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Maastricht (CARIM), Department of Cardiology, Maastricht University Medical Center, Maastricht,
Netherlands, 5Heart and Vascular Institute, UPMC Presbyterian, Pittsburgh, PA, United States

Background: Atrial fibrillation (AF) is a prevalent arrhythmia, that causes thrombus
formation, ordinarily in the left atrial appendage (LAA). The conventional metric of
stroke risk stratification, CHA2DS2-VASc score, does not account for LAA
morphology or hemodynamics. We showed in our previous study that residence
time distribution (RTD) of blood-borne particles in the LAA and its associated
calculated variables (i.e., mean residence time, tm, and asymptotic
concentration, C∞) have the potential to improve CHA2DS2-VASc score. The
purpose of this research was to investigate the effects of the following potential
confounding factors on LAA tm and C∞: (1) pulmonary vein flow waveform
pulsatility, (2) non-Newtonian blood rheology and hematocrit level, and (3)
length of the simulation.
Methods: Subject-Specific data including left atrial (LA) and LAA cardiac computed
tomography, cardiac output (CO), heart rate, and hematocrit level were gathered
from 25 AF subjects. We calculated LAA tm and C∞ based on series of
computational fluid dynamics (CFD) analyses.
Results: Both LAA tm and C∞ are significantly affected by the CO, but not by
temporal pattern of the inlet flow. Both LAA tm and C∞ increase with increasing
hematocrit level and both calculated indices are higher for non-Newtonian
blood rheology for a given hematocrit level. Further, at least 20,000 s of CFD
simulation is needed to calculate LAA tm and C∞ values reliably.
Conclusions: Subject-specific LA and LAA geometries, CO, and hematocrit level
are essential to quantify the subject-specific proclivity of blood cell tarrying
inside LAA in terms of the RTD function.
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mean residence time, computational fluid dynamics, confounding variables, pulmonary

vein flow, pulsatility, hematocrit, simulation length
Abbreviations

AF, atrial fibrillation; LAA, left atrial appendage; LA, left atrium; RTD, residence time distribution;
thromboembolism, TE; CCT, cardiac computed tomography; ECAP, endothelial cell activation potential;
DICOM, digital imaging and communications in medicine; PV, pulmonary vein; RTD, residence time
distribution; E(t), residence time distribution function; tm, mean residence time; C∞, asymptotic concentration
remaining inside LAA; CFD, computational fluid dynamics; Hct, hematocrit; ρ, density/correlation coefficient; p,
pressure; μ, dynamic viscosity; μa, blood apparent viscosity; μp, plasma viscosity; eij, strain rate tensor; τij, stress
tensor; γ, strain rate; u, velocity, k, intrinsic viscosity; γc,k0,k∞ Quemada coefficients.
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1. Introduction

Atrial Fibrillation (AF), the most common type of arrythmia,

was estimated to afflict 33.5 million people globally in 2010 (1).

The prevalence of this arrythmia has been estimated to be

increased to 15.9 million people in the United States alone by

2050 if the incidence trend continue to rise (2–4). AF patients

are clearly at an elevated risk of morbidity and mortality. The

most dangerous complication is thromboembolism (TE) for

which AF is an independent risk factor. The loss of effective

atrial contractile function and sinus rhythm contribute to

reduction in cardiac output and leads to flow stasis and

thrombus formation, and consecutively raises the risk of

cardioembolic events and stroke. AF patients have a 3–5 fold

higher risk of stroke and it is estimated that about 15% to 20%

of strokes in the US each year can be related to AF (5, 6).

Many of these strokes are caused by thrombi originating in the

left atrial appendage (LAA) due to its complex morphology that is

conducive to blood stasis: 91% and 50% of thrombi in nonvalvular

AF and valvular AF, respectively, are found in the LAA (7–9). Each

patient is evaluated for TE risk. Currently, clinical data are the sole

factors that are being used to predict stroke and TE risks in AF

patients in a clinical setting, with CHA2DS2-VASc score being

the most common metric (10). Efforts have been made to

improve the risk stratification for thromboprophylaxis to find the

higher risk patients more effectively (11). However, many

inconsistencies have been reported among the risk stratification

schemes (12).

Several studies have employed computational fluid dynamics

(CFD) to analyze the blood flow fields in LA and LAA. In these

studies, surrogates of blood flow fields have been studied to

associate the dynamics of the blood flow inside the LA and LAA

to risk of clot formation. There are several examples of these

surrogates, including but not limited to: shear strain rate, wall

shear stress (13, 14), oscillatory shear index, time-averaged wall

shear stress (15, 16), time-averaged velocity (13, 17–21), particle

resident time (22, 23), local relative residence time (16, 24–26),

residual virtual contrast agent (13, 18, 19, 27), vortex structure

(14, 17–20, 25), flow kinetic energy (25), age stasis (28), and

endothelial cell activation potential (ECAP) (16, 29–31). The

most accurate approach to simulate clot formation is to include

the mechanics of the blood cell (i.e., red blood cells, platelets,

etc.) transport into the model, and couple it to the models of

thrombus formation and coagulation cascade processes. This

approach is associated with substantial computational cost to

perform multiscale simulations (32). Qureshi, et al. (21) were

able to model thrombogenesis in LA and LAA in a small cohort

using a simplified coagulation model. They showed that

increased blood stasis in the LAA results in accumulation of

thrombin which can lead to thrombus (21). A well-known

method to characterize stasis and propensity of blood cells to

reside inside the LAA is to calculate the residence time of

discrete phase blood borne particles inside the LAA using the

Lagrangian approach. However, this approach requires tracking

of many individual particles as well as a very fine grid to resolve

the flow field with sufficient resolution, making it
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computationally too expensive. Alternatively, the Eulerian

approach can be used to characterize spatial and temporal

distributions of blood-borne particle concentration, as opposed to

tracking each individual particle. The Eulerian approach, which

significantly reduces the computational cost, has been utilized for

quantifying indices correlated with thrombus formation (33–36).

