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Pulmonary arterial hypertension
associated with congenital heart
disease: An omics study
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Pulmonary arterial hypertension associated with congenital heart disease (PAH-
CHD) is a severely progressive condition with uncertain physiological course.
Hence, it has become increasingly relevant to clarify the specific mechanisms of
molecular modification, which is crucial to identify more treatment strategies.
With the rapid development of high-throughput sequencing, omics technology
gives access to massive experimental data and advanced techniques for systems
biology, permitting comprehensive assessment of disease occurrence and
progression. In recent years, significant progress has been made in the study of
PAH-CHD and omics. To provide a comprehensive description and promote
further in-depth investigation of PAH-CHD, this review attempts to summarize
the latest developments in genomics, transcriptomics, epigenomics, proteomics,
metabolomics, and multi-omics integration.
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1. Introduction

Pulmonary hypertension (PH) is classified into five clinical subtypes: pulmonary arterial

hypertension (PAH), PH associated with left heart disease, PH associated with lung diseases

and/or hypoxia, PH associated with pulmonary artery obstructions, and PH with unclear

and/or multifactorial mechanisms (1). PAH is a rare vascular disease with a morbidity of

about 0.0001%–0.0002% (2) and is characterized by progressive development of

pulmonary vascular remodeling, elevated pulmonary artery pressure, and heart failure (3,

4). In 2022, the European Society of Cardiology (ESC) and the European Respiratory

Society (ERS) proposed new criteria for PAH as mean pulmonary artery pressure

(mPAP) > 20 mmHg at rest, pulmonary arterial wedge pressure (PAWP)≤ 15 mm Hg,

and pulmonary vascular resistance (PVR) > 2 Wood units (1).

Congenital heart disease (CHD) is a structural cardiovascular malformation that occurs

at birth. The overall prevalence of CHD was 8.98 per 1,000 live births in China (5). A

systematic review and meta-analysis of the global birth prevalence of CHD showed that

the birth prevalence of CHD increased year by year, reaching a maximum of 9.410‰

from 2010 to 2017. Notably, the prevalence of CHD in Asia was higher than in Europe

and Americas for the first time, possibly because Asians have a higher genetic or

environmental susceptibility to CHD (6). CHD is a common cause of PAH (7), but the

prevalence of PAH in adults with CHD remains uncertain. A study from the Netherlands

showed that the prevalence of PAH in adult CHD was 3.2% (8). However, PAH was

unexpectedly common in adults from the European Congenital Heart Disease Survey
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Database, with a prevalence of PAH associated with CHD (PAH-

CHD) of 28% (9). The 2012 National Audit of Pulmonary

Hypertension in the UK reported that PAH-CHD patients

accounted for 30.2% of all PAH patients (10). In addition, an

epidemiological study of an insured pediatric population in the

United States showed that approximately 75% children with PAH

had a CHD diagnosis (11). Structural defects of the heart may

increase cardiac load, pulmonary blood flow, and PAP, resulting in

the development of PAH that further increases blood flow to the

heart and raises the cardiac load, adversely impacting the patients’

quality of life, even leading to heart failure or death (12). PAH-

CHD is an important type of PAH that belongs to the first main

group and PH associated with complex CHD belongs to the fifth

group (13), which is beyond the scope of this review’s discussion.

The clinical classification of PAH-CHD includes Eisenmenger’s

syndrome, PAH associated with prevalent systemic-to-pulmonary

shunts, PAH with small/coincidental defects, and PAH after defect

correction (14). PAH-CHD can induce progressive proliferation

and migration of pulmonary vascular smooth muscle cells as well

as permanent pulmonary vascular remodeling (15). Although

there is a decreasing trend in the mortality of PAH-CHD, the

symptoms of PAH-CHD can still worsen during a person’s

lifetime, and PAH is incurable (16). Although significant progress

has been made for patients with Eisenmenger syndrome and

therapies have substantially improved functional capacity and

increased life expectancy, the longterm survival remains poor (17).

