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Although since the 1980s, the mortality of coronary heart disease(CHD) has obviously 
decreased due to the rise of coronary intervention, the mortality and disability of CHD 
were still high in some countries. Etiological studies of acute myocardial infarction(AMI) 
and CHD were extremely important. In this study, we used two-sample Mendelian 
randomization(TSMR) method to collect GWAS statistics of osteoprotegerin (OPG), 
AMI and CHD to reveal the causal relationship between OPG and these two diseases. 
In total, we identified 7 genetic variants associated with AMI and 7 genetic variants 
associated with CHD that were not found to be  in linkage disequilibrium(LD; 
r2 < 0.001). Evidence of a positive effect of an OPG genetic susceptibility on AMI was 
discovered(IVW OR = 0.877; 95% CI = 0.787–0.977; p = 0.017; 7 SNPs) and CHD (IVW 
OR = 0.892; 95% CI = 0.803–0.991; p = 0.033; 7 SNPs). After removing the influence of 
rs1385492, we found that there was a correlation between OPG and AMI/CHD (AMI: 
weighted median OR = 0.818;95% CI = 0.724–0.950; p = 0.001; 6SNPs;CHD: weighted 
median OR = 0.842; 95% CI = 0.755–0.938; p = 1.893 × 10−3; 6SNPs). The findings of our 
study indicated that OPG had a tight genetic causation association with MI or CHD. 
This genetic causal relationship presented us with fresh ideas for the etiology of AMI 
and CHD, which is an area of research that will continue in the future.
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Introduction

Although coronary intervention and the management of risk factors such as arterial 
hypertension, hyperlipidemia, diabetes, and smoking have resulted in a marked decline in CHD 
mortality rates since the 1980s, CHD remains a leading cause of death and disability in many parts 
of the world (1). In 2019, there were 56.5 million deaths worldwide, of which 32.9% (18.6 million 
deaths) were caused by cardiovascular diseases (2). As part of the Sustainable Development Goals 
(SDGs), the United Nations aims to reduce premature mortality due to noninfectious chronic 
diseases (NCDs) by one third. Reducing in cardiovascular diseases, especially ischemic heart disease 
(IHD), might partially achieve this goal (2–4). As a result, it is necessary to keep an eye on the risk 
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factor of CHD. Pathologically, AMI is considered as irreversible necrosis 
of myocardial cells caused by acute ischemia. (5). Every year, more than 
8 million Americans are hospitalized for signs and symptoms that 
suggest AMI. About 1,700,000 people were finally diagnosed with 
myocardial infarction(MI) (6). Thus, etiological studies of AMI and 
CHD are extremely important.

MI patients may benefit from the use of bone-related proteins for 
early risk stratification and prognosis evaluation. In patients with AMI, 
OPG levels are correlated with the complexity of coronary artery 
disease(CAD) (7, 8). Healthy subjects with low or high coronary artery 
calcification cannot be  distinguished by using OPG. A single OPG 
measurement is limited to the diagnosis of angina pectoris (AP) in 
patients with suspected CAD (9, 10). OPG is identified as a new 
biomarker of cardiovascular mortality and clinical events in patients 
with AMI complicated with heart failure. These findings are consistent 
with the hypothesis that there may be  a connection between bone 
homeostasis mediators and cardiovascular diseases (10). However, the 
causal relationship between OPG and AMI or CHD has not been 
systematically tested due to the existence of potential deviations such as 
confounding factors or reverse causality, and the causal relationship 
between OPG and AMI or CHD is still unclear.

In the traditional epidemiology, observational research is used to 
explore the causes of diseases, but the whole exploration process lacks 
the content of causal inference, which is often considered unreliable. 
Randomized controlled study (RCT) is considered to clearly explain 
factors that contribute to disease outcomes and their causal relationships. 
However, due to its ethical limitation and its colossal human resources 
and material resources, RCT research has not been widely implemented 
in the clinics. In recent years, Mendelian randomization (MR) design 
has been considered as one of the best ways to make up for RCT. To 
solve the above dilemma, GWAS database tool variables and genetic 
variation can be taken as exposure factor tool variables (11).