We have recently reported that blood-borne particle residence

time distribution (RTD) and its associated variables (i.e., mean

residence time, tm, and asymptotic concentration, C∞), calculated

using a CFD model of LA and LAA hemodynamics and the

Eulerian approach, have the potential to enhance the ability of

CHA2DS2-VASc score to stratify stroke risk in AF subjects (35).

Subject-Specific LA and LAA geometries, cardiac output (CO),

and heart rate (HR) were used. However, the same temporal

pattern of LA inlet flow (i.e., pulmonary vein, PV, flow) was

assigned for all AF subjects and simulations were performed for

a fixed duration (150 s). In addition, we treated blood as a

Newtonian fluid and used a fixed dynamic viscosity value for all

AF subjects. It is reasonable to expect that these assumptions

may have an impact on the calculated LAA RTD (i.e., values of

LAA tm and C∞). Accordingly, the purpose of this study was to

investigate the effects of the following potential confounding

factors on calculated values of LAA tm and C∞: (1) PV flow

waveform pulsatility (magnitude and temporal pattern), (2) non-

Newtonian blood rheology and hematocrit level, and (3) length

of the simulation.
2. Methods

2.1. Data acquisition

All study subjects included in this study were undergoing

evaluation and treatment of AF, including medical management

and procedural based treatments. Children were excluded from

this study. Cardiac-computed tomography (CCT) images were

obtained before AF catheter ablation procedure as a part of AF

treatment at Heart and Vascular institute (University of

Pittsburgh Medical Center; UPMC, Pittsburgh, PA, United

States) and Heart Center (University of Leipzig, Leipzig,

Germany). Multidetector Helical scanners with 64 and 256 rows

were used (Brilliance 64, Philips, Netherlands and Revolution

Apex, General Electric Medical System, LLC., Chicago, IL, United

States). Electrocardiogram (ECG)-gated acquisition was employed

to one beat in cranio-caudal orientation from the aortic arch

onto the diaphragm. The acquisition parameters were: 0.6 mm

beam collimation, 0.625–1.25 mm thickness, 70–120 kV, 850 mA

s, and 20–30 cm field-of-view. Iodinated contrast agent (Ultravist

370, Bayer Vital, Cologne, Germany) was injected (90 ml) during

20 s of end-inspiratory breath holding challenge and a timing

bolus-chase injection (20 ml at 5 ml s−1). Echocardiography-

based measurements of left ventricle short-axis end diastolic and

end-systolic diameters were used to calculate stroke volume using

the Teichholz formula (37). Cardiac output was calculated as the

product of heart rate and stroke volume. Subjects included in

this study were part of another study focused on establishing a
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clinical database of subjects undergoing evaluation and treatment

of AF, including medical management and procedural based

treatments (i.e., ablation, device-based therapies with pacemakers/

defibrillators, and LAA closure devices).
1Vectors and other variables are presented in bold and italics fonts,

respectively.
2.2. Imaging, segmentation, and
computational fluid dynamics

Contrast-enhanced CCT DICOM images of 25 AF subjects

with distinctive LAA morphologies were processed to obtain a

3D representation of the LA surface, including the LAA and four

pulmonary venous inlets, until the mitral valve plane. The LA-

LAA surface geometries were segmented manually. The images

were cropped and smoothed using a median filter with a kernel

of 5 × 5 × 5 in ParaView (version 5.9.0, Kitware, Inc.,

Albuquerque, NM, United States). The Marching Cubes method

was used to generate an iso-surface representing the LA surface,

which included the PV, LA and LAA walls, and the mitral valve

plane (excluding the valves themselves). The extracted surface

was smoothed out for computational fluid dynamics mesh using

Geomagic Studio (version 10, Geomagic, Inc., Research Triangle

Park, NC, United States) and ANSYS SpaceClaim (version 2020

R2, ANSYS Inc., Canonsburg, PA, United States) to remove

spikes and reduce noise (i.e., simplifying polygons). A detailed

flowchart of the LAA segmentation process is provided in

Sanatkhani and Menon (38). In short, the size of mesh elements

was adjusted based on surface curvature to accurately reflect the

topology. As an example, the mesh at the end of the LAA is

more detailed than at the center of the LA. The processed

geometries were meshed in ANSYS Meshing (version 2020 R2,

ANSYS Inc., Canonsburg, PA, United States). The methods and

parameters used to mesh the geometries were based on

Sanatkhani, et al. (35), with a smaller maximum tetrahedron

edge length of 3 mm. Although the total number of mesh

elements were typically ∼800,000 tetrahedrons, up to 2,000,000

tetrahedrons were used for subjects with large and complex LAAs.

Blood density was considered ρ = 1,060 kg m−3 and in case of

Newtonian fluid assumption, the dynamic viscosity was

considered μ = 0.00371 Pa s when studying the effects of

pulmonary waveforms as a confounder (Section 3.2.1) and was

adjusted according to the hematocrit level when studying the

effects of hematocrit and non-Newtonian model as a confounder

(Section 3.2.2). The related governing equations have been

discretized using spatial and temporal discretization schemes in

OpenFOAM (version 8, The OpenFOAM Foundation Ltd, Inc.,

UK.). Throughout this study walls were assumed to be

impermeable, rigid, and with no-slip boundary conditions where

pressure gradient is zero. Further, the mitral valve was supposed

to be wide open for simplicity and reducing the computational

costs. Neumann boundary condition was used at the mitral valve

where both gauge pressure and velocity gradient set to zero.

