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Background: The Dietary precursor has been identified as a contributor in the

development of cardiovascular disease. However, it is inconsistent if dietary

precursors could affect the process of cardiovascular disease.

Methods: Here we performed Mendelian randomization (MR) analysis of the

data from genome-wide association study of European ancestry to evaluate the

independent effects of three dietary precursors on cardiovascular disease (CVD),

myocardial infarction (MI), heart failure (HF), atrial fibrillation (AF), and valvular disease

(VHD). Inverse variance weighting method was used for the MR estimation. Sensitivity

was determined by MR-PRESSO analysis, weighted median analysis, MR-Egger

analysis, and Leave-one-out analysis.

Results: We found that elevated choline level had a causal relationship with VHD

[odds ratio (OR) = 1.087, 95% confidence interval (CI), 1.003–1.178, P = 0.041] and

MI (OR = 1.250, 95% CI, 1.041–1.501, P = 0.017) by single-variable MR analysis.

Furthermore, elevated carnitine level was associated with MI (OR = 5.007, 95% CI,

1.693–14.808, P = 0.004) and HF (OR = 2.176, 95% CI, 1.252–3.780, P = 0.006) risk.

In addition, elevated phosphatidylcholine level can increase the risk of MI (OR = 1.197,

95% CI, 1.026–1.397, P = 0.022).

Conclusion: Our data show that choline increases VHD or MI risk, carnitine increases

the risk of MI or HF, and phosphatidylcholine increases HF risk. These findings suggest

the possibility that decrease in choline level in circulation may be able to reduce

overall VHD or MI risk, reduce in carnitine level could be decrease MI and HF risks as

well as decrease in phosphatidylcholine could reduce MI risk.

KEYWORDS

dietary precursors, cardiovascular disease, Mendelian randomization (MR) analysis, choline,
carnitine

1. Introduction

With the development of economy and the sharp increase of aged population, cardiovascular
disease becomes a major contributor to the loss of physical function, quality of life and
longevity. Ischemic heart disease and other cardiovascular diseases (CVD) kill 17.5 million
people worldwide each year (1), though the treatment of CVD has advanced. According to a
large number of studies, many factors are involved with the initiation and progress of CVD,
such as lipid accumulation (2, 3), inflammation (4–6), phosphate processing (7), biosynthesis
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and aggregation of extracellular vesicles (8, 9), cell senescence (10–
12) and so on. However, there is still a lack of effective prevention of
CVD development.

Traditionally, diet has been considered a major determinant of
cardiovascular health. In fact, one of the seven cardiovascular health
indicators proposed by the American Heart Association in 2010
(Life’s Simple 7) directly corresponds to a healthy diet (13). Choline is
an essential nutrient from diet for humans throughout their life. Most
individuals need to increase choline ingestion through their diet in
order to prevent deficiency (14). Choline metabolism can be divided
into four main pathways involved in the synthesis of acetylcholine,
betaine, phospholipids and trimethylamine (TMA). Carnitine, a kind
of amino acid, occurs only in nature as L-carnitine and is often
used as a nutritional supplement which can also be converted into
TMA with the help of intestinal flora (15). Phosphatidylcholine is
not only the main component of cell membrane, but also necessary
for cell division and growth (14, 16). All three nutrients can be
digested in the gut into other substances, so here they are called
dietary precursors (17). In this case, we wanted to explore the causal
relationship between these dietary precursors and cardiovascular
disease, such as total cardiovascular disease (CVD), myocardial
infarction (MI), heart failure (HF), atrial fibrillation (AF) and
valvular disease (VHD).

The Mendelian randomization (MR) technique is a novel method
of assessing causal inference between risk factors and outcomes by
using genetic variants as instrumental variables (IVs) (18). Genetic
information is generally transmitted vertically from parents to their
offspring, which is less susceptible to confounding and reverse
causality and regarded as the nature’s randomized trial. MR studies
using a solo-single nucleotide polymorphism (SNP) instrument
found exposures associated with outcomes, which is called single-
variable Mendelian randomization (SVMR) analysis.

