429) Women significantly
older, higher rate of
diabetes mellitus vs. men.

Among ACS patients
Long-term mortality higher in
women vs. men (all ACS: odds
ratio 1.351, P < 0.001]. After
multivariate adjustment,
female sex not independent
predictor of mortality in any
ACS.

Samad Z, Boyle S, Ersboll M, Vora AN,
Zhang Y, Becker RC, et al; REMIT
Investigators. Sex differences in platelet
reactivity and cardiovascular and
psychological response to mental stress in
patients with stable ischemic heart disease:
insights from the REMIT study. J Am Coll
Cardiol. 2014 Oct 21;64 (16):1669–78. doi:
10.1016/j.jacc.2014.04.087.

(640) 310 (56: 254) Most clinical risk factors
similar between men and
women (though women
more likely to be non-
white, living alone, un-
married)
Higher proportion of
men on a statin
Higher proportion of
women on an anti-
platelet agent (other than
aspirin)

Among stable IHD patients:
Baseline:
(a)Heightened platelet
aggregation responses to
serotonin (P = 0.007) and
adrenaline (P = 0.004) in
women vs. men

Post stress:
(a)Greater MSIMI in women
vs. men (57% vs. 41%, P <
0.04)
(b)Higher collagen-stimulated
platelet aggregation responses
in women vs. men (P = 0.04)

(continued)
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TABLE 1 Continued

Study In-text
reference

Number of
subjects

(female: male)

Psychological
findings

Risk profile Cardiovascular
findings

Shivpuri S, Gallo LC, Crouse JR, Allison
MA. The association between chronic stress
type and C-reactive protein in the multi-
ethnic study of atherosclerosis: does gender
make a difference? J Behav Med. 2012
Feb;35 (1):74–85. doi: 10.1007/s10865-011-
9345-5.

(637) 6,583 (3,458: 3,125) Higher stress related CRP
(inflammatory marker) in
women vs. men. Chronic
sympathetic-caregiving
stress associated with
increased CRP levels in
women (P < 0.05) but not
men.

Vaccarino V, Sullivan S, Hammadah M,
Wilmot K, Al Mheid I, Ramadan R, et al.
Mental Stress-Induced-Myocardial
Ischemia in Young Patients With Recent
Myocardial Infarction: Sex Differences and
Mechanisms. Circulation. 2018 Feb 20;137
(8):794–805. doi: 10.1161/
CIRCULATIONAHA.117.030849

(44) Disease: 306
(150:156); Control:

112 (58:54)

More adverse socioeconomic
and psychosocial profiles in
women vs. men

No sex difference in
cardiovascular disease
risk factors

Among young AMI patients:
Rate of mental stress-induced
myocardial ischemia (MSIMI)
2-fold higher in women vs.
men
Ischemia with conventional
stress also 2-fold higher in
women vs. men
Clinical severity lower in
women

Vaccarino V, Wilmot K, Al Mheid I,
Ramadan R, Pimple P, Shah AJ, et al. Sex
Differences in Mental Stress-Induced
Myocardial Ischemia in Patients With
Coronary Heart Disease. J Am Heart Assoc.
2016 Aug 24;5 (9):e003630. doi: 10.1161/
JAHA.116.003630

(43) 686 (191:495) More adverse psychosocial
profile in women vs. men

No discernible sex
difference in
cardiovascular disease
risk factors

Among stable CAD patients:
Incidence of mental stress-
induced myocardial ischemia
(MSIMI) almost 4-fold higher
in women vs. mean ≤50 years
of age

Zachura M, Wilczek K, Janion M, Gąsior
M, Gierlotka M, Sadowski M. Long-term
outcomes in men and women with ST-
segment elevation myocardial infarction
and incomplete reperfusion after a primary
percutaneous coronary intervention: a 2-
year follow-up. Coron Artery Dis. (2019)
30 (3):171–76. doi: 10.1097/
MCA.0000000000000703.

(37) 2,694 (948: 1,746) Among STEMI patients:
Higher AMI history (15.4 vs.
11.7%, P = 0.0073), PCI (10 vs.
6.7%, P = 0.0039) and CABG
(2.9 vs. 1%, P = 0.0016) in men
vs. women
Tachycardia more frequent in
women vs. men (14.5 vs.
10.3%, P = 0.0009).
Higher risk of
rehospitalization in women vs.
men

MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; MSIMI—mental stress induced myocardial infarction; ASCVD:

atherosclerotic cardiovascular disease; NSTEMI: non-ST segment elevation myocardial infarction.
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greater propensity to microvascular dysfunction and ischaemia

in women. Women are also at much greater risk of SCAD and

resultant perfusion defects, a response linked to acute

emotional and (to a lesser extent) physical stress (30, 31).

There is evidence acute stress exerts distinct effects on

mediators of coagulation and fibrinolysis in males and

females (330, 331). Greater sympathetic activity in the

hearts of women (364), particularly in the apical region of

the left ventricle, may be relevant to relative myocardial

sensitivity to acute stress, and is consistent with the sex

dependence of Takotsubo cardiomyopathy and the apical

changes in this disorder. The acute coronary response to

mental stress differs between sexes: Martin et al. (365)

found that reactive hyperaemia with mental stress is lower

in women vs. men, in association with greater endothelial

dysfunction and reduced reactivity. Mehta et al. (366)

found that women with coronary vascular dysfunction also

exhibit greater peripheral vasoconstriction in response to

acute mental stress.
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4.2. Chronic stress—multipotent driver of
cardiovascular disorders

Repetitive or chronic stress promotes disease via a broad

disruption of homeostasis and adaptability (367, 368), incurring

a significant biological cost or allostatic load (369). Shared

biological networks may transduce chronic stress to multiple co-

morbid disease states (6). Coronary artery disease is promoted by

integrated influences of autonomic, neuroendocrine and

immuno-inflammatory dysregulation on metabolism and lipid

handling, thrombosis/haemostasis, and heart and vessel function

and structure (Figure 2). Associated behavioural/affective impacts

of chronic stress interact with these biological determinants to

significantly increase risk of CAD, together with commonly co-

morbid conditions including MDD and diabetes (6) (Figure 2).

However, the stress response and its behavioural and

cardiovascular influences are significantly sex-dependent (370).

Indeed, fundamental adaptive mechanisms that provide resilience

to stress differ between the sexes (371, 372).
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FIGURE 2

The stress response and its effects on body systems and CVD risk. Chronic stress activation of the HPA axis and SNS activity result in elevations in
glvuocorticoids (GC) and catecholamines, and reduced PNS activity. Resultant behavoural/affective outcomes, immuo-inflammatory dysregulation,
metabolic and cardiovascular effects collectively favour development of CVD.
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4.2.1. Stress drives behavioural risks
Chronic stress strongly predicts maladaptive coping or

avoidance responses to a wide variety of provocations, including

decreased social interactions, physical inactivity, altered sleep and

dietary patterns (373, 374). These outcomes favour emergence of

cardio-metabolic disorders. Behavioural drives of disease involve

and are compounded by the influences of stress on

neuroendocrine control, metabolic homeostasis and lipid

handling, inflammation, and gut biology. Importantly, sex

differences in coping strategies guide distinct behavioural

responses to stress. The literature highlights a greater impact on

eating and sleep patterns, together with immuno-inflammatory

function in females vs. males.