Furthermore, the outlet (i.e., mitral valve) was extended to

prevent outlet backflow divergence while developing a uniform

flow with zero velocity gradient and zero pressure gradient at the

outlet. Inlets were set with a Dirichlet boundary condition where
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a blood velocity inlet profile was given at PV inlets based on PV

flow waveform. The PV inlets were cropped to ensure that all

subjects had four PV inlets. The flow rate was distributed among

the PV inlets based on their cross-sectional area, resulting in

uniform and equal velocity inlets for all PV inlets.

More detailed explanation regarding the imaging, segmentation,

and CFD methods is presented in Sanatkhani, et al. (35, 38).
2.3. Quemada viscosity model

Due to the focus of this study around the stasis region (very low

shear strain rate) inside the LAA, it is crucial to take into account

the effects of the shear thinning behavior of whole blood. Further,

it has been shown that blood viscosity is very sensitive to

hematocrit (39).

Using conservation of momentum, the equation of motion

(Cauchy’s equation of motion) is:

r
Dui
Dt

¼ @tij
@xj

(1)

where D/Dt is material derivative, t is time, x is coordinate

direction, ρ is density, τ is stress tensor, and u is velocity. To

include blood viscosity properties in our model we used

generalized Newtonian fluid assumption where viscosity depends

on the shear rate. Based on this assumption, the constitutive

equation for an incompressible fluid using Stokes assumption can

be written as follows (40):

tij ¼ � pþ 2
3
mr � u

� �
dij þ 2meij (2)

where p is pressure, δ is Kronecker delta, µ is viscosity, and eij is the

strain rate tensor1. Equation (2) can be substituted into Equation

(1) to derive the general form of Navier-Stokes equation. The

strain rate tensor in Equation (2) is given by:

eij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
(3)

Due to the small mesh size, especially inside the LAA, we assumed

that a single value of shear strain rate will apply in all directions.

With the assumption of generalized Newtonian fluid, we

calculated the magnitude of strain rate, _g, as follows (39):

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(eijeij)

q
(4)
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Based on the calculated strain rate, _g, at each time-step and each

mesh cell the viscosity model was updated to calculate the

appropriate apparent viscosity for each cell (32). The Quemada

viscosity model (41, 42) has been chosen as a reliable approach

to approximate the non-Newtonian properties of blood especially

in the LAA where strain rate is low. We employed the Quemada

viscosity model in the present study for several reasons: (1) It

incorporates blood hematocrit as an explicit parameter, (2) It

reproduces the blood non-Newtonian behavior well and matches

the performance compared to other available models (43), and

(3) It is relatively simple to implement this blood rheological

characterization in the CFD code. Based on the Quemada model

the blood apparent viscosity, μa, can be calculated as:

ma ¼ mp(1� 0:5kHct)�2 (5)

where μp= 0.00123 Pa s is plasma viscosity and Hct is hematocrit

level. Coefficient k and its other related coefficients are calculated

using the relations in Table 1.
2.4. OpenFOAM solvers

Previous studies have concluded that laminar assumption is

adequate in context of flow modelling in LA (16, 44). Therefore,

we solved the governing equations using a laminar solver

developed from nonNewtonianIcoFoam solver in OpenFOAM by

implementing the Quemada viscosity model into the

nonNewtonianIcoFoam solver. We modified the

ScalarTransportFoam solver for implementing the tracer transport

simulations and conducted the tracer transport-related simulations

only after a steady state flow was reached (after 25 cycles).

We used the asymptotic tracer concentration inside LAA (35)

as our convergence criteria to choose the time step for our

simulations. A time-step study was carried out in which

independence of solutions to time-step = 500 µs was established.

The first-order implicit and second-order least-square methods

were used for time and pressure (as well as velocity gradient)

discretization, respectively. Divergence terms and convection

terms were discretized using first-order and second order upwind

schemes, respectively. Tolerances for velocity, pressure, velocity,

and concentration were set to be 10−8 m/s, 10−7 Pa, and 10−8,

respectively. For these simulations, 24 threads of dual 12 core

Intel Xeon Gold 6126 CPU with 2.6 GHz clock speed and

minimum of 8 GB of RAM were used at the University of
TABLE 1 Quemada viscosity model coefficients.

k ¼ k0 þ k1
ffiffiffiffiffiffiffiffiffiffi
_g= _gc

p
1þ ffiffiffiffiffiffiffiffiffiffi

_g= _gc
p

k0 ¼ exp(3:874 � 10:41Hct þ 13:8Hct2 � 6:738Hct3)

k1 ¼ exp(1:3435 � 2:803Hct þ 2:711 Hct2 � 0:6479 Hct3)

_gc ¼ exp(�6:1508 þ 27:923Hct � 25:6Hct2 þ 3:697Hct3)

Hct: hematocrit; _g: shear strain rate; k: intrinsic viscosity; _gc , k0, k∞: Quemada

coefficients.
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Pittsburgh Computing Research Center. The average execution

time for each case in a steady flow using non-Newtonian model

was ∼7 days to simulate 20,000 s of tracer concentration

advection through LA/LAA. The codes and instructions

regarding the solvers developed for this study have been made

available via the project repository (https://github.com/

sorooshsanatkhani/LAA-AF-Stroke).
2.5. LAA residence time distribution of
blood-borne particles and associated
indices

Previous studies have demonstrated that majority of thrombi in

AF originate from the LAA. As a result, the focus of this study was

on the LAA, rather than other locations (7–9). LAA RTD of blood-

borne particles and associated indices (LAA tm, and C∞) were

calculated to quantify the propensity of blood-borne particles to

reside inside the LAA. The details regarding these calculations,

including the graphical representation for the CFD simulations,

are presented in (35). In short: tracer transport-related

simulations were performed using fluid dynamic analysis to

simulate the advection of a tracer through the LAA. The tracer

concentration inside the LAA was recorded as C(t) and fitted to

a triple exponential model that included an asymptotic term, C∞.

