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The role of hypoxia, vascular endothelial injury, and thrombotic inflammation

in worsening COVID-19 symptoms has been generally recognized. Damaged

vascular endothelium plays a crucial role in forming in situ thrombosis, pulmonary

dysfunction, and hypoxemia. Thrombotic inflammation can further aggravate local

vascular endothelial injury and affect ventilation and blood flow ratio. According

to the results of many studies, obesity is an independent risk factor for a variety

of severe respiratory diseases and contributes to high mechanical ventilation rate,

high mortality, and slow recovery in COVID-19 patients. This review will explore

the mechanisms by which obesity may aggravate the acute phase of COVID-

19 and delay long COVID recovery by affecting hypoxia, vascular endothelial

injury, and thrombotic inflammation. A systematic search of PubMed database was

conducted for papers published since January 2020, using the medical subject

headings of “COVID-19” and “long COVID” combined with the following keywords:

“obesity,” “thrombosis,” “endothelial injury,” “inflammation,” “hypoxia,” “treatment,”

and “anticoagulation.” In patients with obesity, the accumulation of central fat

restricts the expansion of alveoli, exacerbating the pulmonary dysfunction caused

by SARS-CoV-2 invasion, inflammatory damage, and lung edema. Abnormal fat

secretion and immune impairment further aggravate the original tissue damage and

inflammation diffusion. Obesity weakens baseline vascular endothelium function

leading to an early injury and pre-thrombotic state after infection. Enhanced

procoagulant activity and microthrombi promote early obstruction of the vascular.

Obesity also prolongs the duration of symptoms and increases the risk of

sequelae after hospital discharge. Persistent viral presence, long-term inflammation,

microclots, and hypoxia may contribute to the development of persistent symptoms,

suggesting that patients with obesity are uniquely susceptible to long COVID.

Early interventions, including supplemental oxygen, comprehensive antithrombotic

therapy, and anti-inflammatory drugs, show effectiveness in many studies in the

prevention of serious hypoxia, thromboembolic events, and systemic inflammation,

and are therefore recommended to reduce intensive care unit admission, mortality,

and sequelae.
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Introduction

As we all know, obesity is an independent risk factor for
severe or lethal complications of many diseases. Features such
as weight load, low-grade inflammation, neuroendocrine factors,
metabolic abnormalities, and nursing difficulties all play a role (1–
4). The mechanical action of central fat affects the compliance
of the respiratory system. Patients with obesity have higher levels
of proinflammatory cytokines and inflammatory cells infiltrating
adipose tissue, along with leptin resistance and low levels of anti-
inflammatory adiponectin, which can modulate immune responses,
affecting tissues and organs throughout the body. Additionally,
obesity is often accompanied by diseases such as insulin resistance,
abnormal lipid metabolism, high blood pressure, fatty liver, and
coronary heart disease. These are independent risk factors in
many diseases and may have additive effects. In the influenza
A (H1N1) pandemic, the delayed antiviral response in obese
patients exacerbated disease and increased mortality, while prolonged
influenza A shedding and chronic inflammation contributed to
poor recovery (3, 4). Despite recent worldwide efforts to study
the cross-population of coronavirus disease 2019 (COVID-19) and
obesity, little is known about how obesity adversely affects COVID-19
symptoms and long COVID sequelae (5–13).

A large number of cohort and case-control studies have shown
that high body mass index (BMI) is a risk factor for increased disease
severity and mortality in COVID-19 patients. This is primarily
measured as increased prevalence of severe and critical illness,
hospitalization rate, mechanical ventilation rate, intensive care unit
(ICU) hospitalization rate, and in-hospital mortality (Table 1).
In our pooled study, compared with normal-weight individuals,
patients with a high BMI had a 1.35-fold increased risk of severe
illness and a 2.35-fold increased risk of critical illness (14, 15).
Data published by the American Heart Association, which included
clinical information of 7,606 confirmed patients, showed that 61% of
hospitalized patients were overweight while only 28% were normal
weight (9). Individuals who were overweight or obese had a higher
risk of invasive mechanical ventilation (IMV), with an adjusted risk
ratio (aRR) of 1.12 [95% confidence interval (CI) 1.05–1.19] and 2.08
(95% CI 1.89–2.29), respectively. There was also a strong correlation
between increased BMI and death (16). The risk of ICU admission in
individuals with obesity ranged from 1.06 to 1.89 (6, 14, 16). In long
COVID, higher BMI was associated with longer symptom duration
and delayed recovery. Palaiodimos et al. showed that the in-hospital
mortality rate of patients with BMI ≥ 35 kg/m2 was approximately
twice that of patients with BMI between 25 and 34 kg/m2 (34.8 vs.
17.2%) (17). In another study, aRR for patients with a BMI of 30–
34.9 kg/m2 was 1.08 (95% CI 1.02–1.14) and 1.61 (95% CI 1.47–1.76)
for patients with BMI ≥ 45 kg/m2 compared to patients of normal
weight (16). The obesity rate of non-survivors and survivors was
27.1 and 13.5%, respectively (18). The adjusted hazard ratio (aHR)
of prolonged symptoms in patients with BMI 25–30 kg/m2 and those
with BMI > 30 kg/m2 were 1.07 (95% CI 1.04–1.10) and 1.10 (95% CI
1.07–1.14), respectively (11). Individuals with a BMI of >30 kg/m2

were less likely to recover within 1 year after discharge (12, 13).
In addition, in acute COVID-19, higher BMI is associated

with deep vein thrombosis and pulmonary embolism events.
A study showed that after multivariate adjustment analysis,
patients with Class II obesity (BMI 35.0–39.9 kg/m2) had a
higher risk of thromboembolism than participants with normal

