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Sleep regularity is an essential part of the multidimensional sleep health 
framework. The phenomenon of irregular sleep patterns is widespread in 
contemporary lifestyles. This review synthesizes clinical evidence to summarize 
the measures of sleep regularity and discusses the role of different sleep regularity 
indicators in developing cardiometabolic diseases (coronary heart disease, 
hypertension, obesity, and diabetes). Existing literature has proposed several 
measurements to assess sleep regularity, mainly including the standard deviation 
(SD) of sleep duration and timing, sleep regularity index (SRI), interdaily stability 
(IS), and social jetlag (SJL). Evidence on associations between sleep variability and 
cardiometabolic diseases varies depending on the measure used to characterize 
variability in sleep. Current studies have identified a robust association between 
SRI and cardiometabolic diseases. In comparison, the association between other 
metrics of sleep regularity and cardiometabolic diseases was mixed. Meanwhile, 
the associations of sleep variability with cardiometabolic diseases differ across the 
population. SD of sleep characteristics or IS may be more consistently associated 
with HbA1c in patients with diabetes compared with the general population. 
The association between SJL and hypertension for patients with diabetes was 
more accordant than in the general population. Interestingly, the age-stratified 
association between SJL and metabolic factors was observed in the present 
studies. Furthermore, the relevant literature was reviewed to generalize the 
potential mechanisms through which irregular sleep increases cardiometabolic 
risk, including circadian dysfunction, inflammation, autonomic dysfunction, 
hypothalamic–pituitary–adrenal (HPA) axis disorder, and gut dysbiosis. Health-
related practitioners should give more attention to the role of sleep regularity on 
human cardiometabolic in the future.
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1. Introduction

Cardiometabolic disease is the leading cause of morbidity or mortality worldwide. Sleep, a 
basic life activity of the human body, is necessary for the proper function of the cardiovascular 
system and metabolic regulation (1, 2), and is associated with the development of cardiometabolic 
diseases. There is extensive evidence showing a U-shaped association between sleep duration 
and cardiometabolic risk in populations (3). In addition, large-scale population-based surveys 
suggest that delayed sleep onset timing also increases the risk of cardiometabolic disease (4). 
However, the above indicators are usually described as averages over multiple days in studies, 
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concealing differences in sleep duration or time points at different 
periods. Even under normal conditions, the body’s daily sleep–wake 
schedule fluctuates. The fluctuations in the sleep–wake schedule will 
be greater when we are troubled by sleep disorders, physical illnesses 
or life events. Sleep regularity reflects the degree of variation in the 
daily sleep situation of the human body. Studies have shown the cross-
sectional association between irregular sleep patterns and various 
physiological functions such as circadian rhythms, endocrine, and 
metabolism (5–7). Furthermore, several studies indicate that irregular 
sleep pattern was more strongly associated with cardiovascular disease 
than short sleep duration (8, 9).

In modern life, irregular sleep patterns prevail among the 
population. Shift workers show dramatic changes in sleep patterns, 
and studies have found that they were at significantly increased risk of 
cardiovascular disease, obesity, and hypertension (10–12). Similarly, 
there is clinical evidence that chronic irregular sleep patterns increase 
the risk of cardiometabolic disease among non-shift workers (7). 
Therefore, a comprehensive understanding of the link between sleep 
regularity and cardiometabolic is critical to advancing public health.

1.1. Measurement of sleep regularity

Sleep regularity is also known as sleep consistency, sleep 
variability, or intraindividual difference in sleep. Existing literature 
has proposed several relevant indicators to assess sleep regularity 
(Table 1), and there are differences in the measurement methods of 
the same indicator (which can be roughly divided into instrumental 
measurement and self-report). The heterogeneity of evaluation 
metrics and measurement methods made it difficult to synthesize 
relevant findings. A study used machine-simulated multiple sleep–
wake patterns to evaluate the value of different sleep regularity 
indicators. The results showed that each indicator reflected different 
aspects of sleep regularity (13). Social jetlag (SJL) (14) mainly 
measures sleep regularity throughout the week and is insensitive to 
day-to-day sleep variability. Composite phase deviation (CPD) (15) 
and sleep regularity index (SRI) (16) are called consecutive metrics 
and describe the variability between consecutive days. Interdaily 
stability (IS) (17) and intra-individual standard deviation (SD) are 

termed overall metrics that reflect the variability of the overall sleep 
situation during the monitored period. Sleep regularity questionnaire 
score (SRQ) is a subjective sleep regularity evaluation index 
correlated with patients’ emotional health, such as anxiety and 
depression (18). Among the multiple indicators of sleep regularity, 
it is unclear which one has the strongest association with 
cardiometabolic disease.