Analysis of TSMR is one of the most commonly used methods in MR 
has the following advantages. First of all, with the publication of a large 
number of GWAS, we can obtain a large number of GWAS data. Secondly, 
a two-sample study would have included subjects from both cohorts by 
using previous observational study cohorts, which can significantly 
expand the sample size and improve detection effectiveness. Finally, with 
the increasing amount of GWAS data, we can obtain a huge number of 
tool variables, which also increases the genetic explanation of the causal 
relationship between the tool variables related to exposure factors and the 
outcome, making the obtained results more reliable. In this study, we used 
the TSMR method to collect GWAS statistics of OPG, AMI or CHD to 
reveal the relationship between OPG and these two diseases.

Methods

Study design

We used the TSMR method to investigate the causal relationship 
between OPG and cardiovascular diseases (including AMI and CHD). 
This study adopted the published summary data in the GWAS database, 
so it had no use for ethical approval. It is important to note that this 
study has not been preregistered and should therefore be considered 
exploratory in nature.

Our basic design is shown in Figures 1, 2. (1) The instrumental 
variables (IVs) have nothing to do with confounding factors; (2) The IVs 
have something to do with the exposure factor. (3) IVs are not directly 

related to the ending variable, but can only be related to the outcome 
variable through the exposure factor. The study was conducted using the 
two-sample MR package (version 0.5.4) and the ‘Mendelian 
Randomization’ package (version 0.5.1) of the R program (version 4.0.0).

CHD was defined as a compound definition including MI, acute 
coronary syndrome, chronic stable angina, or coronary stenosis >50%, 
and AMI included in the original GWAS database was all myocardial 
ischemia-related myocardial infarction, and non-ischemic myocardial 
infarction was not included in the study.

Data sets

The summary-level data of OPG was provided by the GWAS summary 
statistics for Olink CVD-I proteins were collected from 13 European 
ancestry populations, which consists of 21,758 patients with OPG and 
13,138,400 SNPs. All patients were from the European population (12). 
Summary data of AMI came from Coronary ARtery DIsease Genome wide 
Replication and Meta-analysis (CARDIoGRAM) plus The Coronary 
Artery Disease (C4D) Genetics(CARDIoGRAMplusC4D) and CHD also 
came from CARDIoGRAMplusC4D (13). The MI data set included 43,676 
patients with MI and 128,199 controls, all of whom are from Europe (12). 
The CHD data set included 60,801 patients with CHD and 123,504 controls 
(13). According to the queuing information reported in the initial GWAS 
analysis, our investigation identified no sample overlap between OPG and 
AMI or CHD.

IVs selection and validation

IVs must be  closely related to OPG. In order to ensure the 
relationship between OPG and IVs, we chose p < 5×10−8 as the IVs in the 
GWAS database. Furthermore, PLINK 1.9015 method was applied to 
remove disequilibrium in the linkage effect of IVs to ensure the 
independence of the selected IVs. We should guarantee that r2 < 0.001 in 
IVs, and those who do not fulfill the criteria should be eliminated. F 
value was used to assess the IVs’ capacity to predict exposure.

The chosen IVs must be independent of AMI and CHD, as well as 
several confounding variables. Besides, it needed to be closely related to 

FIGURE 1

Graphical abstract.
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OPG. To begin, we used the aforementioned criteria to choose just the 
IVs that would be most helpful. (14). Secondly, MR-egger was used for 
horizontal pleiotropy test (15). Subsequently, palindromic SNPs which 
were defined as having minor allele frequencies greater than 0.3 were 
removed to make sure the effect of SNP on plasma OPG corresponded 
to alleles with the same genotype due to its effect on CHD or AMI. Then, 
the GWAS catalog of1 was used to check the connection of the chosen 
IVs with adjusted potential confounders. Finally, we  produced F 
statistics utilizing the online application2 to discover the correlation 
between the specified IVs and OPG.