BMI [hazard ratio (HR) 2.01, 95% CI 1.30–3.12] (9). Hypoxia,
vascular endothelial injury, and thrombotic inflammation play
a well-recognized role in exacerbating COVID-19 symptoms.
The combination of insufficient cavity ventilation and poor
pulmonary perfusion leads to severe respiratory distress symptoms
(shortness of breath with the respiratory rate ≥ 30 times/min) or
respiratory failure (19). Even with prompt mechanical ventilation,
there can be a failure to reverse pulmonary conditions due to
ventilation-perfusion mismatch (20) whereas maintaining normal
oxygen saturation improves survival (21, 22). Biomarkers of
vascular endothelial injury and platelet activation [such as von
Willebrand factor (vWF) antigen, soluble E-selectin, soluble
P-selectin, angiopoietin (Ang) 2, and soluble intercellular adhesion
molecule-1] were maintained at high levels in hospitalized patients,
and to a greater extent in ICU patients (23, 24). During the
acute phase of COVID-19, pulmonary interstitial inflammatory
infiltration and elevated levels of inflammatory markers (such
as cytokines, chemokines, lactate dehydrogenase, C-reactive
protein, ferritin, and procalcitonin) have also been reported
in multiple imaging studies (25–27). Thromboembolic events
accelerate the progression to severe disease in COVID-19, and
even in recovering patients, microthrombi and pulmonary
blood flow restriction have been reported (28, 29). Patients
with obesity are more likely to exhibit vascular injury and
develop hypoxemia and thrombotic inflammation during the
acute phase of COVID-19. Therefore, obesity can aggravate of
COVID-19 by affecting endothelial cells, inflammatory response,
hypercoagulation, and thrombosis (30, 31). This review focuses on
the relationship between hypoxemia, vascular endothelial injury,
and thrombotic inflammation, the synergistic effect of obesity and
acute COVID-19, the influence of obesity on long COVID, and
suggestions for treatment.

Hypoxia, vascular endothelial injury,
and thrombotic inflammation in
COVID-19

In one study of more than 900,000 COVID-19 patients followed
for 90 days, the cumulative incidence of venous thromboembolism
ranged from 0.2 to 0.8% and was as high as 4.5% in hospitalized
cases (32). Another observational study involving more than
1 million COVID-19 cases showed that SARS-CoV-2 infection
significantly increased the risk of thromboembolic events, with a 3-
fold and 7-fold increase in the risk of deep vein thrombosis and
pulmonary embolism, respectively, even in mild cases, although
the risk was greater in severe cases. The heightened risk of
venous thrombosis and pulmonary embolism lasted as long as
3–6 months (33). Damaged vascular endothelium is a crucial
cofactor in forming in situ thrombosis. Biomarkers of endothelial
activation and the formation of endothelial-derived extracellular
vesicles were consistently observed in both acute and long COVID
(23, 34, 35). Injured vascular endothelium exposes collagen,
which binds to glycoprotein Ib/IX/V complex on the platelet
membrane through the bridging molecule vWF to enhance platelet
adhesion. The levels of protective factors (prostacyclin, nitric
oxide, and NTPDase-1) decreased, weakening the inhibition of
platelet activation, aggregation and expansion, thus forming a
pro-thrombotic environment. Activated platelet phenotypes have
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TABLE 1 Studies reporting on the outcomes of obese patients with COVID-19.

References Study population BMI (kg/m2) Outcomes

Simonnet et al. (140) 124 patients admitted to ICU 30 < BMI ≤ 35 (47.6%)
BMI > 35 (28.2%)

The proportion of patients requiring mechanical ventilation
(p < 0.01):
BMI > 35 (85.7%)
30 < BMI ≤ 35 (75%)
25 < BMI ≤ 30 (60.4%)
BMI < 25 (47.1%)

Lighter et al. (141) 3,615 SARS-CoV-2 positive patients 30 ≤ BMI < 35 (21%)
BMI ≥ 35 (16%)

Critical disease:
BMI of 30–34 is 1.8 times more than normal.
BMI > 35 is 3.6 times more than normal.

Cai et al. (142) 383 confirmed inpatients 18.5 ≤ BMI ≤ 23.9 (53.1%)
24.0 ≤ BMI ≤ 27.9 (32.0%)
BMI ≥ 28 (10.7%)

Probability of developing severe cases:
BMI: 18.5–23.9 (19.2%)
BMI: 24.0–27.9 (29.3%)
BMI ≥ 28 (39.0%) (p = 0.001)

Hamer et al. (7) 334,329 cases of samples
640 confirmed inpatients

BMI > 25 (66.6%) Possibility of hospitalization compared to normal weight:
BMI: 25–30 (OR 1.39)
BMI: 30–35 (OR 1.70)
BMI > 35 (OR 3.3)

Giacomelli et al. (18) 233 confirmed inpatients BMI > 30 (16.3%) Obesity rate among survivors (13.5%)
Obesity rate among non-survivors (27.1%)
Mortality of BMI > 30 (aHR 3.04)

Huang et al. (6) A summary of 33 articles Not reported Univariate analysis of COVID-19 patients with obesity:
Risk of hospitalization (OR 1.76, p = 0.003)
Risk of ICU admission (OR 1.67, p < 0.001)
Risk of death (OR 1.37, p = 0.014)
Risk of IMV (OR 2.19, p < 0.001)

Palaiodimos et al. (17) 200 confirmed inpatients BMI < 25 (19%)
BMI: 25–34 (58%)
BMI ≥ 35 (23%)

In-hospital mortality rate:
BMI < 25 (31.6%)
BMI: 25–34 (17.2%)
BMI ≥ 35 (34.8%)
Intubation rate:
BMI < 25 (18.4%)
BMI: 25–34 (16.4%)
BMI ≥ 35 (34.8%)

Kass et al. (143) 265 patients admitted to ICU BMI < 26 (25%)
BMI > 34.7 (25%)

Younger individuals admitted to hospital were more likely to be
obese.

Bhatraju et al. (144) 24 patients admitted to ICU BMI: 18–25 (3)
BMI: 25–30 (7)
BMI > 30 (13)

BMI > 30 (85% required mechanical ventilation and 62% died)
BMI < 30 (64% required mechanical ventilation and 36% died)

Petrilli et al. (145) 4,103 confirmed patients BMI > 30 (26.8%) Rate of obesity among hospitalized patients: 39.8%
BMI > 40 kg/m2 is the biggest risk factor for hospitalization (OR
6.2)

Goyal et al. (146) 393 confirmed inpatients BMI > 30 (35.8%) Obesity accounted for 43.3% of patients requiring invasive
ventilation.
Obesity accounted for 31.9% of non-invasive ventilation patients.

Caussy et al. (14) 340 patients with severe condition BMI > 30 (25%) After standardization of age and sex, compared to the average
French person:
The incidence of obesity in severe COVID-19 is 1.35 times higher
(p = 0.0034).
The prevalence of obesity in the ICU is 1.89 times higher
(p = 0.0011).