Up to now, many independent SNPs have been identified
as linked to choline, carnitine and phosphatidylcholine through
genome-wide association studies (GWAS) (19, 20). However, the
causal relationships between these dietary precursors and CVD
from the current studies were contradictory and a point of view is
that supplementation with dietary precursors improves prognosis
during heart failure or MI (21–25). Another idea is that dietary
precursors increase the risk of cardiovascular disease (26–28). In this
research, we aimed to use the two-sample MR analysis of SVMR
to determine the causal effect of above mentioned three dietary
precursors on CVD.

2. Materials and methods

This study conduct a SVMR analysis to investigate genetically
association of three exposures (choline, phosphatidylcholine and
carnitine) with five outcomes (CVD, MI, HF, AF, VHD) risk. An
overview of the fundamentals, design, and process of our MR study is
elucidated in Figure 1.

Study design

This study followed the Strengthening the Reporting of
Observational Studies in Epidemiology Using Mendelian
Randomization (STROBE-MR) guide (29). To conduct the MR

analysis, three assumptions must be met: (1) IVs are strongly
associated with intermediate exposure (5*10−8), (2) IVs are
independent of confounding factors, (3) IVs only affect outcomes via
exposure pathways.

Data source

We extracted the SNPs that were strongly associated with Choline
(met-d-Cholines), carnitine (met-a-379) and phosphatidylcholines
(met-d-Phosphatidylc) from the datasets archived in the GWAS
database.1 For the same situation, we obtained summary-level data
for the outcome events (CVD, MI, HF, AF, VHD) from the “finn-
b-I9_CVD, finn-b-I9_MI, ebi-a-GCST009541, ebi-a-GCST006414,
finn-b-I9_VHD” dataset. All SNPs were selected from European
populations to eliminate demographic distribution bias and the
GWAS data are exhibited in Table 1.

In order to ensure that SNPs were strongly associated with
each exposure, we extracted the SNPs at genome-wide significance
level (P<5×10−8) from the GWAS datasets as their respective IVs.
Afterward, trait-specific SNPs that were located at a distance of
1000 kb apart from each other were selected, and those in linkage
disequilibrium (LD) (r2<0.001) were excluded. Then, we extracted
the SNPs that were strongly associated with outcomes from the
three dietary precursors associated SNPs at a correlation criterion
of r2<0.01, respectively. Furthermore, we harmonized the data for
exposures and outcomes by removing palindromic SNPs from the
selected SNPs above.

For the SVMR analyses, we are using three methods (29): Inverse-
variance weighted (IVW), MR-Egger and Weighted Median (WM),
to assess the evidence of the causal effects of each TMA-related
metabolites on VHD risk and disease outcomes, and to detect the
sensitivity of the results to different patterns of violations of IV
assumption (30, 31). The IVW method uses a meta-analysis approach
to combine the Wald ratios of the causal effects of each SNP, relying
on the assumption that all SNPs are valid IVs with no evidence
of pleiotropy, so it was used as the major analysis. The MR-Egger
and WM methods were used as secondary analyses to examine the
robustness of the result (30). The MR-Egger method can detect and
adjust for pleiotropy albeit with compromised power (30). The WM
analysis can generate consistent estimate if at least 50% of the weight
in the analysis comes from valid IVs (30). Effect estimates were
reported in odds ratios (ORs) with corresponding 95% confidential
intervals (CIs).

Strength of SNPs in explaining phenotypic
variation

First, we computed the proportion of phenotypic variation
explained by each SNP (R2-value) in our IVW-SVMR model using
the formula R2 = 2×(1−MAF)×MAF×(β/SD)2 where SD is standard
deviation followed by formula SD = SE×

√
N and β is the coefficient

for effect size (32), MAF is the minor allele frequency for each SNP,
SE is the standard error for each SNP and N is the sample size. Then,
a F-statistic was calculated to evaluate the total strength of our IVW-
SVMR model for each lipid traits in explaining phenotypic variation

1 https://gwas.mrcieu.ac.uk/
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FIGURE 1

MR study flow diagram to determine the causal effect of three dietary precursors on five cardiovascular diseases. Dashed lines indicate potential
pleiotropic or direct causal effects between variables that may violate MR assumptions. PC, phosphatidylcholine; IV, instrumental variable; IVW,
multiplicative random effects inverse variance weighted; CVD, cardiovascular disease; MI, myocardial infarction; HF, heart failure; AF, atrial fibrillation;
VHD, valvular heart disease.