The basis of sex-dependent behavioural responses to stress is

complex. External psycho-social, cultural and life history factors

all contribute to differences in stress-related behaviours and

outcomes. Gonadal hormones play an important role (375), and

sex differences in stress-related mood disorders emerge after

puberty (376). Significant variability in gonadal hormone levels

in women has also been implicated in differing incidence of

stress-related disease (377). Androgens negatively regulate the

HPA axis and reduce stress-dependent behavioural changes

(378). In contrast, estrogen receptor (ER)α activity promotes

HPA axis activity, increasing stress-dependent ACTH and

corticosterone in male and female rodents (379, 380) and
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reducing negative feedback control of the axis (381). This is

associated with anxiogenic influences of ERα activity (379, 382),

although opposing behavioural effects of ERα activity are

reported (383, 384), linked to reproductive history. Interestingly,

anxiety-like behaviours are increased by ERα deletion in males

(385) but not females (386). However, absence of these

regulatory receptors over the life of knockout models complicates

interpretation. Nonetheless, associations between ERα gene

variants and anxiety and depressive disorders in humans (387–

389) support the importance of sex hormones in the response to

chronic stress.

Unfortunately, outcomes from animal studies, particularly in

rodents, are equivocal and in some cases opposed to observations

in humans. Studies in rats report reduced anxiety-like (390–392)

and depression-like (393, 394) behaviours in females vs. males,

suggesting greater female resilience. Others report no differences

or increased anxiety- and depressive-like behaviours in female vs.

male rats (395, 396). Similarly variable outcomes are evident in

murine studies (397, 398), however there is evidence of greater

biological or behavioural disruption in stressed female vs. male

mice (399, 400), consistent with our own recent observations (12).

4.2.1.1. Inflammation-dependent sickness behaviours
Inflammatory challenge induces “sickness behaviours” that closely

mimic elements of stress dependent mood disorders, often cited
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evidence for key involvement of low-grade inflammation in the

behavioural/affective impacts of chronic stress (401, 402).

Interactions between inflammation and mood disorders

(403, 404) have been highlighted in large population studies

(405) and meta-analysis (406). A bi-directional interaction exists

between inflammation and mood disorders, a positive feedback

characteristic of stress-related disease (407, 408). Circulating

cytokines communicate with the brain through both neural and

humoral routes, influencing central control of mood and

behaviour (409, 410). The biological mechanisms of cytokine-

induced behavioural changes have been well studied in animal

models, for example employing synthetic double-stranded RNA

(poly I:C) or lipopolysaccharide (LPS) challenge to induce

anxiety- (411) and depressive-like behaviour (412), respectively.

Although chronic exposure may ultimately induce immune

tolerance, prolonged changes in the brain and periphery emerge.

For example, chronic LPS treatment induces sustained microglial

activation (413), and persistent poly I:C exposure induces tumour

necrosis factor (TNF)-α dependent neuroinflammation and alters

expression of memory associated genes in frontal cortex (FC)

and hippocampus (414).

The behavioural influences of inflammation are sex-dependent

(177). Experimental evidence supports an enhanced immuno-

inflammatory reactivity in women (415–417), although

comparable outcomes in men and women have also been

reported (418, 419). Studies in animal models provide support

for greater neuroinflammatory reactivity in females vs. males

(420). Distinct outcomes from in vitro vs. in vivo studies are

relevant, confirming critical involvement of systemic (in vivo)

mechanisms in the expression of sex differences. For example,

higher female immunoreactivity is less evident in ex vivo models

(421), with opposing evidence of greater reactivity in isolated

immune cells from men vs. women (422, 423). This highlights

the importance of assessing the complex biological influences of

stress in vivo within an integrated systems biology framework (6).

The temporal pattern of behavioural response is also relevant in

terms of sex differences. Engler et al. (181) assessed behavioural/

affective effects of low level LPS challenge and reported similar

mood, anxiety and fatigue levels in men and women over the

initial 6 h of immune challenge, consistent with other reports

(416, 424–426). However, sickness behaviours 24 h following LPS

may be greater in women vs. men (427), suggesting a progressive

emergence of sex dependent behavioural outcomes after the

initial inflammatory response and peak cytokine changes. That

said, there are also reports of greater depressive symptoms

during the initial inflammatory response in women (93, 428).

4.2.1.2. Dietary changes
Dietary patterns are changed with stress, in a manner generally

promoting the development of CAD (429). This “emotional

eating behaviour” (430) includes spontaneous binging and

hyperphagia together with increased consumption of fatty foods,

sweet foods and snacks (vs. decreased consumption of fruits and

vegetables). It is well established that elevations in CRH and

adrenaline with acute stress suppress appetite to induce a

negative energy balance. Conversely, extended release of cortisol
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or corticosterone (with chronic stress) more generally increases

appetite and motivation to eat (431) and modifies adiposity and

fat distribution (432)—although not all studies agree (433). As

with addictive drug behaviours, hyper-palatable food

consumption with chronic stress is linked to increased

mesolimbic dopaminergic system activity (434).

Unfortunately, few studies directly examine the importance of

biological sex in determining stress-dependent eating patterns.

Meta-analysis of links between stress and metabolic syndrome

evidences a differing stress-metabolism relationship in females vs.

males, suggestive of greater susceptibility of females to harmful

stress-dependent behaviours (such as insomnia, physical

inactivity and disordered eating) (435). Additionally, an analysis

of relationships between BMI and post-traumatic stress disorder

in Iraq and Afghanistan veterans identified sex effects, including

preferential links between persistent obesity and PTSD in men

vs. depression in women (implicating distinct sex-specific

mediators of stress related weight gain). Women may experience

more stress-dependent eating than men (436), and pre-clinical

studies support sex-dependent patterns of stress feeding. For

example, Anversa et al. (437)., investigated stress-induced

binge-eating in food restricted and unrestricted mice, with results

showing that males only displayed binge-like eating behaviour

under food restricted conditions, whereas this behaviour was

evident in ad libitum-fed females. This suggest potentially greater

hedonic or reward behaviour in females, whereas male eating

may be strongly dependent upon or reflects a homeostatic

response to metabolic challenge. Nonetheless, opposing effects of

stress are also reported, with chronic stress reducing food

consumption in both mice (438) and rats (439), though dietary

changes again appear more prominent in females. Temporal

differences may be important: Pare et al. (439) found that food

consumption was consistently reduced with increasing stress

chronicity in females, whereas changes were transient (recovering

to baseline) in male animals over the same period. Nonetheless,

with only a 5-day duration of “chronic” stress in this study,

outcomes may involve significant influences of acute stress.