Statistical analysis

In the present study, the follow-up sensitivity was evaluated using 
the weighted median, simple median, maximum likelihood, and 
penalized weighted median methods. The weighted median, simple 
median, maximum likelihood, and penalized weighted median methods 
are more robust than the inverse-variance weighted (IVW) for 
individual genes with highly outlying causal estimations and produce a 
consistent estimate of the causative influence when valid IVs 
surpass 50%.

Firstly, our main analysis method was IVW in order to investigate 
causal relationships between exposure factors and outcomes. To 
determine whether the MR hypothesis was violated, a sensitivity analysis 
was conducted. We used Cochran Q-test and I2 statistics to detect the 
heterogeneity of the IVW model (16). In the Cochran Q test, when 
I 2 > 25% and p < 0.05, potential heterogeneity was regarded as existing. 
Excessive heterogeneity indicated that modeling assumptions were 
violated or invalid instruments were included, leading to horizontal 
pleiotropy (17). Due to its inherent robustness to heterogeneous outliers, 
weighted median models were recommended for causal inference in this 
case. They offered a slightly lower estimation accuracy, but provided a 
somewhat higher estimation accuracy (18). By using the MR-Egger 

1 https://www.ebi.ac.uk/gwas/

2 https://sb452.shinyapps.io/overlap/

intercept, a directional pleiotropy was detected. In order to determine 
whether any single SNP was responsible for the combined IVW estimate, 
we performed a leave-one-out analysis. Observed causal estimates were 
filtered using Steiger filtering to determine whether reverse causality 
affected the observed association (19). TSMR analysis was also repeated, 
but rs1385492 related to OPG was removed for genome-wide 
significance analysis (p < 5 × 10–8), and leave-one-out analysis was 
performed to assess causality. As a next step, we checked in the GWAS 
catalog whether any of the remaining 6 SNPs have a secondary 
phenotype associated with cardiovascular disease. MR-PRESSO was 
performed prior to MR analysis in order to identify and exclude any 
SNPs that might be pleiotropic.

Results

Genetic variants selection and validation

Overall, We obtained 7 AMI genetic variants and 7 LD-independent 
CHD genetic variants (r2 < 0.001). These genetic variants reached 
genome-wide significance in the dataset of genetic variants of OPG 
(p < 5*10–8). There were several SNPs that were not found directly in the 
CHD or AMI datasets, however. Table 1 showed all independent genetic 
variants analyzed through the TSMR approach. Consequently, 
we  calculated the exposure from MR-Egger regression using the 
intercept term (Table 1) and found no horizontal pleiotropic pathway. F 
statistics were analyzed to determine the relationship strength between 
genetic variants and exposure. Statistical values of F over 10 were 
considered to be strong enough to eliminate all biases in causal genetic 
variant estimation. The F statistic value of the gene variants we selected 
was 1,120 for CHD and 1,073 for AMI, which is enough to alleviate any 
bias in the assessment of causal genetic variants.

Analyzed by TSMR and sensitivity analysis

We found evidence that OPG genetic predisposition is beneficial to 
AMI (IVW OR = 0.877; 95% CI = 0.787–0.977; p = 0.017; 7 SNPs) and 
CHD (IVW OR = 0.892; 95% CI = 0.803–0.991; p = 0.033; 7 SNPs). There 

FIGURE 2

Workflow of MR. IVW, Inverse variance weighted; MR Pleiotropy RESidual Sum and Outlier; SNP, single-nucleotide polymorphisms.
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was wide consistency among different models of MR in terms of causal 
estimates (Figures 3–5). Using Cochran’s Q-test, the IVW model appears 
to have no heterogeneity. Based on the MR-Egger intercept, there was 
no evidence of directional pleiotropy. Steiger filtering did not detect 
SNPs in the genome associated with reverse causation, and the 

association’s causal direction was reliable (Table  2; Figure  6). 
Additionally, we found that pooled IVW estimations were independent 
of any single SNP according to the leave-one-out analysis (Figure 7).