2. Sleep regularity and 
cardiometabolic disease

In addition to short sleep duration, sleep regularity is increasingly 
recognized as closely related to cardiometabolic health. 
Cardiometabolic diseases mainly include coronary heart disease, 
hypertension, obesity, and diabetes. These diseases are interconnected 
and affect human health together. Growing clinical evidence 
demonstrates that irregular sleep may be  a risk factor for 
cardiometabolic disease.

2.1. Hypertension

The link between sleep regularity and hypertension has been 
studied in clinical settings (Supplementary Table S1). Standard 
deviation (SD) is most commonly used to assess sleep regularity. A 
population-based study of 2,598 middle-aged Swiss did not find a 
significant association between SD of nighttime sleep duration 
measured by actigraphy and the prevalence of hypertension (19). 
Similarly, neither cross-sectional nor prospective analysis of data from 
the MESA Sleep Ancillary Study found an influential association of 
SD of sleep characteristics (sleep duration or onset timing) with 
hypertension (20). In contrast to the above studies, sleep regularity 
quantified by SD of actigraphy-derived sleep midpoint was related to 
hypertension in a cross-sectional survey of 700 participants from 
MIDUS cohorts (21).

The Sleep Regularity Index (SRI) is a newly emerging measure of 
sleep regularity. In the same sample from the MESA Sleep Ancillary 
Study, an analysis of the association between sleep regularity as 

TABLE 1 Definition of different assessment related to sleep regularity.

Sleep regularity 
measure

Definition Measurement tool Interpretation

Standard deviation(SD) Standard deviation of sleep duration or sleep timing within days Actigraphy or sleep diaries 

or PSG

Lower numbers indicate higher 

regularity

Sleep Regularity Index (SRI) Percentage probability of being in the same state (sleep or wake) at any 

two points 24 h apart (repeat in 30 s)

Actigraphy or sleep diaries 

or PSG

Higher numbers indicate higher 

regularity

Interdaily stability (IS) Rest–activity rhythms over multiple days, calculated as the ratio of the 

variance within the same time interval each day and the overall variance

Actigraphy or PSG Higher numbers indicate higher 

regularity

Composite Phase Deviation 

(CPD)

Combining ΔChronotype (the difference between sleep midpoint on 

1 day and Chronotype)and ΔDay-to-Day (the difference between sleep 

midpoint on 1 day and pervious day)

Actigraphy or sleep diaries 

or PSG

Lower numbers indicate higher 

regularity

Sleep Regularity 

Questionnaire Score (SRQ)

A short subjective measure of sleep regularity retrospectively in the form 

of a questionnaire

Questionnaire Higher scores indicate higher 

regularity

Social jetlag (SJL) The difference between sleep midpoint on freedays and non-free/

workdays

Actigraphy or sleep diaries 

or PSG or questionnaire

Lower numbers indicate higher 

regularity
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measured by SRI and hypertension yielded that lower SRI was 
associated with a higher prevalence of hypertension (16).

Clinical studies also considered the relationship of hypertension 
with interdaily stability (IS), another measure of sleep regularity. By 
analyzing data from 156 adults aged 18 to 64, we found that for every 
10% decrease in IS value, there was an absolute 3.0% increase in the 
prevalence of hypertension (22). The Rush Memory and Aging Project 
included 1,137 older adults and found that higher IS values were 
associated with a lower prevalence of hypertension (17).

Social jetlag (SJL) is an important complementary measure of 
sleep regularity. In a retrospective and longitudinal study of 625 
patients with non-communicable chronic diseases, generalized 
estimating equations analysis suggested an isolated effect of SJL on 
diastolic BP (23). In 962 adults with pre-diabetes/untreated Type 2 
diabetes, SJL was associated higher blood pressure (24). However, a 
cross-sectional study including 147 participants did not find a 
significant association between SJL assessed by the Munich 
Chronotype Questionnaire and hypertension (25). In addition, a 
prospective study of 430 healthy young adults also found no 
correlation between actigraphy-measured SJL and blood pressure 
(26). Two studies in children have yielded similar negative results 
(27, 28).