4.2.1.3. Reduced physical activity
Reductions in physical activity with stress favour development of

metabolic and cardiovascular disorders. Increased physical

activity, in turn, is cardioprotective and also anti-depressant.

Indeed, physical fitness or aerobic capacity may be a dominant

determinant of chronic disease risk (conversely health and

longevity) (440). Levels of physical activity are reduced in

chronic stress or stress-related mood disorders, explaining in part

the link between stress/MDD and CVD (441). Similarly, chronic

stress reduces running activity in mice (442). Anxiety sensitivity,

a learned cognitive trait predisposing individuals to fearful

misinterpretations of internal processes and sensations

(443–445), is also associated with declining physical activity and

fitness (446–448), together with cardiovascular risks including

hypertension (449, 450), high cholesterol (451), atherosclerosis

and arterial stiffening (452). A study by DeWolfe (453).,

identified a significant, indirect effect of sex on physical activity

in anxiety sensitivity (454), with female students reporting less
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activity and greater anxiety sensitivity than males. While Moshier

et al. (373) found no sex differences in the AS-exercise

relationship, it was noted that women have significantly less

engagement with exercise than men (thus may be at greater risk

of physical inactivity).

4.2.1.4. Disrupted sleep patterns
Dysregulated sleep, including more frequent awakening and

inability to fall into deep sleep, may be an important link

between chronic stress and CVD (455). Under normal

conditions, the HPA axis and SNS are suppressed in the initial

stages of sleep, with activity increasing close to maximum

circadian rhythm immediately after waking. The HPA axis and

SNS influence the overall amount of rapid eye movement sleep

(456), and chronic stress is associated with nyctohemeral

activation of these systems, increasing the release of CRH,

ACTH, cortisol/corticosterone, noradrenaline, and adrenaline

(457), disrupting circadian clock genes in peripheral organs, and

inducing nocturia, chronic insomnia and increased fatigue (458).

Excitatory orexins may play an important role in dysregulated

sleep. Generated in the lateral hypothalamic regions, orexin

neurons project to all brain regions. Of particular relevance,

orexins influence regions associated with arousal, such as the

locus coeruleus, to regulate responses to stressful stimuli (459).

Effects of central orexin administration are well documented in

animal models, supporting involvement in stress-mediated

behaviour (460) and the dysregulation of HPA axis (461, 462)

and SNS function (463, 464). Although it is clear acute stress

up-regulates orexins, effects of repeated or chronic stress are less

well defined: predictable (homotypic) chronic stressors generate

conflicting outcomes (465–467), while unpredictable (heterotypic)

chronic stressors up-regulate orexins (468). Lower orexin

function may be indicative of stress resilience (469) or

habituation (470). Examining sex-effects in rats, Grafe et al.

found that females exhibit significantly less habituation to

repeated restraint stress than do males, in association with higher

levels of orexin neuronal activity (471).

4.2.2. Stress disrupts metabolic homeostasis and
lipid handling

Effects of chronic stress on neuroendocrine/autonomic

function and inflammation interact to disturb whole body and

organ specific metabolism. With the perception of stressful

conditions, HPA axis and SNS activities and mediators increase

energy supply via catabolic influences, liberating energy

substrates such as glucose, amino acids, glycerol and fatty acids.

However, prolonged activity with chronic stress can promote

obesity, insulin-resistance, diabetes and metabolic syndrome.

Psychosocial stress is a significant risk factor for excess weight

gain (472) and obesity (473), associated with increasing adiposity

(474), redistribution of fat tissue and accumulation of abdominal

fat (475, 476). Exposure of healthy (non-obese) young men to

long term stress increases abdominal obesity and dyslipidaemia

(477). Chronic psychological stress in patients with stable

ischaemic heart disease is similarly associated with higher body

fat and detrimental lipid changes (478). Community-based
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studies also demonstrate a tendency for obese individuals to

experience greater levels of stress-related disorders (479).

Moreover, chronic stress may selectively promote particularly

problematic visceral fat accumulation rather than subcutaneous

fat, which is associated with low CAD risk and mortality (480).

Mediators of stress-dependent metabolic dysfunction are noted

below, together with potential sex effects.

4.2.2.1. Glucocorticoid mediators
The link between glucocorticoids and metabolic disruption has

been well established, exemplified in the increased weight gain,

and visceral adiposity in Cushing’s syndrome (481) and

exogenous corticosteroid exposure (482). The link between

glucocorticoid dysregulation and metabolic abnormalities is

highlighted in mood disorders, with hypercortisolemic (and not

normo-cortisolemic) depression associated with increased visceral

fat (483). Increased glucocorticoid levels induce visceral fat

accumulation through increases in dietary fat intake and

hydrolysis of circulating triglycerides by lipoprotein lipase (484).

Glucocorticoids also stimulate hepatic gluconeogenesis and

inhibit glucose handling skeletal muscle and adipose tissue,

promoting insulin-resistance (485, 486). There is evidence

elevations in glucocorticoids contribute to insulin-resistance via

increases in pancreatic islet proliferation and volume, insulin

secretion capacity, and islet chaperone expression (487).

Interestingly, despite anabolic effects on adipose and overall mass

in humans, catabolic effects of glucocorticoids appear maintained

in other tissues, with reductions in bone mineral density and

lean body mass (488). These catabolic effects are more

prominent in rodents vs. humans, with reductions of body

weight in response to corticosterone intake (489) or repeated

dexamethasone injections (490). However, adipose mass may

nonetheless increase relative to overall body mass (489, 491).

4.2.2.2. Altered SNS activity
The SNS is important in the integrated regulation of energy

expenditure and intake to maintain long-term energy balance.

Clinical and pre-clinical studies provide broad support for the

involvement of sympathetic over-activity in development of obesity

and metabolic syndrome (492), and stress-dependent metabolic

dysregulation. Baseline sympathoadrenal activity has been shown

to predict increases in body weight and development of insulin-

resistance in an 18-year longitudinal study (493). Insulin-resistance

and dyslipidaemia in a rat model of metabolic syndrome are

worsened by chronic restraint stress, in association with increased

noradrenaline levels and countered by β-adrenoceptor blockade

(494). There is also evidence the greater effects of stress on LDL

cholesterol and triglycerides in hypertensives vs. normotensives

involve increased noradrenaline activity (495). Sympathetically

mediated vasoconstriction may also functionally antagonize

insulin-dependent glycaemic control via reductions in tissue blood

flow, contributing to the development of insulin-resistance (496).

There is evidence for an important interaction between SNS and

NPY activities in development of obesity and metabolic disease.