Du et al. (15) 109,881 patients with COVID-19 in the
meta-analysis

Not reported The observational studies showed that patients with a BMI ≥ 30
kg/m2 were 2.35 times more likely to develop critical COVID-19
and had a 2.68-fold risk for mortality, compared with patients with
a BMI < 30 kg/m2 . Random-effects dose-response meta-analysis
showed that the incidence of critical cases and mortality
augmented by 9 and 6% for each 1 kg/m2 increase in BMI,
respectively.

Tartof et al. (147) 6,916 patients with COVID-19 BMI: 18.5–24 (n = 1,240)
BMI: 25–29 (n = 2,207)
BMI: 30–39 (n = 2,537)
BMI: 40–44 (n = 372)
BMI ≥ 45 (n = 262)

Compared with patients with 18.5 ≤ BMI<24 kg/m2 , those with
BMI of 40–44 kg/m2 and greater than 45 kg/m2 had relative risks
of 2.68 and 4.18, respectively.

(Continued)
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TABLE 1 (Continued)

References Study population BMI (kg/m2) Outcomes

Hendren et al. (9) 7,606 patients hospitalized with
COVID-19

Underweight, BMI < 18.5 (n = 194)
Normal, BMI: 18.5–24.9 (n = 1,793)
Overweight, BMI: 25.0–29.9 (n = 2,308)
Class I obesity, BMI: 30.0–34.9 (n = 1,623)
Class II obesity, BMI: 35.0–39.9 (n = 846)
Class III obesity, BMI ≥ 40.0 (n = 842)

Higher risks of in-hospital death or mechanical ventilation than
normal weight group (18.5–24.9 kg/m2):
Class I obesity, BMI 30.0–34.9 kg/m2 (OR 1.28)
Class II obesity, BMI 35.0–39.9 kg/m2 (OR 1.57)
Class III obesity, BMI ≥ 40.0 kg/m2 (OR 1.80)

Kompaniyets et al. (16) 148,494 patients with COVID-19 Underweight, BMI < 18.5 (n = 79,988,
2.5%)
Healthy weight, BMI: 18.5–24.9
(n = 829,474, 25.6%)
Overweight, BMI: 25–29.9 (n = 936,132,
28.9%)
Obesity, BMI ≥ 30 (n = 1,397,055, 43.1%)

aRRs for hospitalization for patients with different BMI compared
with healthy-weight cohort:
Hospitalization:
BMI 30–34.9 kg/m2 : 1.07 (95% CI 1.05–1.09)
BMI ≥ 45 kg/m2 : 1.33 (95% CI 1.30–1.37)
Death:
BMI 30–34.9 kg/m2 : 1.08 (95% CI 1.02–1.14)
BMI ≥ 45 kg/m2 : 1.61 (95% CI 1.47–1.76)
ICU admission
BMI 40–44.9 kg/m2 : 1.06 (95% CI 1.03–1.10)
BMI ≥ 45 kg/m2 : 1.16 (95% CI 1.11–1.20)
IMV:
BMI 25–29.9 kg/m2 : 1.12 (95% CI 1.05–1.19)
BMI ≥ 45 kg/m2: 2.08 (95% CI 1.89–2.29)

Yamashita et al. (10) 1,236 patients with COVID-19 Mean body: 67.6 kg
Mean BMI: 24.0 kg/m2

COVID-19 patients with VTE showed a higher body weight (81.6
vs. 64.0 kg, p = 0.005) and BMI (26.9 vs. 23.2 kg/m2 , P = 0.04)
compared with those without.

Thompson et al. (89) 1.1 million individuals with COVID-19
diagnostic codes in electronic healthcare
records

Acute COVID-19 (n = 1,064,491)
Not obese (n = 800,439)
Obese I, BMI (30–34.9) (n = 151,782)
Obese II (35–39.9) (n = 67,470)
Obese III (40+) (n = 44,800)
Long COVID (n = 4,189)
Not obese (n = 2,694)
Obese I (30–34.9) (n = 787)
Obese II (35–39.9) (n = 411)
Obese III (40+) (n = 297)

Overweight/obesity was associated with increased odds of
symptoms lasting for 4+ weeks (OR 1.24, 95% CI 1.01–1.53) but
not with symptoms lasting 12+ weeks specifically (OR 0.95, 95% CI
0.70–1.28).

Subramanian et al. (11) 486,149 adults with confirmed
SARS-CoV-2 infection

BMI < 18.5 (n = 13,261, 2.7%)
BMI: 18.5–25 (n = 148,295, 30.5%)
BMI: 25–30 (n = 138,771, 28.5%)
BMI > 30 (n = 121,943, 25.1%)

Compared with patients with normal BMI, patients with a BMI of
25–30 kg/m2 reported an aHR of 1.07 (95% CI 1.04–1.10) for
prolonged symptoms and those with a BMI of >30 kg/m2 reported
an aHR of 1.10 (95% CI 1.07–1.14).

PHOSP-COVID
Collaborative Group (12)

924 post-COVID participants who had a
1-year visit

BMI < 30 kg/m2 (n = 349, 40.3%)
BMI ≥ 30 kg/m2 (n = 517, 59.7%)

In multivariable analysis, BMI ≥ 30 kg/m2 (OR 0.50, 95% CI
0.34–0.74, p = 0.0007) was an independent factor associated with
being less likely to recover at 1 year.

Wynberg et al. (13) 342 COVID-19 patients during the first
12 months after illness onset

Underweight or normal weight, BMI < 25
(140, 41%)
Overweight, BMI: 25–30 (108, 32%)
Obese, BMI > 30 (82, 24%)

In the 1-year post-COVID recovery study, the obese patients
recovered 38% more slowly than participants with normal BMI
(aHR 0.62, 95% CI = 0.39–0.97). Recovery was slower in those with
a BMI ≥ 30 kg/m2 compared to BMI < 25 kg/m2 (HR 0.62, 95%
CI = 0.39–0.97).

Xie et al. (99) 18,818 outpatients with COVID-19 Mean BMI: 27.64 In patients with COVID-19, obesity was independently associated
with higher risk, with aHR of 1.83 (95% CI, 1.28–2.61).

Lacavalerie et al. (104) 51 chronic post-COVID-19 patients Non-obese 18, Mean BMI: 25
Obese 33, Mean BMI: 34

Obese patients with chronic COVID-19 develop exaggerated
ventilatory drive and impaired oxygenation at peak exercise, lower
lung volumes, reduced ventilatory reserve (25 vs. 40, p = 0.011) and
lower peripheral capillary oxygen saturation (96 vs. 98, p = 0.036).