Collectively, association between sleep regularity and hypertension 
varies significantly across types of indicators. A limited number of 
studies showed that only SRI and IS were consistently associated with 
hypertension or higher blood pressure, not SJL or SD. Of note, the 
association between SJL and hypertension for patients with diabetes 
was more accordant than the general population. Differences in study 
results are not only related to the heterogeneity of study designs but 
may also be attributed to the characteristics of different indicators. 
Compared with the remaining indicators, the SRI and IS indicators 
combined all the sleep–wake information during the recording period. 
Therefore, SRI and IS may be more sensitive in finding the association 
between sleep regularity and hypertension.

2.2. Diabetes

Diabetes is a strong predictor of cardiovascular disease and a 
severe threat to human health. Previous studies have shown a 
correlation between sleep duration and quality and the incidence of 
diabetes (29). Sleep regularity is an important indicator independent 
of other dimensions of sleep health. Evidence is mounting that 
irregular sleep is involved in the development of diabetes 
(Supplementary Table S2). A cross-sectional analysis of 1986 elders 
with metabolic syndrome indicated that the standard deviation (SD) 
of sleep duration was positively associated with the prevalence of type 
2 diabetes (30). In contrast, no significant association was observed 
between SD of total sleep duration and diabetes in a cross-sectional 
study of 771 adults or a population-based cohort of 2,598 middle-aged 
subjects (19, 31). Fasting blood glucose and glycated hemoglobinA1c 
(HbA1c) are commonly used to evaluate glucose metabolism. In the 
middle-aged and older adults from the MESA cohort study, a cross-
sectional analysis showed that the detection rate of high fasting blood 
glucose increased by 20 and 30%, respectively, for each 1-h increase in 
SD of sleep duration and sleep onset time (20). Studies in young 
individuals also showed that a higher SD of sleep duration was 
associated with increased fasting and postprandial blood glucose (32). 

However, a cross-sectional study including 1986 elders found null 
association between SD of sleep duration and fasting plasma glucose 
and HbA1c (30). Insulin resistance is one of the most critical 
pathogenesis mechanisms of various metabolic diseases, including 
diabetes. In a community study of 335 middle-aged women from 
different ethnicities, a cross-sectional analysis showed that more 
remarkable variability in bedtime was associated with increased 
insulin resistance (33). Irregular sleep is also linked to poor blood 
sugar control in individuals with diabetes. Studies in patients with 
type 1 diabetes (T1D) suggest that higher sleep duration and midpoint 
time variability are associated with poorer glycemic control after 
adjusting for covariates such as neurological symptoms, risk of sleep 
apnea, and self-reported poor sleep quality (34). In patients with type 
2 diabetes (T2D), higher variability in self-reported and actigraphy-
measured sleep duration is associated with higher HbA1c values 
(35, 36).

The link between the Sleep Regularity Index (SRI) and diabetes 
was also explored in the study. An analysis of data from the MESA 
study of 1978 older adults found that lower SRI values   were associated 
with higher HbA1c and fasting glucose levels (16). In a US Hispanic/
Latino study, cross-sectional results showed that lower SRI values   were 
associated with an increased prevalence of diabetes, and the 
association was most pronounced in older adults. However, in the 
prospective analysis of this study, no significant associations of SRI 
values   with glucose biomarkers and incidence of diabetes were 
observed (37).

Several studies have been carried out on the correlation between 
interdaily stability (IS) and diabetes. A study of 1,137 old adults 
demonstrated that subjects with higher IS values had a lower 
prevalence of diabetes (17). However, in participants without diabetes, 
IS was not associated with the level of HbA1c (17). Another 
population-based study 2,156 adults demonstrated that IS was not 
associated with HbA1c, insulin resistance, diabetes (22).