For example, Kuo and colleagues (497) report that stress

dependent NPY release from sympathetic nerves promotes
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abdominal obesity and development of metabolic syndrome

(including impaired glucose tolerance, hyperlipidaemia,

hypertension, and increased concentrations of insulin, leptin and

resistin). Outcomes in NPY over-expressing mice are also

consistent with a role for altered SNS activity in NPY-dependent

obesity and metabolic syndrome (498).

4.2.2.3. Inflammation
Immuno-inflammatory activation in brain and periphery are a

feature of chronic stress (499), with indirect effects on metabolism

and regulatory systems throughout the body (500). Chronic

low-grade inflammation induces insulin-resistance (together with

endothelial dysfunction) (501) and may directly facilitate

diet-induced obesity (502). A bi-directional positive feedback is

evidenced in studies of dietary obesity in mice (503), with

increased hypothalamic and hippocampal inflammation

participating in a vicious feed-forward cycle of CNS dysfunction

(504). This may involve increased blood brain barrier permeability,

reactive glial cytokine production and circulating pro-

inflammatory adipokines (505). In the periphery, members of

the interleukin (IL)-1 family influence insulin-resistance and

metabolic inflammation in obesity-associated disorders (506–508).

Modulators of IL-1, NLRP6 and NLRP3 inflammasomes negatively

regulate non-alcoholic fatty liver disease and steatohepatitis

progression and contribute to aspects of metabolic syndrome

(509). The inflammatory transcription factor NFκB has emerged

as an important metabolic regulator, with enhanced hepatic

activity observed in high fat-fed mice (510, 511). As detailed

further below, pro-inflammatory cytokines contribute significantly

to vascular dysfunction and atherosclerotic disease (512).

4.2.2.4. Lipid handling
Stress-dependent dyslipidemia similarly favours development of

CAD. Chronic stress promotes an unfavourable pro-atherogenic

lipid profile in humans (513) and animal models (514–517). This

may include elevations in circulating cholesterol, low-density

lipoproteins (LDLs), very-low density lipoproteins (VLDL) and

triglycerides, and reductions in high-density lipoproteins (HDLs).

Chronic mild stress in rats increases total, LDL and VLDL

cholesterol together with triglyceride levels (and atherogenic

index) without influencing HDL cholesterol (518). Increased

sympathetic activity with stress, acting via β1, β2 or

β3-adrenergic receptors in white adipose tissue, promotes

lipolysis (519). Increased VLDL and decreased HDL levels, and

facilitation of LDL entry into blood vessel walls, initiates and

promotes the atherosclerotic process (520).

4.2.2.5. Sex effects
Further work is needed to reveal the effects and importance of sex

in stress-dependent metabolic dysregulation and disease.

Nonetheless, there is evidence of sex specific changes in

metabolism and lipid profiles. For example, animal studies

suggest stress-induced changes in metabolic rate may be greater

in females than males (521), which may reflect oestrogenic

attenuation of sympathoadrenal and HPA responsiveness (522).

The anabolic effects of glucocorticoids are more prominent in

male compared with female mice, potentially involving
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oestrogenic protection and differing corticosteroid receptor

expression/sensitivity in females (523). This may contribute to a

greater relative risk of stress-dependent obesity and metabolic

disturbance in females vs. males. It has been reported that

chronic restraint stress reduces abdominal fat deposition in male

rats while increasing fat in females (524). On the other hand,

chronic social stress may induce weight loss specifically in female

and not male mice (12).

Studies confirm sex differences in circulating lipid profiles

under both stress and non-stressed conditions. Pre-menopausal

females exhibit higher circulating HDL levels while males have

higher triglyceride levels, with lipoprotein profiles converging

after menopause (525). Reduced risk of CVD in premenopausal

women has been attributed this higher concentration of HDL

cholesterol (526). However, there is also evidence recurrent

episodes of stress may eliminate this benefit in women (527).

This agrees with evidence risk of stress-related disorders is

differentially linked to lower HDL-cholesterol levels in women vs.

lower LDL-cholesterol levels in men (528). Similarly, HDL-

cholesterol is a more significant CVD risk factor in women,

while LDL-C is more significant in men (529). Studies in rats

indicate acute and chronic stress increase plasma cholesterol

levels to a greater extent in ovariectomized females (compared

with intact females or males), and that metabolic risk is

influenced more by acute stress in males vs. chronic stress in

females (530). Prenatal stress also exerts sex-specific effects on

metabolism, although findings are mixed. This includes evidence

of a female specific elevation in cholesterol levels, and a male

specific fall in body weight in prenatally stressed mice (531),

whereas others report a male specific increase in cholesterol and

triglycerides (532).

4.2.3. Chronic stress modifies vascular function
and structure, and systemic blood pressure

Chronic stress induces endothelial dysfunction and detrimental

vascular remodelling (533–535), effects that increase vascular

resistance and favour local O2 supply:demand imbalances,

hypertension, development of atherosclerosis, and acute coronary

events. Stress-dependent endothelial dysfunction, linked to

adverse cardiovascular outcomes in patients with CAD (362),

arises with diverse stressors in both humans and animal models.

For example, flow-mediated, endothelium-dependent vasodilation

is impaired with chronic sleep deprivation and exam stress in

healthy male college students (536), and with chronic carer stress

in the elderly (537). The coronary microvascular impact of

mental stress appears solely endothelium-dependent and is

mirrored in peripheral vascular responses (538). Experimental

studies support reduced nitric oxide (NO) bioavailability

and vasodilatation (potentiating α-adrenoceptor-mediated

vasoconstriction) in association with increased oxidative stress in

animal models of chronic stress (518, 539–541). However, there

is also evidence of reduced endothelium-dependent

hyperpolarization-like relaxation in microvessels from rats

subjected to chronic mild stress (542). Reduced endothelial-

dependent dilation in arterial tissue from chronically stressed rats

has also been linked to shifts in central (cortical) glutamate
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signalling (543), revealing a potential neurobiological mechanism

of stress-dependent endothelial dysfunction. Intima and media

hypertrophy arise in association with increased α-adrenoceptor

vasoreactivity in rats exposed to chronic unpredictable stress

(518). Arterial blood pressure also increases in models of chronic

stress, in association with endothelial dysfunction, oxidative stress

and increased angiotensin II levels (541). Causal involvement of

RAAS activity is supported by beneficial effects of ramipril and

losartan. Chronic stress may excessively activate the RAAS (544)

and increase arterial sensitivity to angiotensin (545). Chronic

elevations in angiotensin II also induce inflammation, endothelial

dysfunction and senescence (546, 547), while angiotensin

receptor antagonism protects against the effects of chronic stress

(548). Sympathetic activity may indirectly promote endothelial

dysfunction via its stimulatory effects on RAAS activity (549),

together with inflammation and oxidative stress.