COVID-19, coronavirus disease 2019; BMI, body mass index; OR, odds ratio; aHR, adjusted hazard ratio; aRRs, adjusted risk ratio; VTE, venous thrombus embolism; CI, confidence interval;
HR, hazard ratio.

been observed in convalescent patients after mild SARS-CoV-2
infection (36). Disruption of homeostasis leads to high intracellular
Ca2+ concentration and the subsequent activation of Ca2+-
dependent scramblase on the cell membrane. The resulting increased
phosphatidylserine (PS) exposure on the outer membrane of injured
vascular endothelial cells promotes activation of the intrinsic tenase
complex and the formation of the prothrombinase complex (37,

38). The number of PS+ peripheral blood mononuclear cells in
patients at the initial stage of COVID-19 diagnosis was higher
than that of healthy controls (39). Moreover, tissue factor (TF) is
also decrypted by PS, promoting the activation of the exogenous
tenase complex. Anti-TF cannot completely inhibit the coagulation
cascade, but lactadherin can inhibit coagulation in multiple ways
by competing for PS binding sites (40). In the early stages of
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COVID-19, immune cells recognize and clear a small amount of
virus without inducing severe inflammatory reactions, and laboratory
tests show no significant changes or only decreases in peripheral
blood white blood cell counts (41). In more severe cases, drastic
replication and release of SARS-CoV-2 result in accumulation of
immune cells in the lung tissue. Cytokines initiate the associated
transduction pathways and trigger a cascade of inflammation that
leads to cytokine storms (42–44). In addition, when immune cells
remove pathogens, they release a large number of PS+ microvesicles.
Thrombus and inflammation interact to further damage the vascular
endothelium. Fogarty et al. recently reported that significantly
elevated intermediate monocytes and activated CD4+ and CD8+

T cells were associated with sustained EC activation and poor
hemostatic function in long COVID (45).

Vascular endothelial dysfunction and structural destruction
also contribute to the development of hypoxemia. SARS-CoV-2
enters the alveolar interstitium and infects the capillary endothelial
cells at the thin part of the air-blood barrier. The injured capillary
endotheliocytes begin to contract and narrow the microcirculation.
Moreover, due to the binding of SARS-CoV-2 and angiotensin
converting enzyme 2 (ACE2), the available ACE2 is reduced,
and the conversion of Ang II to Ang 1-7 is suppressed, causing
vasoconstriction, inflammation promotion, enhanced vascular
permeability, and pulmonary edema (46–48). ACE2 knockout
mouse models exhibit more severe acute respiratory distress
syndrome (49), and ACE2/Ang-(1-7) inhibition has been implicated
in endothelial dysfunction or endotheliitis in COVID-19 stroke
patients (50). The combination of damaged endothelial cells and
vasoconstriction results in stenosis or obstruction in the tiny
alveolar capillaries, interfering with normal gas exchange and
promoting hypoxemia. Ackermann et al. found extensive alveolar
capillary microthrombi, microangiopathy, and perivascular T-cell
infiltration in the lungs of patients who died from COVID-19.
The incidence of microvascular thrombosis in COVID-19 patients
was 9 times higher than that in H1N1 patients (p < 0.001)
and the number of new blood vessels was 2.7 times that of
H1N1 patients (p < 0.001) (51). Neovascularization, capillary
remodeling, microvascular sclerosis, and uneven vessel wall lead
to the formation of local eddy currents, which promote platelet
activation and PS exposure. Several studies have detected microclots
in blood samples from long COVID patients and observed
manifestations of poor blood flow in the vessels downstream
of microthrombus-blocked capillaries (28, 29). At the same
time, hypoxia can further damage the vascular endothelium
through the release of free radicals, reactive oxygen species,
and lipid hydroperoxide. The resulting decrease in adenosine
triphosphate (ATP)-dependent translocation enzyme function
influences membrane phospholipid stability and perturbs the normal
function of endothelial cells.

Hypoxia and thrombosis can also be mutually aggravating,
in addition to having common promoters. Hypoxia reduces
ATP production, inhibits ATP-dependent translocase (flippase
and floppase), and prevents the reversion of PS into the inner
cell membrane. In addition to the vascular endothelial cells,
various types of blood cells (such as red blood cells, platelets,
neutrophils, lymphocytes, and monocytes) also exhibit abundant
PS exposure, upregulating the coagulation cascade and accelerating
thrombogenesis. PS is also exposed on the surface of the
microvesicles released by these cells during apoptosis. The presence
of pulmonary microcirculation thrombosis leads to pulmonary

capillary hypertension, which increases the pressure difference
between the two sides of the air-blood barrier. Driven by the
pressure difference and the damaged alveolar structure, water
molecules, albumin, and platelets enter the alveolar cavity, inducing
increased blood viscosity and aggravated vascular stasis. In severe
cases, macromolecules such as globulins and red blood cells
also appear in the alveolar lumen. The increased fluid causes
a decrease in the effective alveolar volume and exacerbates
dyspnea and hypoxemia.

Obesity and acute COVID-19

Limited alveolar dilatation

In individuals with obesity (especially central obesity), adipose
accumulation in the chest wall and abdomen restricts the lungs’
expansion and impedes diaphragm movement, resulting in a decrease
in lung volume (52, 53). Visceral fat also increases airway resistance.
Additionally, since alveolar ventilation and pulmonary blood flow
progress from the apex to the bottom of the lung, compression of
the lower part has more significant effects on lung function. Studies
have shown that obesity itself can lead to respiratory impairment,
with decreases in expiratory reserve capacity, functional capacity,
forced vital capacity, functional residual capacity, expiratory reserve
capacity, and total lung volume (2, 54).