Social jetlag (SJL) is a sign of a mismatch between social schedules 
and biological clocks. The link between SJL and the development of 
diabetes has also been reported in multiple studies. One study noted 
that patients with diabetes had higher self-reported SJL than healthy 
individuals (35). Greater SJL was also associated with higher fasting 
glucose levels and insulin resistance among healthy middle-aged 
adults working full-time day shifts (38). Similar associations have been 
reported in other epidemiological studies (39–41). But in a cross-
sectional study of 1,014 non-shift working adults with prediabetes, 
social jetlag was not associated with HbA1c levels (42). The association 
between social jet lag and blood sugar control in people with diabetes 
has also been studied. In two small samples of people with type 1 
diabetes, social jet lag was associated with higher HBA1c levels  
(43, 44). The association between social jet lag and HBA1c was also 
found in a cross-sectional study of 225 patients with type 2 diabetes 
(45). It is important to note that age modifies the association between 
SJL and diabetes. In a cross-sectional analysis of data of 1,585 
participants (mean age 60.8 years) from the New Hoorn Study cohort, 
the age-stratified analysis showed mixed results. Greater SJL was 
associated with a higher prevalence of diabetes in the subgroup 
younger than 61 but not in the subgroup older than 61 (46). Two 
related adolescent studies did not find an association between SJL and 
markers of glucose dysregulation (27, 28). In a cross-sectional study 
of 76 college students with T1D, social jetlag was not a significant 
predictor of HbA1c (47).
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Overall, the association between SD of sleep duration or timing 
and glucose metabolism may differ across the population. SD of 
sleep characteristics or IS may be more consistently associated with 
HbA1c in patients with diabetes compared with the general 
population. Current evidence showed that SRI was significantly 
associated with diabetes, glucose and HbA1c.The link between SJL 
and glucose metabolism showed a clear age distribution. Possible 
explanations are given for the inverse U-shaped association between 
age and effect results. The effect of SJL on glucose metabolism may 
have a time-cumulative effect, and the more minor associations in 
adolescents may be  attributable to less received exposure. Older 
adults, primarily in retirement, generally experience reduced SJL 
compared with younger adults. Furthermore, the strength of the 
association is attenuated due to poorer glucose regulation and a 
higher prevalence of chronic disease ascribed to physiological aging 
in older adults.

2.3. Obesity

Obesity is one of the most critical risk factors for cardiovascular 
disease and diabetes, affecting more than 600 million people 
worldwide. The etiology of obesity is complex, and the association of 
sleep regularity as a behavioral factor with obesity has been explored 
in several studies (Supplementary Table S3). Various methods have 
been established to assess obesity and its extent, including the most 
commonly used BMI and waist circumference (WC), bioelectrical 
impedance analysis, and imaging-based methods. The results of 
studies investigating associations between the standard deviation (SD) 
of sleep parameters and BMI were mixed. A large-scale retrospective 
cohort study of 21,148 participants showed that the variability of sleep 
duration is positively related to BMI (48). Similarly, greater variability 
in habitual sleep duration was associated with increased BMI in a 
cross-sectional study of 471 individuals (49). Two studies on elders 
also indicated that SD of actigraphy-derived sleep duration was 
associated with BMI (50, 51). The link between irregular sleep and 
BMI also exists in teens. One cross-sectional study recruiting 78 
college students demonstrated that bedtime variability was related to 
BMI (52). Another study of 307 college students showed that greater 
variability in wake time was associated with higher BMI (53). In a 
study of children who were already obese, multivariate models showed 
that SD of sleep duration was significantly positively associated with 
both BMI and WC (54). Instead of these results, several studies did 
not observe a link between sleep and changes in BMI (30, 33, 55, 56). 
In clinical studies, obesity is usually defined as BMI ≥ 30 kg/m2. A 
cross-sectional study of 6,038 elderly adults (3,053 men and 2,985 
women) was conducted to analyze the association between sleep 
regularity and obesity. The results showed that each hour of standard 
deviation in nighttime sleep duration increased the odds of obesity by 
63% in men (OR = 1.63, 95% CI [1.31–2.02]) and by 22% in women 
(OR = 1.22, 95% CI) [1.01–1.47]) (57). In the cross-sectional analysis 
of actigraphy data from 2,598 subjects, higher sleep duration 
variability was more likely to be obesity (19). However, no significant 
association between sleep duration variability measured by actigraphy 
and obesity was found in 1986 community-dwelling elders (30). 
Several studies also examined the association between SD of sleep 
dimensions and WC, but no significant association was found  
(30, 51, 55).