The residence time distribution (RTD) function was used to

quantify the dynamics of tracer clearance from the LAA, with

the unit per second representing the normalized outflow of tracer

material from the LAA at time t. Two measures of the

propensity of particles to remain within the LAA were calculated:

mean residence time (tm), which is the first moment of the RTD

function, and C∞ [C∞ = C(t→∞)].
2.6. Statistical analysis

Data for continuous variables are presented as mean ± standard

deviation. For parameters in linear regression, mean ± standard

error of the estimates is reported. Rank correlations between

variables were calculated by Spearman rank correlation. Statistical

significance for all comparisons was taken to be P < 0.05. A

multiple linear regression analysis was conducted to identify the

effects of 3 independent variables (i.e., CO and 2 PV flow

waveform pulsatility indices, Table 2) on LAA tm or LAA C∞:

tm or C1 ¼ aþ bCO �COþ bSys � SysP þ bRev �RevP

þ
X24
i¼1

giDi (6)

where, α is the intercept and β’s are the coefficients of the

independent predictor variables in the regression model. The last

term in Equation (6) is included to account for the inter-subject

variability of the intercept, where a set of 24 dummy variables
frontiersin.org
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TABLE 2 Pulmonary vein blood flow waveform pulsatility indices.

Waveform Pulsatility Indices Normal Pulsatile
Waveform

AF Pulsatile
Waveform

No Pulsatile
Waveform

Cardiac Output
(L min−1)

1 Normalized Systolic Peak(SysP) ¼ Systolic Peak
Cardiac Output

2.25
2.18
2.27

1.55
1.25
1.54

1
1
1

3.3
4.4
5.5

2 Normalized Reversal Peak(Revp) ¼ jReversal Peakj
Cardiac Output

0.64
0.91
0.91

0.61
0.18
0.21

1
1
1

3.3
4.4
5.5

Definitions of pulmonary vein (PV) flow waveform pulsatility indices are presented. Further, their value corresponding to each waveform type [pulsatile waveform seen in a

typical normal subject, pulsatile waveform seen in a typical atrial fibrillation (AF) patient, and steady with no pulsatility; Figures 1A–C] and cardiac output are shown. Systolic

peak and reversal peak are shown in Figure 1A.
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are defined using effects coding (45):

Di(i ¼ 1:24) ¼
1, Observation is from Subject i
�1, Observation is from Subject 25
0, Otherwise

8<
: (7)

The design matrix for the dummy variables, Di, is given in

Equation (7).

The effects of hematocrit (3 levels, 27.4%, 45.5%, and 60.4%),

blood rheology model (2 levels, Newtonian and non-Newtonian),

and their interaction on LAA tm or LAA C∞, was tested by a

multiple linear regression model:

tm or C1 ¼ aþ bHct �Hctþ bN �DN þ bHD �Hct �DN

þ
X24
i¼1

giDi (8)

where, α is the intercept and β’s are the coefficients of the

independent predictor variables, DN is the dummy variable to

account for blood rheology model (DN = 1, if non-Newtonian,

DN = 0, if Newtonian) and Di’s are the dummy variables to

account for the inter-subject variability in the intercept value as

before [Equation (7)]. A single CO value (4.4 L min−1) with

steady PV flow (i.e., no pulsatility) was used in the simulations

for this model.

Regression parameter estimates are presented as mean ±

standard error. Statistical analyses in this study were carried out

in the MATLAB® (version R2022b, MathWorks, Inc., Natick,

MA, United States). Additional details about the statistical

analysis can be found in the Supplement.
2.7. Confounding factors

As discussed above, there are several confounding factors that

can affect regarding the CFD-based modeling of hemodynamics

and particle transport and consequently, the calculation of LAA

residence time. In this section we present the sets of simulation

that we used to examine the following confounding factors: (1)

PV flow waveform pulsatility (magnitude and temporal pattern),

(2) non-Newtonian blood rheology and hematocrit level, and (3)

length of the simulation.
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2.7.1. Simulation set 1: pulmonary vein flow
waveform

Subject-specific 3D geometry can be obtained readily,

however, it is not easy to measure all PV inlet blood flow

waveforms in vivo. A study to investigate the effects of inlet

blood flow waveform pulsatility (magnitude and temporal

pattern) on LAA residence time is needed to examine whether

the nature of the inlet flow (steady vs. pulsatile) affects LAA

residence time. Accordingly, various PV blood flow waveforms

were generated by modifying the template waveforms (Normal

Pulsatile: Figure 1A; AF Pulsatile: Figure 1B; No Pulsatility:

Figure 1C).