Glucocorticoids play a causal role in endothelial dysfunction,

whereas involvement of sympatho-adrenergic activity is less clear

and potentially indirect (533). Nonetheless, vasoconstrictor

activity of catecholamines is consistently augmented with chronic

stress, which likely contributes to hypertension and coronary

abnormalities. Increases in cortisol inhibit endothelium-

dependent vasodilation (550), reducing forearm blood flow

responses to acetylcholine in healthy men for example (551).

Cortisol directly reduces human endothelial eNOS expression

(552), consistent with presence of a glucocorticoid response

element in the eNOS promoter. Confirming the importance of

glucocorticoids, effects of mental stress on flow-mediated

vasodilation are negated by inhibition of cortisol production (350).

Involvement of the low-grade inflammation characteristic of

chronic stress is indirectly supported by observations in humans

and pre-clinical models. Cytokines reduce endothelial-dependent

dilation in human veins in vivo (553), and acute inflammation

with vaccine challenge in healthy volunteers is associated with

pronounced endothelial dysfunction (554). As for cortisol,

cytokines also down-regulate endothelial nitric oxide synthase

(eNOS) in human coronary endothelium (555), and arterial

endothelium of other species (556).

Chronic psycho-social stress promotes development of

essential hypertension (496, 557–559), a major risk for CAD and

infarction (560). Recent secondary analysis of the Isfahan Cohort

Study (561), for example, indicates high stress levels increase the

likelihood of hypertension by ∼40%, with significant links

between hypertension and job conflict, job security, personal

conflict, sexual and daily life in both sexes (independent of

socioeconomic/lifestyle covariates), together with financial

problems in males. Stress-dependent sympathetic activity

promotes vessel remodelling and vasoconstriction (562), which

with endothelial dysfunction and altered neuroendocrine and

autonomic control, collectively favour development of

hypertension (496, 585). Chronic stress impairs baroreceptor

sensitivity and baroreflex function to increasing arterial pressure

in humans (563, 564), while increased glucocorticoid levels are

also associated with and increase the risk of hypertension

(565, 566). Hypertension is additionally supported by associated

neuroinflammation (567) and increases in renal renin and
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pituitary AVP secretion (568). Inhibition of neuroinflammation

counters hypertension in different experimental models (569–

572), and the hypertensive effects of angiotensin II/RAAS activity

have also been linked to microglial activation and inflammatory

cytokines within the PVN (573).

4.2.3.1. Sex effects
The coronary and hypertensive influences of chronic stress are

significantly dependent upon biological sex. Indeed, it is clear

that coronary physiology and syndromes must be understood

and managed in a targeted sex-specific manner (574–576).

Importantly, women have greater microvascular density and

baseline coronary perfusion (intermediate between healthy and

CAD subjects) than men (577, 578), with less macro or

obstructive CAD (579, 580). Evidence suggests women are more

prone to coronary microvascular dysfunction than men

(580, 581), including stress-dependent infarction (43, 44).

Coronary microvascular dysfunction is also linked to sex-

dependent Takotsubo cardiomyopathy (45) and heart failure with

preserved ejection fraction (HFpEF) (582), both significantly

more prevalent in women. Interestingly, recent work shows that

a reduced coronary flow reserve in women is predicted by a

blunted heart rate reserve, indicative of involvement of higher

sympathetic activity in differing coronary outcomes (583). We

recently reported that chronic social stress differentially increases

coronary resistance in the hearts of female mice, while reducing

resistance in males (12). Consistent with increased propensity to

stress-dependent ischaemia in women (43, 44), the basis of this

coronary dimorphism is unclear. However, female mice did

exhibit greater inflammation than males, which impairs

endothelial-dependent control in different vascular beds (553, 554).

Age and neuroendocrine changes are important interacting

factors regarding sex effects on vascular and blood pressure

control. For example, baroreflex sensitivity is higher in pre-

menopausal women than either age-matched men or post-

menopausal women (584). Oestrogen replacement therapy also

increases baroreceptor sensitivity in postmenopausal women,

attenuating onset and progression of cardiovascular disease and

accelerating recovery from cardiovascular events (585, 586). Age-

dependent elevations in sympathetic activity are more

pronounced in women, while vagal tone and baroreflex

sensitivity decline with age (587–589). Endothelial function falls

progressively with age in men yet is relatively preserved in pre-

menopausal women, before subsequently declining (590). This

pattern is congruent with vasoprotection via gonadal hormones:

endothelial function is reduced by prolonged gonadotropin-

releasing hormone agonism (suppressing oestrogen generation)

or acute gonadotropin-releasing hormone antagonism, and

improved by hormone replacement in women (591); and

endothelial function in young men is similarly impaired by

aromatase inhibition to limit oestrogen generation (592). Stress-

dependent increases in arterial pressure in ovariectomized rats

are also reduced with hormone replacement, in association with

increased vascular eNOS expression (593). Such observations

support a protective role for oestrogen-sensitive vascular eNOS in

limiting cardiovascular stress reactivity. Age dependent arterial
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stiffening is also more prominent in women, contributing to

reduced baroreceptor firing and baroreflex sensitivity in older

women vs. men (594). These age dependent reductions in

baroreflex sensitivity may involve changes in peripheral afferent

and/or efferent pathway control of the baroreflex system and

sinus node function (594), with changes more dramatic in

women compared to men (595).

Influences of testosterone on endothelial dysfunction are less

clear: there is some evidence endothelial dysfunction is linked to

declining testosterone levels (596, 597), although the opposite has

also been reported (598). Meta-analysis indicates no significant

associations between testosterone treatment and endothelial

function, however studies are limited and outcomes mixed (599).

There is also little research on the relationship between

testosterone and endothelial function in women, however there is

evidence of an association between low testosterone and

endothelial dysfunction in post-menopausal oophorectomized

women (600). Worboys et al. (601), also report that 6 weeks of

testosterone supplementation in post-menopausal women

receiving estradiol therapy improves both endothelial-dependent

and -independent vasodilation. On the other hand, pre-clinical

studies suggest potentially detrimental effects of testosterone on

endothelial function (602), including inhibition of the vascular

benefits of oestrogen (603). A higher blood pressure in male

compared with female spontaneously hypertensive rats has been

linked to testosterone sensitivity (and oestrogen insensitivity) of

vasodilatory prostanoid generation, associated with sex

differences in renal oxidative stress, heme oxygenase- 1 and

arachidonic acid metabolism (604, 605). Consistent with a male

propensity to stress-induced hypertension, chronic stress

selectively increases arterial pressure in borderline hypertensive

male but not female rats (606).