Recent evidence maybe has shown a relationship between SRI and 
obesity. In the analysis of 1978 older adults from the Multi-Ethnic 
Study of Atherosclerosis (MESA) study, lower SRI was associated with 
higher BMI (16).

The literature on the association between interdaily stability (IS) 
and obesity is less consistent. In the cross-sectional analysis of 1,137 
individuals, higher IS predicts increased rates of having obesity (17). 
However, no significant association between IS and BMI was 
observed (22).

The association between social jetlag (SJL) and obesity has also 
received extensive attention. A population-based European survey 
showed that SJL is associated with increased BMI (58). The findings 
are consistent with several subsequent studies (38, 40). Specifically, a 
cross-sectional analysis of data from 815 participants at age 38 showed 
that SJL was positively associated with BMI (40). Another study in 447 
middle-aged adults (mean age 42.7 years) showed that SJL was 
associated with BMI (38). A study in the general population indicated 
that people with social jetlag>2 h had higher BMI compared with 
social jetlag<1 h (59). In comparison, multiple studies have found no 
association between social jet lag and BMI (24, 25, 43, 60). 
Interestingly, the association between social jet lag and BMI may 
be influenced by diurnal preference. Only in the participants with 
morning type, social jetlag was positively associated with BMI (61). 
Two studies showed correlation between obesity defined as 
BMI ≥ 30 kg/m2 and SJL (40, 61). However, no significant association 
was found between obesity and SJL in 4837 US adults (62). Current 
research also suggested that individuals with greater social jet lag are 
more likely to have larger WC (40, 41, 61). It is worth noting that the 
participants of the above studies were mainly adults. Regarding 
adolescents, multiple studies have not reported a clear association 
between SJL and measures of obesity (26, 28, 63). In a cross-sectional 
study of Latino minors, SJL was associated with healthier behaviors 
and lower odds of being overweight (28). The association between SJL 
and obesity also had gender differences. A study in adolescents 
showed that SJL was associated with higher levels of obesity only in 
girls (27).

In summary, SRI was significantly associated with 
BMI. Nevertheless, current evidence is inconsistent for the association 
between obesity and other metrics of sleep regularity. SD of sleep 
duration may be more likely related to BMI in comparison to sleep 
timing. The results on the association of SJL with obesity are mixed, 
with a strong and consistent association between SJL and obesity 
appearing in adults. In contrast, no significant association was 
observed between children and adolescents. Further large-scale 
prospective studies are needed to confirm the confounding 
effect of age.

2.4. Coronary heart disease

There has been less previous evidence for the link between 
irregular sleep and coronary heart disease (Supplementary Table S4). 
A study recruited 1992 participants without cardiovascular disease at 
baseline and conducted a median follow-up of 4.9 years. After 
adjusting for multiple cardiovascular risk factors, the hazard ratio for 
cardiovascular events was 2.14 (95% CI [1.24–3.68]) for individuals 
with sleep duration SD >120 min compared with individuals with 
sleep duration SD ≤60 min. Similarly, individuals with sleep onset SD 
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>90 min were more likely to develop cardiovascular diseases than 
sleep onset SD ≤30 min (HR = 2.11, 95% CI [1.13–3.91]) (64). It 
should be noted that although the study did not explicitly analyze the 
association between coronary heart disease and irregular sleep, the 
Supplementary material showed that the cardiovascular events that 
occurred during the follow-up mainly consisted of coronary heart 
disease. A study among 1978 older adults demonstrated that greater 
sleep irregularity measured by SRI was correlated with 10-year risk of 
cardiovascular disease (16).

3. Mechanisms

Individuals with irregular sleep show multiple pathophysiological 
changes (Figure 1), which may provide possible explanations for their 
increased risk of cardiometabolic disease.

3.1. Circadian dysfunction

Circadian dysfunction is thought to be the primary mechanism 
by which irregular sleep increases cardiometabolic risk. The circadian 
rhythm is the endogenous mechanism that coordinates physiological 
processes with biological behavior to synchronize with daily frequent 
environmental changes (65, 66). At the molecular level, it is 
manifested as the periodic expression of clock genes throughout the 

body (67, 68), about 24 h a cycle. It was found that almost all 
cardiovascular physiological parameters (69, 70) (including blood 
pressure, heart rate, endothelial function, and others) and metabolic 
parameters (71) were under the control of circadian rhythms and 
fluctuated regularly throughout the day, which is necessary to 
maintain normal body function. A growing body of evidence from 
animal models (72–74) and experimental human studies (75, 76) 
suggests that circadian rhythm impairment negatively affects 
cardiovascular function.