Interestingly, leave-one-out analysis displayed that in AMI and 
CHD, the null estimates of the weighted median method are driven by 

FIGURE 3

TSMR of plasma OPG and risk of AMI and CHD. We used the genome-wide association study (GWAS) of increasing plasma OPG level unit to summarize the 
statistics. The result was normalized to increase exposure by one unit. IVW, Inverse variance weighted; MR Pleiotropy RESidual Sum and Outlier; SNP, 
single-nucleotide polymorphisms.
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rs1385492. Observed significant estimates in the weighted median 
method support the idea that IVW is biased toward causal inference by 
outliers (Table 3). As a result, rs1385492 might bias MR estimations of 
SNPs with seven genome-wide significance. That is to say, after removing 
the influence of rs1385492, we  found that there was a correlation 
between OPG and AMI/CHD (AMI: weighted median OR = 0.818;95% 
CI = 0.724–0.950; p = 0.001; 6SNPs;CHD:weighted median OR = 0.842; 
95% CI = 0.755–0.938; p = 1.893×10−3; 6SNPs; Table 3; Figure 8). Neither 
heterogeneity nor pleiotropy was detected in the sensitivity analysis 
(Supplementary Table S1; Figures 9, 10). No high-impact points were 
found by Leave-one-out analysis (Figure 11).

Discussion

Consistent with most previous literature, our research found that 
the genetic tendency of OPG, as a polypeptide associated with the tumor 

necrosis factor receptor (TNF), is related to the reducing of the risk of 
AMI and CHD. As a member of the superfamily, OPG is a receptor for 
nuclear factor κB ligand receptor (RANKL), which is also an avid 
receptor for TNF-linked apoptosis-inducing ligand (TRAIL). OPG is 
commonly expressed in bone cells, vascular smooth muscle cells and 
endothelial cells. It is widely believed that it can be used as a sensitive 
biomarker of vascular calcification (7). Considering the rising frequency 
of CHD and AMI each year, the incidence of these conditions is 
growing, the mortality and disability rate are also high, and more and 
more scholars are interested in the causes of CHD and AMI. As early as 
2004, Toshiki Nagasaki and other scholars believed that OPG was closely 
related to MI and vascular injury of CHD (20). This study aimed to 
determine whether OPG correlate with AMI or CHD by using GWAS 
on a large scale. It was revealed that the OPG had a causal link to CHD 
or AMI. More recently, Mieczysław Dutka (21) also observed the 
connection between OPG and AMI or CHD, and showed that OPG was 
related to the onset of AMI or CHD. The result indicated that OPG, as 

TABLE 1 Genome-wide significant single nucleotide polymorphisms (SNPs) for OPG levels and their association with AMI and CHD.

SNP

OPG AMI CHD

E/o 
allele

Eaf Beta Se P Beta Se P Beta Se P

rs114165349 C/G 0.038 −0.240 0.029 2.69 × 10−16 0.022 0.033 0.509 0.032 0.030 0.286

rs1385492 G/A 0.443 0.175 0.009 6.07 × 10−76 −0.003 0.010 0.783 0.000 0.009 0.959

rs17600346 C/T 0.038 0.175 0.028 3.01 × 10−10 −0.057 0.028 0.043 −0.051 0.025 0.047

rs2515001 T/C 0.144 −0.082 0.013 4.35 × 10−10 0.001 0.015 0.912 0.003 0.013 0.804

rs28929474 T/C 0.023 0.285 0.037 9.91 × 10−15 −0.148 0.052 0.004 −0.146 0.045 0.001

rs3761472 G/A 0.184 0.0700 0.012 2.95 × 10−09 −0.022 0.013 0.090 −0.017 0.011 0.145

rs704 A/G 0.473 −0.147 0.009 1.55 × 10−55 0.029 0.010 0.005 0.024 0.009 0.008

Eaf: allele frequency; E/O allele: effect allele/other allele; SE: standard error.