Moreover, recent data showed that the presence of postoperative

PAH is steadily being associated with increased mortality (18). If

diagnosed and treated early, PAH-CHD can be completely

reversed (19). Early diagnosis of PAH-CHD at the moderate or

clinically subtle stage is critical and can enhance the cure rate of

patients. However, the identification of biomarkers for PAH-CHD

through conventional approaches for blood-based biomarker

discovery is still a clinical challenge (20).

As a method to study diverse classes of biomolecules, omics is

widely used to address biological systems in many dimensions

(from genes to behaviors) and disclose the molecular properties

underlying complex cellular behaviors (21), thus enabling

individualized medicine at the molecular level (22). However,

traditional single-omics studies are not comprehensive enough to

better elucidate the biological processes at the systemic level,

which require the integration of multi-omics data for a full

analysis of biological systems (23). The pathogenesis of complex

diseases such as PAH-CHD can be studied at different omics

levels. Many of the methods currently used to assess the severity

of PAH and evaluate treatment outcomes (e.g., right heart

catheterization, cardiac function class, and 6-min walk distance)

have significant limitations (15). Without early diagnosis and

appropriate treatment, the survival rate of PAH-CHD is low.

Therefore, there is an urgent need to identify valuable

biomarkers to guide the diagnosis and treatment of PAH-CHD.

This review summarizes recent multi-omics studies on PAH-

CHD from the aspects of genomics, transcriptomics,

epigenomics, proteomics, metabolomics, and the latest progress

in multi-omics integration, which is helpful to understand the

mechanism of PAH-CHD and guide diagnosis and treatment.
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2. Genomics and PAH-CHD

Genomics is the study of an organism’s total genetic contents

including the genes, sequences, alignments, and structures; thus, it

can provide an outlook for investigating biological problems starting

with the most basic DNA code of life (24). Genome sequencing

technologies are currently widely employed in research laboratories

due to the rise of high-throughput sequencing technologies which

are faster and have a greater output-to-cost ratio (25).
2.1. SOX17 in PAH-CHD

SRY-related high-mobility-group (HMG) box transcription

factor 17 (SOX17) is a novel risk gene of PAH (26). Numerous

studies have shown that PAH caused by pathogenic variants of

SOX17 is frequently associated with CHD, hemoptysis, and

radiological abnormalities. Zhu et al. (27) reported that SOX17,

together with other PAH-CHD–associated genes including TBX4,

LGD, D-Mis, NOTCH1, PTPN11, and PSMD12 played an

important role in PAH-CHD. Montani et al. (28) followed-up 20

patients with PAH carrying SOX17, seven of them were PAH-

CHD (35%). Furthermore, Zhu et al. performed whole-exome

sequencing in 256 patients with PAH-CHD and showed that

SOX17 had rare variants associated with PAH-CHD, which was

highly restricted during development and encoded a transcription

factor involved in Wnt/β-linked protein and Notch signaling

(29). SOX17 was verified to be a risk gene for PAH-CHD in

PAH children with important factors of bone morphogenetic

protein receptor type 2 (BMPR2), TBX4, and SOX17 (30).
2.2. BMPR2 in PAH-CHD

Mutations in the BMPR2 gene, a member of the transforming

growth factor beta (TGFβ) receptor superfamily, significantly

increase the risk of developing hereditary PAH (31) and have

been identified as a major genetic cause of PAH (30, 32, 33).

However, it is controversial whether BMPR2 is a risk gene for

PAH-CHD. Roberts et al. (34) detected BMPR2 mutations in 6%

of a mixed cohort of adults and children with PAH-CHD.

Similarly, another study found significant downregulation of

BMPR2 in the plasma of PAH-CHD patients and hypoxia-

induced pulmonary artery smooth muscle cells (PASMCs) (35).