Chronic low-grade inflammation
aggravates tissue damage and
inflammation diffusion

Wherever SARS-CoV-2 goes, it recruits a variety of immune
cells, and later inducing the release of cytokines, including
monocyte chemoattractant protein 1, granulocyte-macrophage
colony-stimulating factor, macrophage colony-stimulating factor,
interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), and IL-
6 (55–60). As adipocytes swell to store excess energy, close
interactions between adipocytes and host immune cells enhance
lipolysis, resulting in abnormal adipocyte secretion (more leptin
and less adiponectin), insulin resistance, and persistent low-level
inflammation (61–63). Mitochondrial dysfunction and reactive
oxygen species production induced by hyperglycemia promote
vigorous generation of cytokines (such as TNF-α, IL-1, IL-6, IL-18,
and interferon γ) (64, 65). In addition to the increase in pro-
inflammatory mediators, anti-inflammatory regulatory substances
(such as adiponectin, IL-4, IL-10, IL-33, and Tregs) are reduced.
In terms of host defense, obesity suppresses the adaptive immune
system against the influenza virus, suggesting that this could also
be true for COVID-19 (Figure 1A; 1, 66). Although the immune
system actively clears the pathogens, it does not produce completely
specific anti-viral immune response, increasing the likelihood of viral
escape. The abnormal obese state throughout the body promotes
the inflammatory cascade, endothelial dysfunction and thrombosis,
which worsens local tissue damage and facilitates the distant spread
of SARS-CoV-2 (62, 67–69). Some scholars have proposed that the
imbalance of the intestinal microenvironment and host immune
system may mediate infection susceptibility in obese individuals (70).
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FIGURE 1

Pathophysiological changes of air-blood barrier in obese patients with COVID-19. (A) Adipose tissue has the potential to serve as a reservoir for
SARS-CoV-2. (B) Immunocytes infiltrate adipose tissue, producing inflammatory mediators and adipokines, accompanied by a weakened specific
immune response. (C) Under the combined effects of virus invasion, inflammation of adipocytes and lipid deposition, vascular endothelial destruction
occurs prematurely, and the vascular wall structure is destroyed. The expression of protease activated receptor 1 (PAR-1), tissue factor (TF), P selectin,
and phosphatidylserine (PS) on endothelial cells is up-regulated. (D) PS exposure on vascular endotheliocyte, erythrocyte, platelet, neutrophil, and
lymphocyte appears earlier and participates in thrombosis. Adapted from “Adipocyte (white),” by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.

Endothelial dysfunction induces a
pre-existing damaged and prothrombotic
state

The primary function of vascular endothelial cells is to ensure
unobstructed blood flow and maintain a barrier between the
circulatory system and surrounding tissues. However, in patients
with obesity, the level of adiponectin and nitric oxide is too low
to effectively maintain this ordinary protective function. Because
of obesity-related chronic inflammation, immunocytes infiltrate
adipose tissue and release inflammatory factors, exerting adverse
effects on peripheral vascular endothelial cells (5). Additionally, the
high incidence of hyperlipidemia (increased low-density lipoprotein,
triglyceride, and cholesterol) results in atherosclerotic plaque
formation that renders the underlying vascular endothelium more

susceptible to damage (46). Overall, although individuals with
obesity have relatively mild endothelial dysfunction which rarely
causes severe adverse effects, this impaired protective effect leaves
them more susceptible to developing severe complications from
other diseases. Under the dual impact of obesity and SARS-CoV-
2, viruses can more easily invade vascular endotheliocytes due to
early phase weakening of the air-blood barrier. As the disease
progresses to the middle stages, endothelial dysfunction becomes
prominent, leading to more vulnerable and rigid pulmonary vessels
(Figure 1B). Hypoxemia is further exacerbated by pulmonary edema
caused by the enhanced permeability of the alveolar membrane.
Although endothelial change is not specific, endothelium-induced
thrombosis plays a significant role in COVID-19 (71). Vascular
endothelium expresses more protease activated receptor 1 (PAR-1),
TF, P selectin, and membrane PS, and releases microvesicles, vWF,
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and clotting factor VIII (72). This alteration, together with increased
soluble thrombomodulin and the surface chemokines, causes platelet
overactivation and thrombosis (73).

Enhanced procoagulant activity blocks
vascular perfusion

After adjustment for age, sex, and race/ethnicity, class II
obesity (BMI 35.0–39.9 kg/m2) was associated with a higher
risk of thromboembolism compared with normal BMI (HR 2.01,
95% CI 1.30–3.12) (9). A retrospective multicenter cohort study
showed that the BMI of COVID-19 patients with venous thrombus
embolism (VTE) (26.9 vs. 23.2 kg/m2, p = 0.04) was higher than
that of patients without VTE (10). Autopsy results showed fibrin
deposition and thrombosis in both macro and micro pulmonary
vessels. In patients with obesity, increased levels of fibrinogen,
vWF and plasminogen activator inhibitor-1 causes hypercoagulability
(66, 74). Endothelial cell dysfunction appears prematurely under
the effect of high inflammation promoted by both obesity and
SARS-CoV-2, further inducing PS exposure on the outer layer of
endotheliocytes and forming microthrombi (Figure 1C). It has
been reported that most of the PS+ microvesicles in COVID-19
patients are from the endothelium and platelets (75). Althaus et al.
found higher levels of PS exposure on platelets from ICU patients
with SARS-CoV-2 infection than in the non-severe group, and
that PS exposure was associated with organ failure and elevated
D-dimer (76). Because of the high viscosity and slow blood flow in
patients with obesity, platelets are more likely to adhere to vascular
endothelial cells and participate in coagulation function. In addition,
the surrounding inflammatory state caused by the infiltration of
immune cells into adipocytes damages the vascular endothelium,
increasing the prevalence of procoagulant platelets, leading to
thrombin formation. More importantly, these microthrombi can
contribute to extrapulmonary thrombosis, leading to ischemia and
necrosis of the corresponding organs (77). In addition, excess fat
tissue produces high levels of angiotensin, which is rapidly converted
into Ang II. Ang II accumulation changes local hemodynamics
primarily through pulmonary vasoconstriction, constituting a pre-
thrombus environment (78). In the later stage, fibrinolysis is inhibited
by the depletion of fibrinolytic factors, decreasing the clearance of
cross-linked fibrin and thrombi (79, 80). As a result of early blocked
pulmonary blood perfusion, ineffective luminal ventilation occurs
even while the alveolar structure is undamaged. Later, after diffuse
alveolar injury, there is a lower proportion of air-blood exchange.