A B

FIGURE 4

Results of the SNP analyses for the SNP effect of plasma OPG level on outcomes. (A) AMI (B) CHD.
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a single pathogenic factor in patients with AMI and CHD, has a 
substantial impact on prognosis and considerably affects the 
development of AMI and CHD. OPG may be the leading participant, 
not the bystander. And so far, no variant has been found within or near 
the OPG gene associated with circulating OPG levels.

The presence of calcification in atherosclerotic plaques has been 
confirmed in a growing number of studies as a factor in the pathogenesis 
of atherosclerosis, as well as associated with atherosclerosis morbidity. 
Calcification in this area is affected by the exact regulatory mechanism 
as that in bone tissue, so OPG and OPG/RANKL axis were initially 

A B

FIGURE 5

Scatterplot of MR estimates of genetic risk of OPG on AMI and CHD. Scatter-plot of genetic effects on OPG versus their effects on AMI (A) and CHD 
(B) with corresponding standard errors denoted by horizontal and vertical lines. The slope of each line corresponds to the estimated MR effect from 
different methods.

A B

FIGURE 6

Funnel plot MR estimates of genetic risk of OPG on AMI and CHD. The funnel plot of genetic effect of OPG relative to its effect on AMI (A) and CHD (B), and 
the distribution of corresponding points reflects the heterogeneity.

https://doi.org/10.3389/fcvm.2023.1041231
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Chao et al. 10.3389/fcvm.2023.1041231

Frontiers in Cardiovascular Medicine 07 frontiersin.org

TABLE 2 Sensitivity analyses with complementary methods.

Exposure outcome
Directional pleiotropy Cochran Q-test

Steiger P
intercepts value of p Q-statistic p

OPG AMI −0.004 0.879 12.067 0.060 2.89*10−146

OPG CHD 0.0003 0.988 14.159 0.058 1.73*10−147

AMI: acute myocardial infarction; CHD: Coronary Heart Disease.

A B

FIGURE 7

Sensitivity analyses using the leave-one-out approach for the association of plasma OPG level with outcomes. (A) AMI; (B) CHD.

A B

FIGURE 8

Results of the SNP analyses for the SNP effect of plasma OPG level on outcomes after removing rs1385492. (A) AMI (B) CHD.
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A B

FIGURE 9

Scatterplot of MR estimates of genetic risk of OPG on AMI and CHD after removing rs1385492. Scatter-plot of genetic effects on OPG versus their effects 
on AMI (A) and CHD(B) with corresponding standard errors denoted by horizontal and vertical lines. The slope of each line corresponds to the estimated 
MR effect from different methods.

studied in relation to cardiovascular disorders. The first study to knock 
out the OPG gene in mice found that along with severe osteoporosis, 
the aortic wall calcified more rapidly than before. However, opposite 
results were shown in later clinical research (22). It was found that the 
high cardiovascular risk in patients with CHD was closely related to 
high OPG levels (21, 23). RANKL and TRAIL contribute to this 
association through their mutual interactions with OPG (24–26). 
Although several clinical experiments have proved that OPG is closely 
related to CHD or AMI (9, 21, 27), and this relationship is positive, 
there is still controversy about this relationship in academic circles. In 
addition, other studies have found an association between OPG and 
other cardiovascular diseases, including congestive heart failure, aortic 
stenosis, and aortic valve calcification (8, 28). At the same time, it is not 
only related to the occurrence of cardiovascular diseases, but also firmly 
to the prognosis of related cardiovascular diseases (29–33). However, 
these observational studies are limited to the sample size and 
experimental design. The causal relationship between OPG and CHD 
or AMI cannot be obtained.

RCT research is the highest level of epidemiological evidence, and 
it is also a research design that can best explain causality. However, due 
to the difficulty of its development, few researchers have done RCT 
research, plus the considerable human resources and material resources 
it needs, it is tough to conduct an RCT study. Empirical applications of 
mendelian randomization in traditional epidemiology skillfully make 
up for the deficiency of research on epidemiology traditionally in 
determining the cause of disease; at the same time, it can also make up 
for the weaknesses of previous observational study, including 
unavoidable confounding factors and inability to explore causality. At 
present, it has become one of the best epidemiological means to make 
up for RCT research (34). Because offspring inherit their genotypes 
from their parents randomly, SNPs are an excellent tool for analyzing 
the causal relationship between two factors (35). Our research enriched 
the literature on the relationship between OPG and MI or CHD. Firstly, 
we used the MR method to provide evidence for the causal relationship 
between OPG and AMI or CHD. Especially the causal relationship 
among them, IVW, weighted median and MR-Egger were provided to 

TABLE 3 MR associations of genetic determined OPG (P < 5 × 10−8) with AMI or CHD.