However, a recent study found only 7 (2.7%) patients carrying

rare deleterious BMPR2 variants in a cohort of 258 patients with

PAH-CHD and concluded that BMPR2 variants were not a

common cause of PAH-CHD (36).
2.3. Genetic variants in pediatric patients
with PAH-CHD

Endothelin-1 (ET-1) is important in children with severe PAH-

CHD, and previous studies have found a variant with minor allele
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adenine insertion in the 5′-untranslated region (5′-UTR) of the

EDN1 gene of PAH-CHD (37). Array comparative genomic

hybridization (CGH) is a powerful tool for identifying and

characterizing complex genomic rearrangements of less than

5–10 megabases (Mb), enabling a 10%–20% increase in the

detection of non-equilibrium cryptic rearrangements, such as

deletions and/or duplications. Dell’edera et al. (38) used array

CGH, karyotyping, and molecular cytogenetics for genomic

analysis to evaluate a case of multi-organ dysfunction

(malformed neonate, complex CHD, PAH) and found that the

7q35q36.3 deletion and the accompanying 20q13.2q13.33

duplication resulted in SHH, KCNH2, PRKAG2, and KMT2C

deletions and GATA5, CHRNA4 and GNAS duplications in the

affected child. A recent study suggested that the genes rs1799983,

rs2070744, and rs61722009 encoding endothelial nitric oxide

synthase (eNOS) may be risk factors for neonatal PAH-CHD

patients in South Fujian (39).
3. Transcriptomics and PAH-CHD

Detection of genes expressed in specific physiological and

pathological states through transcriptomics and next-generation

sequencing provides detailed insights into cellular phenotypes

(40). Transcriptomic studies of PAH-CHD involve the analysis of

the expression of all types of RNA transcripts (e.g., messenger

RNA [mRNA], non-coding RNA [ncRNA], microRNA

[miRNA]) in a given cell or tissue type. In contrast to the

genome which is essentially static, the transcriptome changes

over time in response to cellular, environmental, and

developmental stimuli.
3.1. Studies of miRNA associated with
PAH-CHD

Micro RNAs (miRNAs) are a class of small endogenous

ncRNAs that are important regulators of many genes; they act by

interacting with the 3′-UTR of specific mRNA targets, leading to

translation repression or transcript degradation. Many miRNAs

have been reported to play a critical role in the development and

progression of PAH (41–43) and CHD (44), highlighting their

potential use as PAH biomarkers and therapeutic tools.

Therefore, miRNAs may be used as early diagnostic and

prognostic markers for PAH-CHD. miR-19a expression was

enhanced in the blood of PAH-CHD patients compared to CHD

patients and has been shown to be a significant marker of PAH-

CHD (20). Long et al. (42) collected serum from 61 patients with

PAH-CHD and 53 patients with CHD and found that serum

miR-27b was upregulated in patients with PAH-CHD, while

miR-451 was downregulated in patients with PAH-CHD,

miR-27b and miR-451 were associated with B-type natriuretic

peptide (BNP) and asymmetric dimethylarginine (ADMA), and

that the associations were significantly correlated with disease

severity. Similarly, recent studies have also found that the

expression of miR-204 and miR-451 was significantly reduced in
Frontiers in Cardiovascular Medicine 03
the blood of children with PAH-CHD compared with CHD and