Circadian rhythms are regulated by external factors, such as light/
dark alternations and feeding/fasting cycles. Recurring changes in a 
person’s sleep–wake schedule, along with irregular light exposure and 
eating timing, cause a misalignment between the internal circadian 
clock and the external exposure environment. The human body 
responds through a complex regulatory network, maintaining a 
dynamic balance between circadian and extrinsic rhythms (67). 
Nevertheless, when changes in sleep behavior are significant or 
persistent, they can exceed the superior limits of adjustment ability in 
body and lead to circadian dysfunction eventually.

Shift work exposes some workers to irregular sleep patterns. 
Studies showed higher levels of epigenetic methylation modifications 
(77–79) in clock genes and declined rhythm of melatonin and cortisol 
(80), suggesting that irregular sleep was associated with circadian 
dysfunction. Under the influence of the modern social lifestyle, people 
engaged in non-shift work also have a common phenomenon of 
irregular sleep. Although the degree of irregular sleep schedule is 

FIGURE 1

Relevant mechanisms through which irregular sleep increases risk of cardiometabolic disease. Irregular sleep induces changes in a variety of 
pathophysiological processes, including circadian disruption, autonomic dysfunction, inflammation, poor dietary behavior, HPA axis dysfunction and 
gut dysbiosis. Among them, circadian rhythm disturbance is considered to be the central link.
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milder than shift workers, the long-term irregular sleep state may lead 
to chronic circadian dysfunction. A study of college students showed 
that irregular sleep and light patterns were associated with delayed 
circadian rhythms (6).

Irregular sleep causes circadian rhythms to disrupt, further 
exacerbating sleep–wake disorders. Damage to circadian rhythms is 
also associated with many pathophysiological processes, including 
autonomic nerve dysfunction (75, 81), increased inflammation (82), 
and metabolic disorders (83), all of which increase the risk of 
cardiovascular events. Therefore, circadian rhythm disturbance may 
be  an essential and initial linkage in developing cardiometabolic 
diseases caused by irregular sleep.

3.2. Autonomic dysfunction

Autonomic dysfunction is another potential mechanism by which 
irregular sleep increases the risk of cardiometabolic disease. The 
autonomic nervous system is involved in physiological processes such 
as regulation of blood pressure (84), endothelial function (85), blood 
glucose, and lipid metabolism (86, 87). Autonomic dysfunction is 
associated with the progression of atherosclerosis. Heart rate 
variability (HRV) is a non-invasive measure widely used to detect 
autonomic function, and studies have shown that low HRV is 
associated with higher incidence and prevalence of coronary heart 
disease, hypertension (88, 89), diabetes (90), obesity (91, 92) 
in individuals.

A study in 421 healthy adolescents using actigraphy to measure 
sleep duration over multiple nights found that individuals with more 
significant variability in sleep duration exhibited lower HRV, 
suggesting a worse autonomic function. This association remained 
meaningful even after adjusting for sleep duration and efficiency (93). 
Furthermore, the findings showed that high sleep duration variability 
was more strongly associated with lower HRV than mean sleep 
duration (3, 94). However, further validation in other studies 
is lacking.

In addition, people with higher SJL showed lower HRV values 
during sleep (95). Of note, there was no significant difference in the 
expression of circadian markers between the two groups with high SJL 
and low, suggesting that high SJL can induce changes in autonomic 
function through other means. In animal model studies, experimental 
conditions showed that higher sympathetic activity in rats interfered 
with disturbed sleep patterns, leading to a higher degree of cardiac 
remodeling (96).