TABLE 1 Basic information about the GWAS database.

Exposure GWAS-ID PMID Population Number of SNPs Sample size

Choline met-d-Cholines NA European 12,321,875 114,999

Carnitine met-a-379 24816252 European 2,545,563 7,797

PC met-d-Phosphatidylc NA European 12,321,875 114,999

Outcome GWAS-ID PMID Population Number of SNPs Sample size

CVD finn-b-I9_CVD NA European 16,380,466 ncase: 111,108
ncontrol: 107,684

MI finn-b-I9_MI NA European 16,380,433 ncase: 12,801
ncontrol: 187,840

HF ebi-a-GCST009541 31919418 European 7,773,021 ncase: 47,309
ncontrol: 930,014

AF ebi-a-GCST006414 30061737 European 33,519,037 ncase: 60,620
ncontrol: 970,216

VHD finn-b-I9_VHD NA European 16,380,358 ncase: 38,209
ncontrol: 156,711

Information about exposures and outcome are sourced from the GWAS public database. PC, phosphatidylcholine; CVD, cardiovascular disease; MI, myocardial infarction; HF, heart failure; AF,
atrial fibrillation; VHD, valvular heart disease; ncase, number of case; ncontrol, number of control.

using the formula F = (N − k − 1)/k×R2/(1 − R2) where N is the
sample size, k is the total number of SNPs selected for MR analysis,
and R2 is the total proportion of phenotypic variation explained by all
the SNPs in IVW SVMR model (32). A F-statistic >10 suggests that
SNPs in our IVW-SVMR model is a sufficiently strong instrument to
explain phenotypic variation, while a F-statistic < 10 implies a weak
instrument (32). And the results of F-statistic about three dietary
precursors were shown in Supplementary Table 2. All F-statistics of
dietary precursors were greater than 10.

3. Statistical analyses

Several statistical tests were performed to examine the existence
of horizontal pleiotropy that violated the main MR assumptions.
We calculated the effect estimate for each instrumental SNP on
three exposures with the Wald estimator and assessed the possible
measurement errors using the Delta method (33). The fixed-effects
inverse variance-weighted (IVW) method was used as standard
analysis to derive the final effect estimates. Heterogeneity among
estimates of SNPs was measured by Cochran Q-derived p and the

funnel plot (34). Sensitivity analyses included the multiplicative
random-effects IVW (30), the weighted median (35), the MR-Egger
regression method (36), and the MR-pleiotropy residual sum and
outlier (MR-PRESSO) method (37). Where heterogeneity existed
(Cochran Q-derived P < 0.05) (38), the multiplicative random-
effects IVW method was adopted to avoid the bias of weak
SNP-exposure associations (30). The weighted median method can
provide valid estimates even when up to 50% of the information in
the analysis comes from invalid IVs (35). The MR-Egger method
provides more conservative causal estimates in the presence of
pleiotropic variants and is less likely to generate inflated test
statistics (36). The MR-PRESSO method was used to detect the
presence of outliers that could bias the results (37). We applied
the intercept test from MR-Egger to assess horizontal pleiotropy
(39). In addition, we employed leave-one-out analyses to determine
whether a single SNP drove the causal relationship. With this
approach, we excluded one SNP in turn and then reevaluated
the causal effect. Scatter plots depicting the associations were also
provided. The P values in this study were 2-sided, and values < 0.05
were deemed as suggestive significance, whereas the highly reliable
findings were those survivals with a Bonferroni-corrected threshold
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FIGURE 2

Relationship of Dietary precursors with five cardiovascular diseases by SVMR analysis. Sensitivity was determined by the listed methods. OR, odds ratio;
CI, confidence interval; CVD, cardiovascular disease; MI, myocardial infarction; HF, heart failure; AF, atrial fibrillation; VHD, valvular heart disease.

of 0.003 (0.05/15). All MR analyses were conducted using R
software (version 4.1.0) with R packages including TwoSampleMR,
MendelianRandomization, and MR-PRESSO.