Methods
AMI (6SNPs) CHD (6SNPs)

OR 95%CI P OR 95%CI P

MR Egger 0.755 0.556–1.024 0.145 0.740 0.566–0.966 9.168 × 10−2

Weighted median 0.818 0.724–0.950 0.001 0.842 0.755–0.938 1.893 × 10−3

Inverse variance weighted 0.805 0.724–0.896 6.820×10−5 0.818 0.740–0.902 6.184 × 10−5

Simple mode 0.775 0.641–0.937 0.046 0.828 0.701–0.975 7.344 × 10−2

Weighted mode 0.824 0.719–0.944 0.038 0.845 0.749–0.952 4.007 × 10−2

AMI: acute myocardial infarction; CHD: Coronary Heart Disease.
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clarify the causal relationship among them. Although the weighted 
median method confirmed no causal relationship between OPG and 
AMI or CHD at the beginning of the study, with the deepening of the 
research, we found that rs1385492 was an important tool variable that 
affected the overall research results. After removing the influence of 

rs1385492, a reliable causal relationship among the three factors was 
obtained. Secondly, rs1385492 is related to TNF by consulting the 
GWAS catalog. It is well known that TNF plays a crucial important role 
in causing and developing the disease in cardiovascular medicine 
(36–38).

A B

FIGURE 10

Funnel plot MR estimates of genetic risk of OPG on AMI and CHD after removing rs1385492. The funnel plot of genetic effect of OPG relative to its effect 
on AMI (A) and CHD (B), and the distribution of corresponding points reflected the heterogeneity.

A B

FIGURE 11

Sensitivity analyses using the leave-one-out approach for the association of plasma OPG level with outcomes after removing rs1385492. (A) AMI; (B) CHD. 
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Our research also has limitations, mainly in the following aspects. 
First of all, we used the dataset of GWAS, not a single raw data, which 
caused many inconveniences in the analysis, the most significant of 
which is that subgroup analysis is impossible. AMI and CHD have many 
subtypes, for example, AMI including 5 types (Thrombosis in coronary 
artery caused by rupture, crack or dissection of coronary plaque leads 
to spontaneous myocardial infarction is designated as a type 1 MI; type 
2 MI is the pathophysiological process that leads to ischemic 
myocardium damage in the setting of an imbalance between oxygen 
supply and demand; because death has occurred, patients suspected of 
sudden cardiac death due to myocardial ischemia, or suspected of 
cardiac death due to new ECG ischemic changes or new LBBB have no 
time to collect blood samples for myocardial marker determination, 
which is defined as type 3 MI; type 4 is defined as myocardial infarction 
related to PCI; type 5 is defined as AMI related to coronary artery bypass 
grafting.) (39). Secondly, we solely analyzed the link between OPG and 
AMI or CHD in terms of genetic determinants and did not take into 
account a number of environmental confounding variables. Thirdly, In 
the absence of a comprehensive knowledge of the biological function of 
the chosen SNP, a pleiotropy hypothesis cannot be ruled out completely. 
In spite of this, it is pleasing that the effect estimation was robust across 
different MR models, and the IVW sensitivity analysis array failed to 
detect any pleiotropy when applied to our research. Finally, Population 
stratification, dynastic mating, and assortative mating should 
be  considered, since they may lead to confusion as they introduce 
false causality.

Conclusion

Generally speaking, our results supported that OPG is a casual risk 
factor for CHD or AMI. This causal relationship provided us with new 
ideas in the future research field of the etiology of AMI and CHD.
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