In our cohort of 25 subjects, each subject was simulated using 9

settings of PV inlet blood flow pulsatility (resulting in a total of 225

observations): 3 levels of mean PV blood flow (i.e., CO = 3.3, 4.4,

and 5.5 L min−1) and 3 types of PV flow waveform [pulsatile

waveform seen in a typical normal subject, pulsatile waveform

seen in a typical AF subject, and no pulsatility (steady);

Figures 1A–C] for each of the three levels of CO. The mean

residence time of blood-borne particles in LAA, LAA tm, and

asymptotic concentration inside LAA, LAA C∞, were quantified

in each simulation.

To investigate the effects of pulsatility of PV blood flow

waveforms, we characterized PV blood flow waveform

pulsatility in terms of two indices (Table 2). Multiple linear

regression analysis was used to identify the effects of CO

and 2 PV flow waveform pulsatility indices on LAA tm or

LAA C∞.
2.7.2. Simulation set 2: non-newtonian blood
rheology and hematocrit level

We used our cohort of 25 subjects to investigate the effects

of hematocrit level and non-Newtonian behavior of blood on

the calculated indices (LAA tm and LAA C∞). The non-

Newtonian behavior of blood was simulated for 3 different

hematocrit levels (Hct = 27.4%, 45.5%, and 60.4%) using the

Quemada viscosity model. Further, the equivalent Newtonian

viscosity of each hematocrit level was calculated based on

Figure 2 (μ = 2.5 × 10−3, 3.7 × 10−3, and 5.4 × 10−3 Pa s for Hct

= 27.4%, 45.5%, and 60.4%, respectively). Six CFD-based

simulations were conducted for each subject (resulting in a

total of 150 observations): non-Newtonian and Newtonian

behavior of blood for each of the 3 levels of hematocrit. A
frontiersin.org
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FIGURE 2

Blood viscosity as a function of shear strain rate and hematocrit using
Quemada viscosity model and Newtonian fluid model.
The equivalent Newtonian viscosity of each hematocrit level was
calculated based on the corresponding viscosity calculated using
Quemada model at _g ¼ 2, 000 s�1. Hct: hematocrit.

FIGURE 1

Three pulmonary vein flow waveform types.
(A) Normal pulsatile pulmonary vein (PV) flow waveform. Systolic, diastolic, and reversal areas in during one cardiac cycle are shown. Further, the peak of
each period is pointed out. (B) Pulsatile PV flow waveform that is seen in a typical atrial fibrillation patient. Systolic, diastolic, and reversal durations are
marked. (C) PV flow waveform with no pulsatility.
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pulmonary vein flow waveform with no pulsatility with cardiac

output of 4.4 L min−1 was used in these simulations. Multiple

linear regression analysis was used to identify the effects of

Hct, blood rheology model and their interactions on LAA tm
or LAA C∞.
2.7.3. Simulation set 3: length of simulation
In theory, one needs to continue the CFD-based simulation of

tracer transport to infinite time for calculating the mean residence

time (46). Clearly, this is not possible. Therefore, simulations must

be truncated at some point in time. LAA tm and LAA C∞ values are

calculated based on these truncated data and an assumed decay

function. Based on our study, the temporal pattern of the LAA
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tracer concentration decay following an impulse injection of

tracer is complex—it is certainly not a single exponential

decay. We chose a triple exponential decay function (capable

of fitting to a period of fast tracer washout at the beginning of

simulation, moderate washout rate in the middle, and slow

washout rate at the end of the simulation) as a compromise

between over fitting and accuracy. It is important to know

what minimum length of simulation is necessary for a reliable

calculation of the mean residence time. We calculated LAA tm
and LAA C∞ for various simulation times over the range 625 s

to 30,000 s.
3. Results

3.1. Study subject characteristics

A total of 25 subjects (15 males) with symptomatic AF (22

paroxysmal, 3 persistent) were studied. The average age, heart

rate, cardiac output, and hematocrit level were 61 ± 11 years

(range: 33–78 years), 64.1 bpm (range: 44–84 bpm), 3.8 L min−1

(1.9–6.8 L min−1), and 41.5% (35%–49%). The average

CHA2DS2-VASc score was 1.9 ± 1.1 (range: 0 to 4).
3.2. Effects of confounding factors

In this section we present the results of our studies carried out

to examine the effects of the following confounding factors: (1) PV

flow waveform pulsatility (magnitude and temporal pattern), (2)

non-Newtonian blood rheology and hematocrit level, and (3)

length of the simulation.
3.2.1. Pulmonary vein flow waveform
Multiple linear regression analysis showed that only CO was a

significant independent predictor variable (i.e., only βCO in
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Equation (6) was significantly different from zero, P < 0.0001);

none of the coefficients associated with indices of PV waveform

pulsatility (i.e., coefficients βSys and βRev) were significantly

different from zero. This observation implies that both LAA tm
and LAA C∞ decreased significantly as CO was increased,

regardless of PV waveform type (Figure 3). Based on this study,

an increase of 1 L min−1 in CO decreases the LAA tm by 2.43 s

(±0.20 s; adj-R2 = 0.87; P < 0.0001) and C∞ by 2.09% (±0.19 s;

adj-R2 = 0.89; P < 0.0001).
3.2.2. Non-Newtonian blood rheology and
hematocrit level

The results of multiple linear regression analysis showed that

both LAA tm and LAA C∞ are significantly affected by Hct, choice

of blood rheology, and the interaction between the Hct and blood

rheology model (P < 0.0001). Both LAA tm and LAA C∞ values

for a given hematocrit level were significantly lower for the

Newtonian model as compared the values for the non-Newtonian

model (Figure 4). In both Newtonian and non-Newtonian models,

both LAA tm and C∞ increased with increasing hematocrit level

(Figure 4). The multiple linear regression model was used to

relate LAA tm or LAA C∞ to hematocrit level using the non-

Newtonian fluid characterization in simulations (Quemada

viscosity model), respectively. Hematocrit level was found to be a

significant independent variable as expected for both LAA tm
(βHct = 0.65 ± 0.07; adj-R2 = 0.85; P < 0.0001) and LAA C∞ (βHct =

0.65 ± 0.05; adj-R2 = 0.83; P < 0.0001).