4.2.4. Stress is pro-atherogenic
Chronic stress is strongly pro-atherogenic, reflecting integrated

impacts of stress-dependent dyslipidaemia, vascular dysfunction/

remodelling, thrombosis, hypertension, oxidative stress and low-

grade inflammation, together with more direct atherogenic

influences of SNS and HPA axis dysregulation. Chronic stress

has been estimated to be a stronger independent risk factor for

atherosclerosis (and intimal and media thickness) in an animal

model of disease than total or LDL cholesterol (13). The broadly

pro-inflammatory milieu induced by acute and chronic stress and

SNS overactivity is pro-atherogenic (607), and the makeup,

inflammatory profile and stability of atherosclerotic plaques is

stress-sensitive. Chronic stress shifts plaques towards an unstable

phenotype, with increased leukocyte and matrix

metalloproteinase (608, 609) vs. reduced smooth muscle and

collagen contents (634), and attrition of the fibrous cap (608).

Plaque destabilisation in response to acute stress in ApoE−/−

mice (335) involves noradrenaline stimulation of endothelial

adhesion molecule expression and chemokine release. Mast cells

also participate in plaque destabilisation together with coronary

vasospasm (610), are activated by chronic stress and

corticotropin-releasing hormone, and are increased in CAD

patients where they provoke acute coronary events (611–613).
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They have been shown to promote plaque destabilisation in

animals subjected to acute stress (614), while chronic and early

life stresses also increase mast cell numbers (615–617). However,

involvement in chronic stress related atherogenesis awaits

focussed study.

Sympathetic activity is an important mediator, with strong

atherogenic potency of catecholamines (618, 619) readily

demonstrable in animal studies (620, 621), even in the absence of

altered blood pressure and cholesterol levels (619). Increased

blood pressure reactivity to mental stress, governed by SNS

activity, is also positively associated with development of

atherosclerosis (622). Sympathetic activity stimulates splenic

hematopoietic progenitor cell proliferation and myeloid cell

development (623), and leukocytes express a more pro-

inflammatory transcriptional profile (624), with increased

expression of C-reactive protein, IL-1, IL-6 and TNF (625).

Ablation of SNS activity with 6-hydroxydopamine reportedly

counters the up-regulation of endothelial adhesion molecules in

models of AMI (626).

Glucocorticoids are also pro-atherogenic (627). Pre-clinical

studies confirm pro-atherosclerotic effects of cortisol/

corticosterone in different models (628, 629). Priming by prior

exposure to either glucocorticoids or noradrenaline also sensitises

monocytes/macrophages to subsequent inflammatory challenge

(630), effectively amplifying the effects of repeated stress. Stress

and SNS-dependent RAAS activation additionally promotes

atherosclerosis (656, 657). Angiotensin II activation of type 1

receptors increases leukocyte adhesion molecule and

inflammatory mediator expression in endothelial cells (631),

which possess glucocorticoid receptors that render them directly

sensitive to HPA axis activity (632). Increased arteriolar

leukocyte adhesion in response to angiotensin-II has been linked

to TNF-α dependent signalling (633). Experimental studies also

support involvement of pro-inflammatory toll-like receptor 4 and

nuclear factor-kappaB signalling in the atherogenic effects of

stress in ApoE−/− mice (634), and a role for oxidative stress (and

hyperlipidaemia) in stress related atherosclerosis (662).

Endothelial dysfunction and abnormal NO signalling, reflecting

in part the influences of inflammation and oxidative stress, also

play an important role (663). Altered reverse cholesterol

transport (RCT) could also participate, though this has received

relatively little research attention. There is evidence chronic stress

augments the inhibitory influences of high-fat feeding on RCT

(635), although these investigators found no influence of stress

alone on markers of RCT.

4.2.4.1. Sex effects
There is evidence of significant influences of sex on stress related

atherogenesis (Table 1), however focussed research is needed.

For example, Chumaeva et al. report that, in the context of the

syndrome of vital exhaustion (characterized by fatigue and

irritability), only men with reduced arterial elasticity show an

increased risk of atherosclerosis in early life, with no such risk in

women with either high or low arterial compliance (636). While

inconclusive, the authors suggest this may reflect better coping

with stressful risk factors in women than men. Shivpuri et al.
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(637), also found evidence of sex-dependent influences of stress on

inflammation in the Multi-ethnic Study of Atherosclerosis.

Experimental studies also identify sex-dependent influences of

early life stress on inflammation and mast cell activity: early

weaning stress increases mast cell number and activity in pigs to

a significantly greater degree in females vs. males (616),

consistent with evidence repeated maternal separation stress

selectively increases hippocampal mast cell numbers in females

and not males (617). Such observations implicate mast cells as

an understudied mediator of the sex-specific effects of early

life adversity.

4.2.5. Stress is pro-thrombotic
Thrombosis links chronic stress, mood disorders and CAD

(638). Increased platelet–leukocyte aggregates are evident in CAD

patients, and platelet activity is increased by high level stress and

in people prone to stress-related depression (639). Mental stress

induces prolonged elevations in pro-inflammatory platelet activity

(321), and mental stress induced ischaemia is associated with

increased platelet aggregation (640). Animal models similarly

evidence increased thrombosis in response to chronic stress (641,

642). Increases in thrombopoiesis and platelet activity with stress

involve both glucocorticoid and sympathetic influences (and

associated inflammatory/ROS responses), together with potential

roles for serotonin (643) and brain-derived neurotrophic factor

(BDNF) signalling (204, 644). The sympathoadrenal activation

with chronic forms of stress primarily enhances coagulation,

while fibrinolysis may be additionally influenced by acute

stressors (322, 645, 646). This may reflect a pro-survival response

aimed at limiting blood loss in threatening fight-or-flight

settings. However, such effects can in the longer term promote

CAD and risk of acute coronary events (647, 648).

Platelet levels, activity and aggregation are all increased with

glucocorticoid administration (332, 333), and under conditions of

chronically elevated cortisol (649). Increased thrombin-induced

platelet aggregation with high work stress is linked to elevations in

cortisol (650). There is also experimental evidence ACTH

promotes arterial thrombosis, with ACTH (yet not cortisol)

acutely amplifying agonist-induced platelet aggregation (651).

Associated SNS activity is also involved in stress-axis dependent

thrombosis, with animal studies confirming key involvement in

the pro-coagulant effects of chronic stress (652). Exposure to

either stress or catecholamine increases thrombopoiesis, platelet

reactivity and GPIb, GPIIb-IIIa complex and P-selectin expression

(322, 334, 646, 653) in an α2-adrenoceptor dependent manner. In

vitro studies confirm that adrenaline increases platelet activation/

aggregation and clot formation via α2a-adrenoceptor activity (654).

Serotonergic signalling may also participate in stress-dependent

platelet activity and thrombosis. Serotonin mediated platelet

activation is enhanced in people with stress-related MDD (655),

and an early review of the literature (688) highlighted varied

evidence of hyperactive platelet serotonin receptor signalling in

depressive patients which may increase risk of thromboembolic

events. Subsequent studies confirm increased platelet serotonin

receptor signalling and reactivity in response to acute or chronic

stress (640, 656). Recent work also shows that depression is
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associated with higher serotonin receptor density in CAD

patients, with increased platelet serotonin reactivity in depressed

patients with minor adverse cardiac events (657).