the healthy control group, suggesting that miR-204 and miR-451

could be used as diagnostic biomarkers for PAH-CHD and that

combined detection of miR-204 and miR-451 was more valuable

for the diagnosis of CHD-PAH (45). Another study also showed

that the level of plasma miR-204 in children with PH-CHD was

lower than in children with CHD, and miR-204 expression may

be one of the indicators to judge the severity of PH and monitor

response to PH therapy (46). In addition, a previous article

found that the expression of circulating miR-21 of PAH-CHD

patients was higher than that of normal controls. However,

patients with heart failure had significantly lower expression of

circulating miR-21 and left ventricular dysfunction (47). miR-223

is a potential circulating biomarker and small molecule drug for

the diagnosis and treatment of PAH. Zeng et al. (48) found that

female patients with PAH-CHD had lower serum miR-223 levels

than healthy patients. It was also seen for the first time that

miR-223 could regulate PASMC proliferation, migration, and

actomyosin reorganization through its new targets RhoB and

myosin light chain of myosin II (MLC2), thereby leading to

vascular remodeling and PAH. MiR-98 shows lower expression

in PAH-CHD patients than in CHD patients and can be used as

a diagnostic marker of PAH-CHD (49). The expression of miR-

509-3P in the serum of PAH-CHD patients was lower than that

of the normal group, and the diagnostic value of circulating

serum miR-509-3P for PAH is similar to that of

echocardiography. Furthermore, the combination of MiR-509-3p

and echocardiography further improves the diagnostic efficiency

of PAH (50). Ma et al. (51) found that miR-27B was up-

regulated in PAH-CHD patients compared to CHD patients, and

the expression level of miR-27B was positively correlated with

preoperative mPAP.
3.2. Studies of circular RNAs associated with
PAH-CHD

NcRNAs play an important role in the pathogenesis of PAH

(52). Circular RNAs (circRNAs) are a new type of ncRNA that

play an important role in regulating cellular metabolism by

binding to target miRNAs or by direct interacting with proteins

(53, 54). They have become a hotspot of ncRNA. circRNAs are

covalently closed RNA molecules produced by reverse splicing

process, and their unique circular structure in absent 5′ caps or

3′ polyadenosine tail can protect them from degradation by

RNA exonucleases, making them stable and abundant in tissues

and body fluids, particularly in eukaryotes (55). This feature of

circRNAs makes them promising clinical biomarkers for PAH-

CHD. One study reported that circRNA hsa_circ_0003416 was

significantly downregulated in the plasma of PAH-CHD

patients compared to the CHD and control group, and

negatively correlated with BNP (56). Using a bioinformatics

approach, Su et al. (57) identified 27 differentially expressed

circRNAs (3 up-regulated and 24 down-regulated), including

downregulatedcirc_003416 and upregulated circ_005372 in

PAH-CHD compared with CHD.
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4. Epigenomics and PAH-CHD

Epigenomics is an omics approach to alter gene expression

without changing the DNA sequence, and emerging epigenetic

tools can be used for prevention, diagnosis, and therapeutic

markers. Epigenetic mechanisms include DNA methylation and

histone modifications (58). High-throughput genomic

technologies based on next-generation sequencing now allow

precise quantification and analysis of RNAs and species, allowing

genome-wide studies of epigenetic or regulatory mechanisms,

including deoxyribonucleic acid methylation, histone

methylation, acetylation, and transcription factor binding (59).

Epigenomic studies have played an indispensable role in

revealing disease-associated epigenetic markers and are now

applied to the study of various cancers (60), lung diseases, and

cardiovascular diseases (61). Currently, there are relatively few

reports on the epigenomic aspects of PAH, especially the

epigenomic study of PAH-CHD has not been reported. Meloche

et al. (62) revealed, for the first time, the critical role of the

epigenetic reader Bromodomain Containing Protein-4 (BRD4) in

the physiopathology of PAH by demonstrating that BRD4 acts as

a coactivator in PAH to promote the transcription of genes

leading to cell cycle progression. Another study found that

increased BRD4 expression in the coronary arteries of PAH

patients contributed to vascular remodeling and development of

co-morbiditie (63). Chen et al. (64) reported that epigenetic

upregulation of mitochondrial dynamic protein-49 (MiD49) and

MiD51 increased mitosis, which drove pathological proliferation

and resistance to apoptosis to promote PAH.
5. Metabolomics and PAH-CHD

Metabolomics characterizes the metabolites present in a sample

or matrix, including the amino acids, fatty acids, carbohydrates,

and other compounds produced by metabolic processes in

biological fluids, cells, and tissues. It has traditionally been used

to identify biomarkers for diagnosis and prediction of disease

(65). With better understanding of pulmonary vascular disease,

metabolic abnormalities have been identified as an important

factor of PAH development and progression (66).