To examine whether the fluid characterization (Newtonian vs.

non-Newtonian) affects the rank ordering of subjects, we

performed the Spearman rank correlation analysis of results

obtained using the Newtonian model and the non-Newtonian

model (i.e., Quemada model). Based on 150 simulations [75
FIGURE 3

Three pulmonary vein flow waveform types and their relationship with the h
Mean residence time and asymptotic concentration in left atrial appendage
cohort of 25 patients. Data: Mean ± SD.
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Newtonian (25 subjects × 3 hematocrit levels) and 75 non-

Newtonian], LAA tm and C∞ from the non-Newtonian

model and the Newtonian model were highly correlated (ρ =

0.71, P < 0.0001 for LAA tm and ρ = 0.82, P < 0.0001 for LAA C∞).
3.2.3. Length of simulation
It was expected that the calculated LAA tm and C∞ values

would reach an asymptotic steady state by the end of the

30,000 s simulation. The mean LAA tm increased and the mean

LAA C∞ decreased as a function of the simulation time

(Figure 5). Although some individual subjects reached steady-

state after 30,000 s of simulation, it does not appear that the

mean LAA tm and LAA C∞ for the cohort of 25 subjects reach

steady-state values (Figure 5).

Although reaching a steady state is ideal, the consistency of the

rank ordering of subjects is more important. Spearman rank order

correlation analyses between LAA tm and LAA C∞ values calculated

using 30,000 s simulation and results based on shorter simulation

lengths were performed. Based on these results, 20,000 s found to

be a sufficient length to calculate LAA tm (ρ = 0.9, P < 0.0001;

Figure 6A) and LAA C∞ (ρ > 0.9, P < 0.0001; Figure 6B).
4. Discussion

Tarrying of blood cells inside the LAA could lead in an

increased risk of thrombus formation and, consequently, stroke.

We have recently quantified the proclivity of blood cell staying

within the LAA in terms of the RTD function, E(t), and related

calculated variables: mean residence time of blood-borne particles

in LAA, tm, and asymptotic concentration remaining inside LAA,

C∞ (35). Even though it is important for these calculations to be
emodynamic indices.
corresponding to different PV flow waveforms and cardiac outputs for a
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FIGURE 4

Mean residence time and asymptotic concentration inside left atrial
appendage as a function of hematocrit using Newtonian and non-
Newtonian models.
Left atrial appendage mean residence time, LAA tm, LAA asymptotic
concentration, C∞, increased as a function of cardiac output. Data:
Mean ± SD.

FIGURE 6

Left atrial appendage mean residence time, LAA tm, and asymptotic
concentration, C∞ rank order correlation coefficient as a function of
the length of simulation.
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subject-specific, only subject-specific LA and LAA morphologies

were used in the previous study. The present study explored the

effects of additional subject-specific variables [pulmonary vein (PV)

flow waveform pulsatility, cardiac output, and hematocrit] and

certain CFD model-related assumptions (Newtonian blood rheology,

length of the CFD simulation) on the calculation of LAA RTD

function and associated calculated variables (LAA tm and C∞). The

key observations of the present study are as follows: (1) LAA tm
and C∞ values are significantly affected by the mean value (cardiac

output, but not the temporal pattern) of the PV inlet flow and
FIGURE 5

Left atrial appendage mean residence time, LAA tm, and asymptotic
concentration, C∞ as a function of simulation length.
LAA tm and C∞ did not reach a steady state even after 30,000 s of
simulation. Data: Mean ± SD.

The Spearman rank order correlation coefficient, ρ, between the LAA tm
and C∞ for the reference group using 30,000 s of simulation (ρ = 1, by
definition) and LAA tm and C∞ calculated using smaller simulation
lengths.
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hematocrit; (2) Although non-Newtonian blood rheology

significantly increased both LAA tm and C∞, the rank ordering of

LAA tm and C∞ were similar for Newtonian and non-Newtonian

formulations; and (3) The length of CFD simulation should be at

least 20,000 s for reliable calculations of LAA tm and C∞.

Several indices exist that relate blood flow patterns in LA and

LAA to the probability of clot formation. These indices are

directly calculated from flow the velocity field (e.g., wall shear

stress, time-averaged wall shear stress, oscillatory shear index,

time-averaged velocity, vortex structure, flow kinetic energy, and

ECAP). In contrast, LAA RTD incorporates the transport of

blood-borne particles, and it, by definition, quantifies the

propensity of blood cell lingering within the LAA. Although the

velocity field-based indices require only a short simulation time,

we believe that LAA RTD has the capability to better simulate

the transport and lingering of blood cells in LAA.