Signalling by the neurotrophin BDNF, and specifically a

BDNFVal66met polymorphism, may additionally link platelet

function to stress and MDD (204). Chronic stress disrupts BDNF

signalling, which is considered an important determinant of

stress resilience and mental health outcomes (658). Recent work

shows that BDNFVal66Met mice have increased propensity to

thrombosis, with sub-chronic stress (7 day restraint stress)

inducing a pro-thrombotic phenotype (659). This includes

increased leukocyte and platelet numbers, heightened platelet

responses, and increased platelet/leukocyte aggregates, P-selectin

and GPIIbIIIa expression, and arterial tissue factor activity. More

recent experimental evidence supports involvement of increased

platelet α2-adrenoceptor signalling: the pro-thrombotic

phenotype in BDNFMet/Met mice is linked to platelet over-

expression of α2A-adrenoceptors, involves noradrenaline and is

rescued by select α2A-adrenoceptor antagonism; and platelets

from homozygous BDNFMet/Met CAD patients are similarly over-

reactive and over-express α2A-adrenoceptors (205).

Additional pro-thrombotic influences of chronic stress include

increased reactive oxygen species (ROS) and nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase dependent platelet

activity (660), and dipeptidyl peptidase-4 expression (694), which

may promote both oxidative stress and von Willebrand factor

cleavage by ADAMTS13). However, stress-dependent elevations

in dipeptidyl peptidase-4 may accelerate atherosclerosis via a

multiplicity of mechanisms (661).

4.2.5.1. Sex effects
The importance of sex on the association between stress related

disease and platelet function has been somewhat neglected. A

preliminary analysis of sex effects in the platelet-MDD

association by Izzi and colleagues (662) evidences sex-dependent

links between depressive symptoms and both platelet volume and

variability in size. In a cohort of patients with stable IHD, Samad

et al. found evidence of increased platelet sensitivities to both

serotonin and adrenaline in women compared with men,

together with greater mental stress induced ischaemia and

collagen-stimulated platelet aggregation (640) (Table 1).

4.2.6. Stress modifies myocardial control and
promotes hypertrophy and failure

Just as vascular control and structure are altered, myocardial

function and makeup are significantly modified with chronic

stress. Autonomic dysfunction and a shift towards sympathetic

vs. parasympathetic activity underlie a hallmark of chronic stress

and associated depression—reduced heart rate variability (HRV).

These autonomic changes are responsible for impaired baroreflex

control of cardiac function (and blood pressure) (563). Animal

studies link susceptibility to chronic stress to increased

sympathetic tone and impaired baroreflex control (663).

Angiotensin II signalling may play some role in these autonomic

and baroreflex responses to chronic stress (664). Increased

sympathetic tone and impaired baroreflex control, in turn,
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favours coronary and cardiac dysfunction, hypertension and

cardiac hypertrophy. This is consistent with evidence a low HRV

predicts the onset of (665) [and falls further with (666)]

hypertension, and a relationship between low HRV and left

ventricular hypertrophy (667, 668), although the latter may vary

significantly with race (669). A reduced HRV significantly

increases the risk of a cardiac event: analysis of Framingham

Heart Study data reveals a low HRV increases risk of an acute

cardiac event over a mean follow-up of 3.5 years by ∼1.5 fold

(670). Reductions in HRV following AMI or CABG are also

linked to worsened outcomes (671, 672). However, despite

generally reflecting the balance of sympathetic and

parasympathetic influences in cardiovascular control, it should be

noted that the mechanistic basis of the relationship between

HRV and coronary or myocardial disease remains to be firmly

established, and may well be indirect—changes in HRV may

serve as a secondary biomarker of chronic stress, which

influences CAD risk and outcomes via diverse mechanisms

parallel to SNS activity.

Together with altered cardiovascular control, prolonged

sympathetic activity and associated inflammation, and shifts in

adipokine and other endocrine signalling, promote cardiac

hypertrophy and failure. Hypertrophy renders the myocardium

susceptible to O2 supply:demand imbalance and is a risk factor

for CAD development and cardiovascular morbidity and

mortality. Chronic stress also exacerbates pressure overload

dependent heart failure in animal models, in association with

shifts in cardiac apoptosis and fibrosis (673). The relationships

between low HRV and left ventricular mass (667, 668) is

consistent with involvement of autonomic imbalance in

hypertrophy. Supporting causal involvement, recent experimental

work shows that reinstating HRV reverses detrimental

remodelling in an ovine model of heart failure (674).

Altered adipokine signalling may also play some role.

Adiponectin is cardioprotective, limiting hypertrophy and heart

failure (675, 676) and protecting against sympathetic and

myocardial remodelling after infarction (284). Adiponectin levels

are generally repressed with chronic stress (283), potentially

facilitating stress-dependent dysfunction and hypertrophy.

However, early life stress is reported to specifically increase

adiponectin levels in female and not male rats (192), reflecting a

potentially protective sex dependent response. Interestingly,

adiponectin dependent signalling has also been linked to fear

extinction, with reduced adiponectin associated with emergence

of post-traumatic stress disorder (285, 677). Leptin signalling is

also modified with chronic stress, including elevated circulating

levels linked to evolving leptin resistance. However, while leptin

can be protective, for example limiting hypertrophy and

apoptosis, increased levels are strongly linked to CAD risk and

poor outcomes (675, 676). Increased leptin levels with stress may

thus predispose to CAD development, mortality and morbidity.

Early life stress may induce sex dependent changes in leptin,

including evidence of a selective fall in leptin in male and not

female rats (678). However, the roles of leptin in stress-

dependent disease remain unclear (675, 676, 679) and require

further study, particularly in terms of the effects of sex.
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Oestrogen may protect against cardiac hypertrophy/failure, while

post-menopausal women may become sensitised to these

outcomes. The protective effects of oestrogen in CAD and

maladaptive hypertrophy may involve multiple mechanisms,

including influences on sympathetic activity and endothelium-

dependent and -independent control of microvascular function

(680), lipid handling and profiles, and key transcriptional

regulators such as the nuclear factor of activated T-cells (NFATs)

(681). Experimental studies show oestrogen does protect against

cardiovascular dysfunction in models of Takotsubo syndrome

(682, 683), and counters cardiomyopathy in female rodents

exposed to chronic catecholamine stress (682). Others report that

oestrogenic protection against stress-dependent cardiomyopathy

may involve increased β2AR–Gαs signalling activity and reduced

catecholamine levels (684).

Both HFpEF and Takotsubo cardiomyopathy are of interest in

terms of sex-dependent CVD and stress. Increased immuno-

inflammatory reactivity to stress in women is congruent with

proposed involvement of coronary vascular inflammation and

dysfunction in female linked HFpEF (47, 582). Similarly,

Takotsubo cardiomyopathy is thought to involve excessive

sympathetic drive (45, 685), and its dominance in post-

menopausal women is consistent with enhanced stress-dependent

disruption of autonomic control in females as a result of reduced

oestrogenic protection (685).