3.3. Inflammation

Inflammation is an integral part of the complex mechanisms 
involved in the occurrence and development of atherosclerosis. 
People with irregular sleep risk cardiometabolic disease, and 
inflammation may play an intermediate role. Higher levels of 
inflammatory markers represent a stronger inflammatory state. In 
one study, 42 healthy young adults were monitored for 14 days of 
activity recording, and the sleep regularity was described by the 
standard deviation of sleep duration and onset timing. Furthermore, 
it was found that irregular sleep was associated with significantly 

increased white blood cell count (97). Also, in another study, 
nocturnal variability in sleep duration was associated with higher 
levels of C-reactive protein (98), and similar results were found in a 
subsequent study with a larger sample (99). In a cohort of Mexico 
City adolescents, greater sleep duration variability was correlated 
with higher interleukin-1β (100). In addition to young adults or 
adolescents, a study in an elderly population showed that more 
significant variability in bedtime, later wake-up time, and more 
prolonged bedtime were all associated with higher tumor necrosis 
factor-α (101). However, a study of nurses only found that increased 
sleep duration variability was associated with higher levels of 
interleukin-1β and interleukin-6, not C-reactive protein and tumor 
necrosis factor-α (102). In a population with a large proportion of 
individuals diagnosed with obstructive sleep apnea syndrome (OSA), 
greater SJL was related to elevated levels of interleukin-1, after 
adjusting for OSA severity (103).

3.4. HPA axis dysfunction

Cortisol is a hormone the body produces in response to stress, and 
the HPA axis regulates its secretion. Under normal circumstances, 
cortisol secretion gradually declines after peaking in the morning. 
Normal cortisol rhythm plays a vital role in maintaining human 
health. Long-term irregular sleep patterns may be a constant stressor 
on the body, affecting the normal cortisol rhythm. Multiple studies 
have shown a link between sleep variability and poor cortisol rhythms. 
In a study of 76 adolescents, greater variability in sleep duration was 
associated with lower morning cortisol levels and a flatter cortisol 
curve (104). Similar results were confirmed in a larger sample (105).

Decreased cortisol hormone during wakefulness is not conducive 
to rapid recovery from sleep, which is associated with an increased 
incidence of mood disorders. Studies have shown that a flatter cortisol 
slope is associated with higher levels of coronary artery calcification 
(5) and increased cardiovascular mortality in nonclinical populations 
(106). Decreasing circadian cortisol slopes are also associated with 
increased future cardiac events and mortality in patients after 
coronary artery bypass grafting (107). The disruption of the circadian 
rhythm of cortisol weakens the anti-inflammatory effect, causing an 
overreaction of inflammation (108) and promoting the occurrence of 
cardiometabolic diseases.

3.5. Poor dietary habits

Diet provides the body with the energy and nutrients it needs. 
Poor dietary habits are associated with excess energy and unsuitable 
dietary structure, which increase the risk of cardiometabolic diseases 
(109, 110). Several studies have shown that irregular sleep increases 
total calorie intake. An adolescent study showed that higher sleep 
duration variability (HSV) was associated with poorer dietary habits, 
with an increase of 170 kcal in total daily energy intake for every 1-h 
increase in HSV (111). Studies on preschool children also showed 
similar results (112). In addition, multiple studies have linked 
irregular sleep patterns to undesirable dietary intake. In a study of 82 
undergraduate students, more considerable objective SJL was 
associated with lower consumption of grains and greater consumption 
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of sugar and confectioneries (113). Similarly, adolescents with larger 
SJL were linked with a higher frequency of sugary beverage 
consumption than those without SJL (114). Dietary patterns assess 
diets from a more holistic perspective. An epidemiological study 
showed that increased SJL was associated with lower healthy dietary 
pattern scores (115). A social survey conducted among Japanese 
workers revealed a negative correlation between SJL and adherence 
to a healthy diet (116). The Mediterranean diet is a dietary pattern 
related to better cardiovascular and metabolic health. A cross-
sectional study of 534 young adults demonstrated that individuals 
with greater SJL showed lower adherence to the Mediterranean diet 
(117). In addition, irregular sleep can interfere with normal eating 
rhythms. The impaired eating rhythm and irregular sleep together 
cause the disturbance of the circadian rhythm, triggering a series of 
subsequent reactions and promoting the occurrence of cardiovascular 
and metabolic diseases.