It has been suggested that the PV flow pattern seen in AF

subjects, with diminished systolic flow and end-diastolic flow
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reversal (17), is associated with hemodynamic indices that predict

higher chance of thrombus formation compared to that for the

normal PV flow pattern (13). Several studies have shown that the

flow pattern within in LA and LAA and LA-LAA wall

contraction pattern in AF are the determinants of the thrombus

formation (14, 17, 19). However, we showed in this study that

PV flow waveform pulsatility does not affect the LAA RTD (i.e.,

representative of risk of thrombus formation in LAA), an

observation that is consistent with the findings of Dueñas-

Pamplona, et al. (44), suggesting that LA-LAA wall contraction

pattern is more important than PV flow temporal pattern. The

LAA blood stasis risk, as quantified by LAA tm and C∞, was

significantly affected by the mean value of inlet flow (i.e., cardiac

output), Therefore, the subject-specific LAA blood stasis risk can

be reliably estimated using subject-specific LA and LAA 3D

geometries and subject-specific cardiac output, without any need

for subject-specific PV blood flow waveform.

The assumption that blood flow inside the left atrium (LA) can

be modeled as a Newtonian fluid is considered reasonable due to

the high strain rates present in the LA cavity, which cause blood

to behave like a Newtonian fluid (13, 14, 16, 20). However, due

to the existence of stasis regions inside the LAA and associated

low shear strain rate, non-Newtonian blood rheology might be

important in calculating LAA tm and C∞. We observed that both

LAA tm and C∞ were affected significantly by hematocrit

level and blood rheology (Newtonian vs. non-Newtonian): both

LAA tm and C∞ values were higher for the non-Newtonian

formulation.

Gonzalo, et al. (47) have investigated blood rheology effects on

CFD estimations of LAA blood stasis, including LA-LAA residence

time. They used the Carreau–Yasuda rheology model parameters to

mimic Hct = 37% and 55%. In contrast, we chose the Quemada

model because it allows us to explicitly adjust the Hct values.

However, both models have been demonstrated to perform well

(43). Further, they employed a modified rheology model wherein

non-Newtonian effects are activated based on the local residence

time. Gonzalo, et al. (47) calculated residence time by solving a

scalar advection transport equation where the source term is 1,

resulting in an increasing age of fluid over time (48). The mean

residence time in a specific region can then be calculated by

averaging the age of fluid at each grid point over a period of

time. In contrast, the present study follows the concept of mean

residence time as described in Fogler (49), which involves solving

a scalar advection transport equation with a source term of zero

and an initial condition where the region of interest has a scalar

(i.e., tracer) concentration of 1. The mean residence time is then

calculated based on the concentration of the tracer inside the

region as a function of time, as described in more detail in

Sanatkhani, et al. (35). Although the methods used to investigate

blood rheology effects differ between the Gonzalo, et al. study

(47) and the present study, both studies are aiming to identify

thrombus-promoting flow patterns and the results of both studies

are similar: higher Hct values are associated with higher

residence time and there is a greater effect of Hct on residence

time at higher Hct values. Researchers can choose between these

two methods for modeling blood rheology and calculating mean
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residence time depending on their specific research goals and the

availability of required input parameters.

The choice of blood rheology model did not affect LAA tm and

C∞ rank ordering among the study subjects. Therefore, one might

choose to quantify the LAA tm and C∞ in a study cohort using

Newtonian fluid model with a fixed value of viscosity

corresponding to the subject-specific hematocrit level. However,

the incremental computational cost of using a non-Newtonian

blood rheology model (i.e., Quemada model) was negligible.

Therefore, we recommend that the non-Newtonian blood

rheology model be used in all future CFD simulations.

It is important to note that tm will continue to rise if certain

amount of tracer is stuck in the LAA (never gets washed out).

This can be readily seen from the definition of tm (35, 47). On

the practical level, estimated tm and C∞ will be used to rank

order the thrombogenic risk. Our results indicate (Figure 6) that

the rank ordering at 20,000 s is more than 90% similar to the

rank ordering for 30,000 s. Therefore, it is reasonable to conclude

that 20,000 s is a sufficient simulation time. Despite this, the

CFD simulation for a single subject still requires a significant

amount of computational time (∼7 days using 24 threads of dual

12 core Intel Xeon Gold 6126 CPU with 2.6 GHz clock speed

and minimum of 8 GB of RAM). Additional enhancements of

the CFD model, such as one-way and two-way fluid-wall

interactions and multiscale analysis of biochemical coagulation

cascade, will further increase the computational cost. A new

method to reconstruct RTD, introduced by Sierra-Pallares, et al.

(48), might be able to reduce the computational cost of LAA tm
and C∞; however, its applicability and accuracy has not been

tested using LA-LAA geometries. In recent studies, deep neural

network has been implemented to predict CFD simulation results

in LA-LAA geometries (29). Although this approach is expected

to decrease the computational cost significantly, many CFD

simulations are still needed to develop the ground truth for LAA

tm and C∞ (and any other indices developed in the future) that

is necessary for training the deep neural network.

Our data indicate that mean residence time, tm, and asymptotic

concentration, C∞, are correlated and therefore, they may be used

interchangeably. However, if the tracer washes out completely after

a certain time, C∞ will be zero and therefore, tm is the only index

that can be used to discriminate between subjects. We believe that

both tm and C∞ should be reported to provide a comprehensive

understanding of the residence time distribution.