During pulmonary vascular stenosis, occlusion, and right heart

failure, the metabolic profile in tissues and blood changes

significantly, making it feasible to characterize the metabolic

disturbances underlying the disease, discover biomarkers for risk

stratification or prognosis, and identify new therapeutic targets.

PAH-CHD patients had significantly higher plasma

concentration of homocysteine (Hcy) and ADMA than CHD as

well as healthy controls. Furthermore, Hcy levels were higher in

the cyanotic PAH-CHD patients than the acyanotic patients in

the same group (67). The concentration of Hcy increased with a

significantly negative correlation in children with PH-CHD and

is a potential biomarker to predict PH (68).

Iron is an essential trace element that plays a key role in normal

physiological processes, and the occurrence of PAH is also associated
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with iron deficiency (ID) (69). For example, ID was found to be

highly prevalent in patients with PAH-CHD, with 39% of 153 PAH

patients suffering from ID (70). Recently, He et al. (71) performed

a metabolomics study of the plasma of patients with PAH-CHD,

wherein a total of 193 different metabolites were measured at

different time points of defect repair: prior to cardiopulmonary

bypass (CPB) after anesthesia (Pre), immediately after CPB (T0),

24 h (T24), and 48 h (T48) after defect repair. Alterations in 17

metabolites were significantly associated with a decrease of mPAP

at T48: propionylcarnitine, butenylcarnitine, isobutyryl-L-carni-tine,

hexanoylcarnitine, PC[16:0/22:4(7Z, 10Z, 13Z, 16Z)], 7-methyl-

guanine, bilirubin, 3-amino-2-oxazolidone, isoleukylproline,

anserine, L-homoserine, N4-acetylsulfamethoxazole, galactinol

dihydrate, and daidzein 4′-O-glucuronide were positively correlated

with mPAP decrease; PC [14:0/22:5(4Z, 7Z, 10Z, 13Z, 16Z)],

hydroxyphenylacetylglycine, and guanosine monophosphate were

negatively correlated with mPAP decrease. The gradients of blood

gas indicators (DPAP, aHCO3, svcHCO3, and aPCO2) were

positively correlated with the gradient of mPAP at T48 and were

correlated with the changes of the shunt correction-related

metabolites: propionylcarnitine, butenylcarnitine, isobutyryl-L-

carnitine, and hexylcarnitine.
6. Proteomics and PAH-CHD

Proteomics is a discipline developed independently on

genomics for characterizing the expression levels, post-

translational modifications, protein-protein interactions, and other

features of all proteins expressed in a complete organism (or cell)

at a specific time and in a specific space, aiming to describe them

as precisely as possible. Proteomics can also characterize the

entire set of proteins and their isoforms in a cell, tissue, or

biofluid to gain, at the protein level, a comprehensive

understanding of the processes related to organism physiology

and pathology (72). Complex processes such as transcriptional

regulation, selective splicing, RNA editing, and protein execution

occur during gene expression, thereby making measurements at

the protein level more suitable for detecting clinical phenotypes

than raw transcriptome data. Indeed, with the development of

high-throughput mass spectrometry (MS) and analytical software,

proteomics has become an important complement to genomic

approaches (73). Proteomics technology used in the field of PAH-

CHD can provide new specific markers for early diagnosis, while

simultaneously detecting and monitoring the disease progression

and prognosis, to provide new clues for the pathogenesis of PAH-

CHD. Therefore, the study of PAH-CHD proteomics has

irreplaceable clinical significance and application prospects.
6.1. Endothelin-1 in PAH-CHD

Endothelin is a peptide isolated from vascular endothelial cells

having vasoconstrictive activity and can induce proliferation of

vascular smooth muscle cells. Endothelin-1 (ET-1) plays an

important role in the pathogenesis of PAH, and the ET-1
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pathway is an important target for PAH-specific drug therapy (37).