Obesity and long COVID

Viral persistence

Adipose tissue has the potential to serve as a reservoir
for viruses (Figure 1D). Damouche et al. detected replicative
human immunodeficiency virus (HIV) in adipose CD4+ T cells
in six patients with antiretroviral therapy-controlled HIV, which
contributing to viral persistence and long-term immune activation
(81, 82). Another study in mice infected with H5N1 has found high
virus titers in adipose tissue, including tissue attached to thymus,
spleen, kidney, and heart (83). Evidence of SARS-CoV-2 infecting

adipose tissue has also been found in patients with COVID-19.
Martínez-Colón et al. have detected SARS-CoV-2 in adipose tissue
around the heart and intestines of patients who died from COVID-
19. In vitro experiments in which adipose tissue was cultured with
SARS-CoV-2-containing solution showed that the virus infected and
replicated within adipocytes (84). It is controversial whether adipose
tissue mediates SARS-CoV-2 infection through the high expression
of ACE2 (85, 86). Some studies have proposed that ACE2 RNA
can occasionally be detected in fresh mature adipocytes, although
no ACE2 protein is detected, suggesting that there may be other
ways to mediate viral invasion (84, 87, 88). However, the detrimental
effects of obesity on recovery from COVID are widely recognized.
Overweight/obesity was associated with increased odds of symptoms
lasting for 4+ weeks in longitudinal studies [odds ratio (OR) 1.24,
95% CI 1.01–1.53], and long COVID code in electronic health records
(OR 1.31, 95% CI 1.21–1.42) (89). A retrospective matched-cohort
study showed that patients with BMI > 30 kg/m2 had a 10% relative
increased risk (aHR 1.10, 95% CI 1.07–1.14) of reporting prolonged
symptoms compared to patients with a normal BMI (11). The
PHOSP-COVID Collaborative Group found that obesity (patients
with BMI > 30 kg/m2 vs. BMI < 30 kg/m2) is an independent
factor associated with not feeling fully recovered 1 year after hospital
discharge in both severe (70.8 vs. 29.2%) and very severe recovery
clusters (64.0 vs. 36.0%) (12). In the 1-year post-COVID recovery
study, the patients with obesity recovered 38% more slowly than
participants with normal BMI, when controlling for the effects of
age, sex, and comorbidities (aHR 0.62, 95% CI 0.39–0.97) (13). These
finding raise the possibilities of exploring the specificity of long
COVID symptoms in patients with obesity. More research is needed
into whether adipose tissue provides a reservoir for the virus to
re-emerge from during long COVID.

Long-term inflammation

The cytokine storm induced during the acute phase by SARS-
CoV-2 can develop into long-term systemic inflammation (65,
90, 91). At autopsy, infection-driving inflammation was found in
almost all SARS-CoV-2-infected adipose tissue samples (84). The
virus infects the immune cells in the adipose tissue and recruits a
large number of inflammatory mediators, affecting the surrounding
normal cells and causing inflammation to spread. Studies of
high-resolution computed tomography lung scans of individuals
recovering from COVID 6–12 months after discharge commonly
showed ground-glass opacity (GGO) associated with pulmonary
inflammatory exudation (92, 93). A prospective observational study
demonstrated that higher C-reactive protein concentration was
related to the more severe post-hospital cohort, and IL-6 was
significantly increased in the moderate disease cluster compared with
the mild cohort. Systemic inflammatory characteristics (e.g., serum
C-reactive protein concentration > 5 mg/L) have no overall change
between 5 months and 1 year (81.1 vs. 79.7%) (12) post-infection. In
HIV infection, adipose tissue is thought to be a contributing factor
to chronic immune activation/inflammation, with macrophages
and CD4+ and CD8+ T cells in adipose tissue showing intense
activation characteristics (81). Adipocytes and immune cells, acting
as inflammatory partners, are also likely to promote and perpetuate
persistent inflammation in long COVID (94–96). Moreover, the
vascular endothelium of patients with obesity has a high risk of injury
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due to lipid deposition, and the presence of microthrombi stimulates
the vascular wall, facilitating the formation of aseptic inflammation.

Microclots

Although difficult to detect, the formation of microthombi
can have a severe detrimental effect on microcirculation and can
contribute to organ dysfunction such as impairment of respiratory
function and renal function injury. Pretorius et al. detected fibrin
amyloid microclots and activated platelets in blood samples from
all 80 enrolled long COVID individuals by fluorescence microscopy
(28). A prospective cohort study that analyzed hematological data
from patients discharged from hospital with COVID-19 showed
a decrease in mean D-dimer at 60 days of discharge compared
with admission, but still elevated above baseline (900.71 vs. 1,350)
(97). Townsend et al. evaluated coagulation markers in patients
4 months after initial COVID-19 diagnosis and statistically showed
that 25.3% of patients had elevated D-dimer levels (>500 ng/ml),
although prothrombin time and activated partial thromboplastin
time returned to normal in >90% of patients (98). However, in
many cases, microthrombus cannot be ruled out even if coagulation
and thrombus-related indicators are normal. It has been reported
that, while the results of blood tests and lung X-rays were basically
normal, SPECT/CT of discharged patients indicated poor pulmonary
blood flow caused by microthrombi blocking the microcirculation
(29). Microclots are not easy to be detected. Often, when laboratory
and imaging results are abnormal, microclots have affected organ
function and need to be removed quickly. Therefore, it is necessary
to focus on the indicators that may be related to the prothrombotic
state to prevent the formation of microthrombi. Several studies have
shown increased levels of vascular endothelial activation markers in
long COVID (such as vWF antigen, vWF propeptide, and soluble
thrombomodulin). In vitro studies have shown that convalescent
plasma can damage vascular endothelial cells suggesting that the
vascular endothelial cells can be continuously activated and in
a pro-thrombotic state (34, 35). McCafferty et al. consistently
observed that in samples from patients both in the acute and long
COVID contained platelets with an activated phenotype (expressing
activation markers CD62P and PAC1) (36). High PS level is also
associated with poor prognosis in the convalescent period. It is
reported that the levels of PS+ microvesicles+ peripheral blood
mononuclear cells in the blood of patients with long COVID-19
are higher than those in the healthy cohort (39). Higher BMI was
associated with deep vein thrombosis and pulmonary embolism, and
Xie et al. showed that individuals with obesity were at higher clinical
risk for post-COVID-19 VTE events than non-obese patients (aHR
1.83, 95% CI 1.28–2.61) (99).