Finally, we performed a preliminary analysis to explore

whether quantifying mean residence time helps stratify stroke

risk. The mean residence time was calculated as a function of

subject-specific LA-LAA morphology, CO, and Hct. The plot of

mean residence time against CHA2DS2-VASc score

(Figure 7A) illustrates that both CHA2DS2-VASc score and

mean residence time may be helpful in stratifying patients. The

patient at the bottom right of the figure (Subject #4) has a high

stroke risk according to the mean residence time, tm, but this

risk may be overlooked if the focus is only on CHA2DS2-VASc

score. In contrast, the patient in the top left of the figure

(Subject #2) has a low residence time but a high CHA2DS2-

VASc score, demonstrating that residence time alone is not
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FIGURE 7

Relationship between LAA tm and CHA2DS2-VASc score and visual representation of tracer washout in the LAA of four subjects.
(A) The plot of CHA2DS2-VASc vs. tm reveals that a patient with a stroke (marked with diamond symbols) could potentially be overlooked if LA
hemodynamics are not considered, as subject #4’s tm values indicate a high risk of stroke. Subject #4 has a history of stroke, which is not reflected
in their CHA2DS2-VASc score. However, tm values may be able to predict the risk of stroke. To evaluate the accuracy of CHA2DS2-VASc in predicting
stroke, data points corresponding to previous strokes were excluded. Only 17 subjects are shown in this figure because complete physiological/
clinical data were not available for the remaining 8 subjects. (B) Contours of tracer concentration at selected times show the tracer washout in each
subject from most of the LAA, with the exception of the tip. Among these four subjects, Subject #2 had the simplest morphology, while Subjects #3
and #4 had more complex morphologies with multiple lobes, long LAA, and a sharp bend.
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sufficient. A discriminative line can be envisioned in the figure to

suggest the possibility of using mean residence time along with

CHA2DS2-VASc score to stratify stroke risk in future studies.

Data from four subjects are shown to illustrate the variability

of the tracer washout among these subjects (Figure 7B). The

morphology of the LAA seems to have a direct impact on tm.
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As shown, Subject #3 had multiple dominant lobes and Subject

#4 had a long LAA with a sharp bend. These complex LAA

shapes contributed to the relatively high tracer concentration

in the LAA of Subjects #3 and #4 even after 25,000 s. However,

the visual complexity of the LAA does not always dictate its

residence time. For example, Subject #1 appears to have a
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complex shape, but due to its high cardiac output, the calculated

residence time was not high. In a future study, we will compare

the simulation results with thrombogenic events (in the context

of developing a prediction algorithm). However, that was not

the goal of this study. Comparing thrombogenic events with

simulation results for the purpose of risk assessment requires a

larger cohort with a sufficient number of thrombogenic events

to achieve statistical significance. This is our goal in our next

study, where we will collect longitudinal data from a much

larger patient cohort. The primary aim of this study was to

investigate the effects of some subject-specific variables on the

calculation of LAA RTD function and associated calculated

variables (LAA tm and C∞), so that we can use the “optimized”

approach for patient-specific CFD-based modeling in future

studies.
5. Limitations

Although we examined the effects of some subject-specific and

other confounding variables on the calculation of LAA tm and C∞,

there are additional considerations that merit evaluations. The

contractility pattern of the LA-LAA wall during atrial fibrillation

(AF) has been shown to increase the risk of thrombus formation

as predicted by fluid dynamics indices. Rigid wall simulations are

insufficient in modeling these effects (14, 16–18, 20, 21, 25, 27,

44). In this study, we accepted the rigid wall assumption as a

limitation for two reasons: (1) A 4D data set (such as CT or

MRI) is needed to impose LA-LAA wall motion as a boundary

condition for more sophisticated fluid-structure interaction

models that require LA-LAA passive and active wall mechanical

properties (17, 20). These data were not available for this study.

Additionally, using population average wall motion patterns from

literature (which implies using the same temporal pattern of

movement for all subjects) is unlikely to alter the ranking of

subjects (more on this in point #2). (2) In our follow-up study,

which aims to assess stroke risk, we value the ranking of

calculated mean residence time among subjects. Studies have

shown that rigid wall assumptions may overestimate

thrombogenesis risk, as expected. However, there is no

conclusion that this assumption would alter the ranking of

calculated variables. While there are studies in the literature that

have included wall motion in their simulations (14, 17, 19, 44),

they have only included a small number of subjects, which is not

suitable for risk assessment. We acknowledge these limitations in

the present study and future parametric studies that examine the

effects of LA-LAA wall properties and contraction patterns on

LAA tm and C∞ in larger cohorts are needed.

For simplicity, we assumed the mitral valve to be wide open in

the CFD simulations. Further, both gauge pressure and velocity

gradient were set to zero. It is possible that a more realistic

(physiologic) outlet boundary condition will affect the calculation

of LAA tm and C∞. It is postulated that the presence of mitral

regurgitation (MR) modifies the stroke risk in AF subjects; but

this issue is still controversial (49). Incorporating the models of

mitral valve and left ventricular diastolic behavior will enable us
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to study the effects of the outlet boundary conditions (17).

Further, it has been shown that patient-specific mitral valve

velocities acquired from echocardiography and pressure/velocity

profiles at the pulmonary vein inlets would improve the

simulations (50).
6. Conclusions

LAA blood stasis risk, as quantified by LAA tm and C∞, is

significantly affected by the mean value of inlet flow (i.e., cardiac

output), but not by temporal pattern of the inlet flow. In

addition, subject-specific hematocrit is also an important factor

and should be considered as one of the input variables for the

CFD simulations. Therefore, the subject-specific LAA blood stasis

risk can be reliably estimated using subject-specific LA and LAA

3D geometries, subject-specific hematocrit, and subject-specific

cardiac output, without any need for subject-specific PV blood

flow waveform. Further, at least 20,000 s of tracer concentration

transport simulation is needed to calculate LAA tm reliably and

consistently. These results will be used to adjust our CFD-based

simulation methodology for calculating LAA tm and C∞ in future

stroke risk stratification studies.
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