3.6. Gut dysbiosis

Gut microbial imbalance sheds new light on the link between 
sleep regularity and cardiometabolic risk. The bacterial components 
of the gut microbiota and various secreted metabolites can 
be  presented to human cells as signaling molecules to stimulate 
downstream metabolism-related pathways to participate in the 
metabolic regulation process (118, 119). Studies have demonstrated 
that gut microbial composition and function exhibit rhythmic 
fluctuations throughout the day (120, 121). This rhythmic change is 
compatible with intestinal mucosal epithelial cell biorhythms and 
feeding/fasting cycles, which promote metabolic health. Frequent 
changes in sleep patterns can cause disturbances in biological rhythms, 
often accompanied by disruption of eating rhythms and preferences 
for high-fat diets, which can interfere with a dynamically stable gut 
microbiota structure and established rhythm (122–124), resulting in 
adverse effects on the body. In rat experiments, circadian rhythm 
disturbances simulated by an 8-h circadian shift every 3 days can lead 
to imbalances in gut microbiota composition and rhythms (121), with 
reductions in the Christensenellaceae family attenuating such. The 
role of microbiota in suppressing body weight gain following a 
high-fat diet in the host (125). Increased numbers of Firmicutes and 
decreased numbers of Bacteroides were also observed in individuals 
who experienced irregular sleep. Increased Firmicutes to Bacteroides 
ratios are associated with weight gain and obesity (126). In addition, 
there is evidence that circadian rhythm dysregulation and sleep 
fragmentation can cause disruption of tight junctions in intestinal 
epithelial cells, leading to increased intestinal barrier permeability 
(127). Lipopolysaccharide (LPS) and other pro-inflammatory 
substances infiltrate the circulation, leading to systemic inflammation 
(128), thereby increasing the risk of obesity and insulin resistance.

4. Discussion

The link between sleep and cardiometabolic disease has received 
extensive attention. The number of studies on sleep regularity is 
limited compared to dimensions such as sleep duration and quality. 
In the modern lifestyle, situations such as shift work, sleep disorders, 

and electronic devices have made irregular sleep a widespread 
phenomenon, which needs more attention. Existing studies have 
mostly shown that irregular sleep increases the risk of cardiometabolic 
disease. However, the associations we observed were overwhelmingly 
cross-sectional, with few longitudinal studies to clarify causation. 
Based on the current status of this study, prospective study designs 
should be used in the future to explore the association between sleep 
regularity and cardiometabolic diseases.

Some studies did not draw positive conclusions, and the 
heterogeneity of sleep regularity evaluation indicators is one of the 
main reasons. A unified and more complete measurement to assess 
sleep regularity needs to be established in future research, and the 
newly emerged SRI is expected to become this representative indicator. 
In addition, some studies have shown age and gender differences in 
the correlation between irregular sleep and cardiometabolic disease. 
Future studies need to be conducted in a prospective and large-scale 
sample study to help formulate specific public health policies for 
different populations.

OSA is a common sleep disorder closely related to cardiovascular 
health. Patients with OSA are prone to sleep fragmentation and 
daytime sleepiness due to frequent apnea events at night. These 
symptoms make the sleep process of OSA patients lose a stable state 
and rhythm, leading to irregular sleep. OSA is an important 
confounding factor in exploring the relationship between sleep 
regularity and health. In future studies, we need to exclude patients 
diagnosed OSA when selecting study subjects or use statistical 
methods to balance the influence of OSA in multivariate 
regression analysis.

Notably, results of most existing studies on the link between 
sleep regularity and cardiovascular and metabolic diseases drew 
qualitative conclusions. Investigating the dosing-response 
relationship of irregular sleep on cardiometabolic health might 
prove important in future work. This will provide a theoretical basis 
for guiding the public to scientific sleep. Finally, how to improve 
irregular sleep is an important issue that we urgently need to solve. 
Sleep is an individual’s behavior primarily affected by subjective 
cognition and attitude. Future research is needed to clarify 
modifiable factors that affect sleep regularity. A study has improved 
sleep regularity scores of college students through strengthening 
education and information feedback to change their attitude towards 
sleep (129). In the future, we will need to identify other potential 
targets for improving irregular sleep.

In conclusion, irregular sleep can increase the risk of various 
cardiometabolic diseases, and multiple potential mechanisms explain 
this association. Sleep regularity is an essential dimension of sleep 
health that cannot be ignored. With the widespread prevalence of 
cardiometabolic diseases today, devoting much attention to the overall 
health of sleep may be  a vital means to curb the epidemic trend. 
Clinicians and patients should be more attentive to the role of regular 
sleep on cardiometabolic health.
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