Hypoxia

Cardiopulmonary response to exercise may remain limited
after hospital discharge in COVID-19 patients with obesity. Under
the influence of airflow, fluid in the alveoli evaporates, leaving
plasma proteins to form hyaline membranes, which can eventually
develop into lung fibrosis and consolidation (20, 100). Studies have
shown that convalescent patients still have symptoms of dyspnea,
radiographic findings of interstitial lung infiltration and GGO, and

impaired lung function at 1 year after discharge. In these individuals,
the proportion of the diffusing capacity of the lung for carbon
monoxide < 80% is associated with disease severity (92, 93, 101–
103). Patients admitted with nasal catheters or mechanical ventilation
were more likely to have diffusion disorders after discharge than
patients who did not require supplemental oxygen (OR 4.60) (93).
Meanwhile, obesity can have additional effects on the pulmonary
sequelae in long COVID. Analysis of an observational study
found that patients with obesity and chronic COVID-19 displayed
exaggerated ventilatory drive and impaired oxygenation at peak
exercise, accompanied by lower lung volume, decreased ventilation
reserve (25 vs. 40, p = 0.011), and lower peripheral capillary oxygen
saturation values (96 vs. 98, p = 0.036) 6 months after hospital
discharge (104). The PHOSP-COVID Collaborative Group compared
patient-reported outcomes between 5 months and 1 year and
demonstrated that FEV1% < 80% predicted only minimal change,
while cognitive impairment significantly improved (12). Compared
with non-COVID-19 participants with obesity, post-COVID patients
with obesity had significantly reduced oxygen pulse (66 vs. 76,
p = 0.003), indicating poor cardiac function in convalescence (104).
Both hypoxia and thrombotic inflammation can affect myocardial
metabolism, resulting in loss of normal systolic and diastolic
functions of the damaged myocardium, pulmonary congestion, and
insufficient systemic circulation blood volume. Furthermore, due
to the reduced effective lung volume, the blood in the pulmonary
microcirculation cannot adequately carry oxygen, inducing reduced
oxygen saturation. These effects may persist into the recovery period.

Therapy

Respiratory support

Hendren et al. showed that COVID-19 participants who were
overweight and class I to III obese had a higher risk of requiring
mechanical ventilation after multivariate analysis (OR 1.28, 1.54, 1.88,
and 2.08, respectively) (9). In a Seattle study of 105 hospitalized
patients with COVID-19, the survival rate was 98.9% in patients
with oxygen saturation greater than 90%, while only 35 in 51
(68.63%) patients with arterial oxygen saturation < 90% survived.
Ensuring sufficient blood oxygen saturation can effectively improve
the survival rate of patients (21, 22). However, ventilation does
not remove the etiological factors or produce lung healing; it
merely keeps patients alive until their biological mechanisms can
overcome SARS-CoV-2 (101). Many COVID-19 patients have almost
no difficulty breathing until arterial oxygen partial pressure drops
below 60 mmHg. The resulting dyspnea and shortness of breath
are common symptoms which prompt patients’ initial visit, and
thus the patient’s condition is often remarkably advanced (105–
107). With further progression, pulmonary hyaline membrane or
lung consolidation complicate gas exchange even with ventilation
support (108). Therefore, even patients with mild symptoms should
receive oxygen inhalation through a nasal catheter at 5 L/min
upon admission, to maintain at least 95% peripheral oxygen
saturation (21, 109, 110). In more serious cases, oxygen storage
mask (initial flow 8–15 L/min) should be utilized and if there
is no improvement after 1–2 h, progressive treatments [such as
High-flow nasal cannula oxygen therapy, non-invasive ventilation,
invasive ventilation, and extracorporeal membrane oxygenation
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(ECMO)] should be performed (111). In patients with obesity,
particular attention should be paid to suitable methods (ECMO is
contraindicated in patients with BMI > 45 kg/m2) and the risk
of iatrogenic infection due to mechanical ventilation. Without the
moisture and temperature regulation effects of nasal mucosa, inhaled
gas can exert intense irritation to the airway, making it prone to
infection. Nursing difficulties and persistent inflammatory state can
both contribute to increased susceptibility to associated infection.

Comprehensive antithrombotic therapy

A study involving 176,137 hospitalized COVID-19 cases found
a difference in case fatality between patients with and without
pulmonary embolism (28.7 vs. 17.7%) (112). In addition to directly
affecting microcirculation, thrombosis can also lead to increased
local intravascular pressure, aggravated pulmonary exudation,
and pulmonary dysfunction. Severe hypoxemia and pulmonary
hypertension can even lead to myocardial dysfunction. Therefore, it
is possible to prevent disease progression if comprehensive treatment
can be taken early in the disease to relieve the hypercoagulable
state (including antiplatelet and anticoagulation), and if necessary
to dissolve (micro) thrombi (113, 114). Early comprehensive
antithrombotic therapies aim to maintain unobstructed blood flow
and ensure adequate alveolar blood perfusion, without resulting in
pulmonary arterial hypertension. It also seeks to delay the onset
of pulmonary edema, thereby reducing the incidence of respiratory
distress and respiratory failure. Unobstructed blood circulation also
promotes the clearance of viruses and damaged blood cells, thus
inhibiting the spread of inflammatory reactions and preventing
disease progression. When the damaged vascular endothelium results
in the exposure of basement membrane collagen, platelets react to
the endothelium injury, interweave with fibrin, and become the
starting point of thrombus formation. Inhibition of platelet adhesion,
aggregation, and release can also be used as therapeutic targets,
through the use of aspirin (75–100 mg/d), clopidogrel (75 mg, qd),
and dipyridamole (100 mg, tid), thereby inhibiting the formation of
intrinsic and extrinsic tenase and prothrombinase complexed caused
by PS exposure on outer cell membranes (115). Santoro et al. found
that in-hospital use of antiplatelet drugs was associated with lower
mortality after multivariate adjustment [relative risk (RR) 0.39, 95%
CI 0.32–0.48, p < 0.01] (116). Anticoagulant drugs, which are the
most commonly used and studied drugs in clinical practice, can
prevent thrombosis by inhibiting coagulation factors and activating
antithrombin III. Results from multiple randomized controlled
trials have shown that the use of therapeutic heparin in non-
critically hospitalized COVID-19 patients reduces the number of days
requiring organ support, the incidence of VTE and 28-day mortality
events, and the proportion requiring respiratory support or IMV,
compared with standard-dose thromboprophylaxis cohorts (117–
120). However, a similar meta-analysis of non-critically ill patients
with COVID-19 found that therapeutic thromboprophylaxis had a
higher incidence of bleeding than standard-dose anticoagulation,
including major bleeding (HR 1.86, 95% CI 1.04–3.33) and minor
bleeding (HR 5.23, 95% CI 1.54–17.77) (121). Using thrombotic
events (arterial and/or venous) as the primary endpoint, Spyropoulos
et al. found a benefit of therapeutic anticoagulation in non-critically
ill patients with elevated D-dimer (RR 0.46, 95% CI 0.27–0.81)
(119). High D-dimer levels can predict poor prognosis of COVID-
19. D-dimer levels have been found to be generally higher in critically