4. Results

SVMR analysis for the effects of three
dietary precursors on five cardiovascular
events

Single nucleotide polymorphisms from the GWAS database listed
on Table 1 were analyzed using SVMR. SNPs with LD distance
>10,000 KB and MAF <0.01 as well as palindrome and multi-
direction outlier SNPs were eliminated. Eventually, the numbers of
SNP of three dietary precursors on five cardiovascular events were
shown in Supplementary Table 1. The effects of genetic causality
between three dietary precursors and five cardiovascular events were
analyzed by the three MR methods (IVW, MR-Egger, WM) as shown
in Figure 2. In addition, the effects (β values) of three dietary

precursors on the risk of cardiovascular events were shown in the
scatter plots (Supplementary Figure 1). The funnel plots of SVMR
analysis for the effect of three dietary precursors on five outcomes are
shown in four forest maps (Supplementary Figure 2) and four funnel
plots (Supplementary Figure 3).

Although choline, carnitine and phosphatidylcholine showed
significant heterogeneity in some outcomes, the most results
remained consistent after MR-PRESSO analysis (Supplementary
Table 1). This indicates that after data correction, the results show
that increasing the level of choline and phosphatidylcholine can
increase the risk of MI. No significant difference in pleiotropy was
observed in the effect estimates of three exposures (Supplementary
Table 1). Leave-one-out sensitivity analysis did not detect noticeable
alterations in the effect estimation when any one SNP was
removed (Supplementary Figure 4), suggesting robust results in
our SVMR analysis.

In summary, out of three dietary precursors only choline was
genetically associated with VHD based on IVW SVMR method,
indicating that increased choline level had significantly higher risk
of VHD (Figure 2). All three dietary precursors are associated with
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MI, meaning that increasing levels of any of them increases the risk
of MI (Figure 2). And carnitine was also associated with odds of HF,
this suggested that increasing the level of Carnitine increases the risk
of HF (Figure 2).

5. Discussion

In this study, we found a causal relationship between high
choline level and the risk of VHD by SVMR analyses based on
the IVW SVMR method, while no causal relationship between
the other precursors (phosphatidylcholine and carnitine) and VHD
susceptibility (Figure 2). In addition, we found that high choline,
carnitine, and phosphatidylcholine can all increase risk of MI also
based on the IVW SVMR (Figure 2). Moreover, high carnitine is
associated with high risk of HF based on the IVW SVMR (Figure 2).

Our conclusions from SVMR analysis are robust and reliable
because the SVMR analysis with IVW method was confirmed with
the analysis of MR-PRESSO and Heterogeneity (Supplementary
Table 1). And the result of choline with VHD was in accordance with
the conclusion from the previous observational studies via imaging
modalities and histopathological examinations, in which it was
concluded that choline was significantly associated with the presence
and severity of calcific aortic stenosis (CAS) (40). In addition, our
results suggested that levels of choline and phosphatidylcholine
are associated with the risk of MI which was in line with some
observational studies (41–44).

The result of carnitine with MI and HF from SVMR analysis
indicated that increase level of carnitine can cause MI and HF
which was consistent with some observational studies. Youngja
H. Park’s research found that carnitine was significantly elevated
in AMI risk sera (45). Furthermore, Sinha A found carnitine is
associated with atherosclerotic risk and myocardial infarction in HIV
-Infected adults (46) and animal experiments have found dietary
L-carnitine promotes microbiota dependent atherosclerosis (47).
But in some studies, carnitine administration to patients who had
experienced on MI or HF is associated with a marked reduction in
overall mortality, as confirmed by meta-analysis (22, 48). This may
be attributed to the limitations of sample size and differences in
inclusion criteria of meta-analysis, while the MR analysis happened
to avoid these shortcomings.