Women are 4- to 10-foldmore likely to suffer Takotsubo thanmen

(46), although there is evidence males may suffer greater in-hospital

complications (686). The most well-established mechanism in

Takotsubo cardiomyopathy is sympathetic over-activation, which

involves increased noradrenaline release (and potentially changes in

myocardial sensitivity) (45, 685). The effects of stress on the LC-

noradrenaline axis, which enhances HPA activity and release of

adrenal adrenaline/noradrenaline into the circulation, are sex-

dependent (101). Locally released catecholamines may also

participate, and may be more damaging than those transported in

the circulation (687). Increased myocardial sensitivity to

catecholamines in females—particularly within the left ventricular

apex—could underlie apical changes characteristic of Takotsubo

syndrome (364). Coronary vascular dysfunction may also contribute,

with reductions in apical perfusion documented (688). Sympathetic

activity favours coronary dysfunction (689), and associated

inflammation (690) contributes to endothelial damage. Release of

vasoconstrictors and related ROS generation may also participate in

coronary vascular changes (691). Thus, both the stress-related

sympathetic activity and coronary dysfunction implicated in

Takotsubo cardiomyopathy are sex-dependent. This is congruent

with the strong sex-dependence of stress related SCAD, also

potentially involving excess sympathetic activation (30, 31).

Mitochondrial dysfunction may in turn be exacerbated by these

autonomic and vascular changes, and there is evidence of an

impaired myocardial energy state in Takotsubo cardiomyopathy

(692). Though inflammation is also implicated (693, 694), it is

interesting to note that that the limited information available on sex

differences in the disorder—largely from a series of studies in

Japanese populations—supports lower C-reactive protein and
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leukocyte levels in female patients (46). An extremely limited

comparison of cardiac gene expression in a single male patient (>70

years of age) and single female patient (>80 years of age) suggests

greater changes in mitochondria related genes in the male compared

with greater ECM-receptor and -integrin interaction genes in the

female patient (695). However, whether such a difference might be

causal, and robust across the sexes, remains to be tested. Such

findings nonetheless further evidence of distinct disease processes in

males and females.

4.2.7. Other pathophysiological influences of
chronic stress

Stress increases myocardial vulnerability to arrhythmias and

coronary ischaemia (696–700). Studies in mice also suggest that

mild chronic stress may interact synergistically with a western diet

to worsen myocardial ischaemic injury, together with metabolic

homeostasis and anxiety-like behaviour (701). We more recently

report that chronic modes of social or unpredictable mild stress

worsen myocardial ischemic tolerance in male mice, with cardiac

outcomes correlating with circulating noradrenaline and leptin

levels, and cortical and hippocampal expression of monoamine

and inflammatory genes (702). However, we also report that

chronic social stress reduces myocardial ischaemic tolerance in

male and not female mice, in associated with a sex-specific decline

in ventricular expression of genes involved in energy metabolism,

mitochondrial biogenesis and cardioprotection (12). While still

poorly studied (703), there is also evidence chronic stress inhibits

cardioprotective survival kinase activation (704). Our unpublished

findings indicate that chronic restraint stress in mice prevents the

protective phospho-activation of myocardial protein kinase B

(AKT) in response to preconditioning stimuli. Information on the

sex dependence of these cardiac effects is lacking.

Mitochondria are responsive to stress (705), and dysfunction is

linked to CVD, MDD and chronic stress (706–710).

Mitochondrial dysfunction may be a common link between

chronic stress and multiple diseases (711). Chronic stress inhibits

mitochondrial respiration in nervous tissue of animal models

(712), with a link between duration of stress and degree of

inhibition (713). Stress effects involve in part direct glucocorticoid

responses, with mitochondria possessing glucocorticoid receptors

together with sex hormone receptors/transcription factors,

providing sensitivity to endocrine function and sex (714, 715).

While the sex dependence of mitochondrial dysfunction in CAD

awaits detailed analysis, sex does influence cardiac mitochondrial

responses to stress (705) and sex differences are evident in

mitochondrial roles in stress-related mental disorders (716).

Experimental studies also demonstrate broad “mito-protective”

functions of oestrogens (717–719), which directly enhance

mitochondrial oxidative phosphorylation (720, 721). Apparent

resilience of female cardiac mitochondria to acute stressors has

been linked to direct effects of oestrogen (705). Others link

improved ischaemic tolerance in female mouse hearts to oestrogen

dependent improvements in mitochondrial connexin-43 content

and phosphorylation (722). There is evidence mitochondrial

dysfunction (in brain tissue) is more sensitive to oestrogen than

testosterone deficiency (723). While cardiac mitochondrial
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dysfunction is enhanced by both testosterone (724) or oestrogen

deficiency (725) in insulin-resistant male and female rats, there is

evidence sex hormone deprivation is more likely to induce cardiac

mitochondrial dysfunction in healthy and insulin-resistant male vs.

female mice (726). Pereira et al. (727), recently found that reduced

maternal nutrition in a baboon model dysregulates foetal cardiac

mitochondria in a sex specific manner, which could contribute to

sex-dependent programming of adult cardiac dysfunction.

Similarly, Louwagie et al. found that foetal exposure to maternal

glucolipotoxicity modifies metabolism, propensity to cell death and

risk of adult heart disease via mitochondrial mechanisms in a sex-

dependent manner (suggestive of improved mitochondrial quality

control in females, and greater vulnerability in adult males) (728).
5. Conclusions

Differing responses to chronic forms of psychosocial stress

contribute to sex-dependent CAD and its impacts, however

significant knowledge gaps exist in terms of the interactions between

sex, stress and disease. This demands an increased focus on sex

biology and dependent disease mechanisms. Evolutionary, socio-

cultural and intrinsic biological factors all interact in generating

differing perceptions of stress, and the biological transduction of

stress to different behavioural, emotional and physiological outcomes.

This distinct stress biology involves molecular, structural and

functional differences within the HPA axis and ANS, together with

immuno-inflammatory, neurotrophin and endocrine function,

pyrimidine metabolism and sirtuin signalling, among other players.

Baseline myocardial and coronary physiological differences may

interact with these distinct stress responses in the sex-dependent

development of cardiovascular disorders, particularly those linked to

coronary vascular (dys)function. Despite these clear biological

differences, the daily experience of stress remains biased by socio-

cultural and economic factors, and stress axis reactivity and

responses are similarly influenced by such external determinants.

Significant advances in the prevention of chronic disease in women

can thus be made at fundamental socio-economic levels. At the same

time, greater understanding of sex and stress biology can better

inform approaches to CAD prevention (targeting sex specific risk

profiles) and therapy (targeting sex dependent biological

mechanisms) in both men and women.
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