ill patients than in mild patients (2.4 vs. 0.5 mg/L) (122). Standard
doses of thromboprophylaxis are recommended for adults who are
critically ill during hospitalization (123). Although guidelines for
clinical inpatients recommend only standard or therapeutic doses,
intermediate doses (defined as low molecular weight heparin bid or
increased weight-based dosing that is less than the recommended
therapeutic dose) are often used in clinical trials (123, 124). Drug
distribution and metabolic clearance in patients with obesity may
necessitate adjustments to dosing. The clinical effect of moderately
increasing anticoagulant dose still needs to be investigated by high-
quality trials (78, 125). For patients with body weight > 90 kg or
BMI ≥ 30 kg/m2, enoxaparin 30–40 mg bid or UFH 7500 IU bid/tid
can be used as a prophylactic dose, and enoxaparin can be used
at a therapeutic dose of 1mg/kg bid. With regard to treatment of
outpatients with COVID-19, there is currently no evidence to support
the routine use of antithrombotic agents such as aspirin, factor Xa
inhibitors, or low molecular weight heparin for the prevention of
arterial/venous thrombosis or COVID-19 progression, and several
studies were stopped early due to lower-than-expected primary event
rates (126). Currently, the omicron variant is milder in pathogenicity,
with a lower hospitalization rate, lower mortality rate, and shorter
duration of acute symptoms than the delta variant, but with rapid
bronchial replication and high transmissibility (127, 128). In the new
round of COVID-19 transmission led by omicron variant, in addition
to high-risk groups such as the elderly and people with underlying
diseases or immune deficiencies, individuals with obesity (BMI≥ 30)
are also more likely to develop critical illness than the general
population. For those without anticoagulant contraindications, the
time of anticoagulation should be seized. Timely and sufficient
anticoagulant treatment can effectively relieve hypercoagulability,
prevent the occurrence of symptomatic thrombotic events, and
improve the prognosis of patients with obesity.

Other treatments

Systemic corticosteroids are recommended for patients with
severe and critical illness but should be used with caution in
patients with diabetes or underlying immune deficiency (129). In
a randomized, controlled clinical study, dexamethasone (6 mg per
day for 10 days) reduced mortality in patients requiring oxygen
support, both on IMV (29.3 vs. 41.4%; RR 0.64, 95% CI 0.51–
0.81) and non-IMV (23.3 vs. 26.2%, RR 0.82, 95% CI 0.72–0.94)
(130). Intravenous dexamethasone plus standard care increased the
number of ventilator-free days within 28 days in patients with
COVID-19 related acute respiratory distress syndrome (6.6 vs. 4.0,
p = 0.04) (131). Tocilizumab (4–8 mg/kg IV, single dose) is also
recommended as an anti-inflammatory drug in many guidelines and
is usually recommended in patients with peripheral capillary oxygen
saturation ≤ 94% on room air and CRP ≥ 75 mg/L. It inhibits
IL-6 signaling by reducing the binding of soluble and membrane-
bound receptors (sIL-6R and mIL-6R) of IL-6 to block T cell
activation, plasmocyte immunoglobulin secretion, and macrophage
activity (132–134). Results of a meta-analysis showed a 12% reduction
in mortality in the tocilizumab group compared with a control
group that did not receive tocilizumab (RR 0.27, 95% CI 0.12–0.59)
(135). JAK inhibitors (such as baricitinib), which blocks the signaling
of inflammatory and immune responses, is also used in severely
ill patients with pneumonia and hypoxia (136). Other medications
may also be considered. Remdisivir, an adenosine analog, binds to
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new strands of viral RNA and leads to premature termination of
virus replication, improving recovery and reducing adverse events
(137). Statins, which improve immune system function and fight
inflammation and oxidative stress, could also be an option in the
treatment of COVID-19 (138). Cytokine storm is associated with a
higher risk of multiple organ failure and death. During severe and
critical episodes, anti-granulocyte-macrophage colony-stimulating
factor and IL-6 inhibitors can reduce inflammation severity, clear
cytokines, and reduce disease risk (139). While it is possible to target
cytokine storms in theory, it does not play a significant role in clinical
practice and can be used as a complementary therapy (64).

Precaution

Patients with obesity are more likely to experience hypertension,
hyperlipidemia and diabetes before admission, and the incidence
of various comorbidities is high during their hospitalization. It is
unlikely that even prompt treatment after hospital admission can
normalize the rate of mechanical ventilation and the ICU occupancy
in patients with obesity to the level of normal-weight patients.
Therefore, for patients with obesity, daily weight management
before COVID-19 diagnosis is critical in preventing COVID-19
and mitigating risk. A healthy diet and proper exercise help
support immune health. As with everyone else, use of personal
protective equipment and avoiding crowds are also important risk
reducing strategies.

Conclusion

The ongoing worldwide epidemic of COVID-19 is a problem
that every country faces. Preventing the progression of COVID-19 to
severe disease and reducing the incidence of sequelae are two major
priorities for disease management. COVID-19 patients with obesity
exhibit increased thrombotic inflammation and hypoxia, which are
associated with mechanical compression, persistent inflammation,
vascular endothelial damage, and hypercoagulable state. Obesity also
contributes to the development and persistence of sequelae in long
COVID, and may be involved in persistent viral presence, chronic
inflammation, microclots, and hypoxemia, although reliable evidence

from larger, high-quality studies is still needed. Although vaccines
are important in preventing severe disease, effective treatment of
COVID-19 is still critical, given continued viral mutation and the
limited effectiveness of vaccines. Early intervention, including timely
oxygen supplementation, prevention of microthrombi, and relief of
the spread and persistent effects of inflammation can prevent or
reverse disease progression and reduce the occurrence of sequelae.
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