5.1. Clinical importance

Our results from SVMR have potential implications for public
health. First, our findings provide new information for understanding
the causal influence of choline on the pathogenesis of VHD or MI,
carnitine on the pathogenesis of MI or HF and phosphatidylcholine
on the pathogenesis of MI. Second, our findings underscore the
importance of screening high-risk VHD subjects in populations
with elevated choline level, high-risk MI subjects in populations
with elevated choline level, carnitine level or phosphatidylcholine.
Furthermore, our results also shown importance of screening high-
risk HF subjects in populations with elevated carnitine level. In
addition, from a preventive perspective, our SVMR findings suggest
a promising way to reduce the risk of cardiovascular diseases by
adjusting the diet to minimizing the intake of foods.

5.2. Advantages

The current study has several advantages. To the best of our
knowledge, our study is the first MR study to use large-scale
GWAS data to focus on genetic causality between a range of dietary
precursors and cardiovascular diseases risk. Our study with SVMR
analysis is superior to the previous observational studies because we
had large sample sizes and SNPs and identified a novel conclusion
that the increased choline level was the primary causal factor for VHD
and MI events, increased carnitine level was the dominant reason for
MI and HF events as well as increased phosphatidylcholine level was
the critical factor for MI event.

6. Limitations

We admit to several discomforts in our study. First, there are
other risk factors, such as rheumatism and body mass index, that can
contribute to exposure. However, our MR study was designed only
to investigate the genetic causal effect of dietary precursors on the
risk of five cardiovascular diseases. Anthropometry and rheumatic
immune diseases were beyond the scope of our study. Second,
our findings are based only on the European population and are
not necessarily applicable to other populations. Due to the absence
of GWAS database of other dietary precursors, we were unable
to conduct a comprehensive analysis of dietary precursors about
the risk of five cardiovascular diseases. Therefore, our conclusion
should be used with caution. Thirdly, we cannot figure out exactly
how choline causes VHD and MI, how carnitine causes MI and
HF as well as how phosphatidylcholine causes MI. Experiments,
and more observational studies are needed to determine whether
these precursors play a key role in the progression of VHD,
MI or HF and which specific mechanisms of precursors in the
pathogenesis of cardiovascular diseases. Finally, concerns about
the violation of some IV assumptions in nutritional research have
been raised because nutrition is correlated with numerous other
lifestyle and environmental factors (49). In the current study, diet
quality that might index overall nutritional status. However, residual
confounding by other nuisance variables, especially those with a
similar time trend (e.g., specific nutrients used to replace the choline,
carnitine and phosphatidylcholine) that may attenuate the observed
relations, could not be ruled out.

7. Future directions

The results of the study highlight genetic causal effect of
dietary precursors on the risk of five cardiovascular diseases to
use a single-variable Mendelian randomization. For the existing
research results, we make the following outlook. Firstly, based
on the analysis of the results of this study from the GWAS
database, there must be possible biases caused by the data itself.
Therefore, in the future, we may pay more attention to and
elaborate the common interfering factors between exposures (dietary
precursors) and outcomes (cardiovascular diseases) and explore
the relationships between more different dietary precursors and
cardiovascular diseases. Furthermore, the same study needs to be
analyzed again in other populations to make sure the findings are
universal. Secondly, as for the research results of this study, we
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need to conduct further basic research to verify again and explore
the possible mechanism. Finally, because diet is linked to many
other lifestyle and environmental factors, concerns have been raised
about the violation of some IV assumptions in nutrition studies.
Regarding this point, we will upgrade and improve the research
methods through more detailed classification of the population and
more precise inclusion criteria, hoping to find a way to reduce or
eliminate the interference.

8. Conclusion

Our SVMR provide genetic evidence that elevated choline level
mainly explains the causal effect on the risk of developing MI or
VHD, elevated carnitine can increase the risk of MI or HF and
elevated phosphatidylcholine can increase the risk of MI.
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