As early as 1991, Yoshibayashi et al. (74) found elevated endothelin

concentrations in patients with PAH-CHD compared to patients

without PH. Later, Huang et al. (75) observed increased

expression of ET-1 and ET-1 receptors (ETRs), and activation of

urvivin-Akt, urvivin-ERK1/2, and phos-pho-mTOR pathways in

the pulmonary arteries and small arteries of PAH-CHD patients.

Li et al. (76) found that circulating endothelial cells (CECs) and

ET-1 levels were significantly elevated in patients with PAH-

CHD than healthy controls, as well as positively correlated with

the indicators for assessing the severity of PAH: mPAP, arterial

partial pressure of oxygen, and arterial oxygen saturation. A

study on 31 patients with PAH-CHD showed a significant

positive linear correlation among mPAP and plasma ET-1,

ADMA, BNP, and uric acid (UA) levels in all patients, and

suggested that ET-1 may be a biomarker of PAH-CHD and can

be used to pre-evaluate the effect of iloprost on PAH-CHD (15).
6.2. ADMA and BNP in PAH-CHD

Several studies reported aberrant expression of ADMA and

BNP in PAH-CHD. A systematic review included 1,113 patients

with PAH-CHD who had higher levels of BNP, N terminal-pro-

fragment (NT-proBNP), ADMA, and vascular endothelial growth

factor (VEGF). The study found that the ADMA concentration

was elevated in patients with PAH-CHD compared with patients

with CHD alone, while the VEGF expression was significantly

higher in patients with persistent PAH and CHD after correction

of underlying heart disease than in those with PAH-CHD (77).

Another study also reported significantly elevated BNP and

ADMA in the serum of patients with PAH-CHD compared with

the CHD and control groups (45). In addition, Fang et al. (78)

found that plasma ADMA level was significantly elevated in

patients with PAH-CHD and could be used as a biomarker for

identifying PAH-CHD and assessing the response to sildenafil

therapy in patients with coronary artery disease. Furthermore, the

specificity and sensitivity were 82.8% and 90%, respectively, at the

threshold value of 0.485 umol/L for measurement of plasma

ADMA in patients with severe PAH. Eisenmenger’s syndrome

(ES) could also be identified by plasma ADMA, with a threshold

value of 0.85 umol/L, specificity of 85.2%, and sensitivity of 64.3%.
6.3. Differential proteins in reversible and
irreversible PAH-CHD

When PAH-CHD pressure is significantly elevated, there is no

ideal metric to determine whether PAP improves after treatment

in these patients. Using proteomics techniques, finding key

differential proteins that are responsible for whether postoperative

PAP is reversible in patients with PAH-CHD has the opportunity

to provide a basis for the treatment of PAH-CHD. With

proteomic analysis, Huang et al. (79) identified 85 up-regulated

proteins and 75 down-regulated proteins in PAH-CHD compared

with normal lung tissues, including cytoskeletal proteins and
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extracellular matrix, cytoskeleton, immune response, and

complement pathways. Among these proteins, Caveolin-1, filamin

A expression, and cathepsin D were significantly upregulated, and

glutathione-transferase MU1 (GSTM1) was significantly

downregulated in the irreversible PAH-CHD group; the expression

of Caveolin-1, filamin A, and cathepsin D were positively

correlated with whereas the expression of GSTM1 was negatively

correlated with pathological grade. Transgelin, a 22-kD protein of

the calponin family, is exclusively and abundantly expressed in the

cytoskeleton of visceral and vascular smooth muscle cells in adult

animals. It was shown that transgelin was highly expressed in

PASMC of small pulmonary arteries in PAH-CHD tissues

compared to normal lung tissues and showed positive correlation

with pathological grading, especially in the irreversible PAH group

(80). A study of serum urviving found that preoperative serum

urviving in rats with irreversible PAH-CHD was significantly

higher than that in rats with reversible PAH-CHD and that there

was also a significant correlation between serum urviving and

BNP, preoperative PVR index, and postoperative mPAP (81).
6.4. Potential protein biomarkers in
PAH-CHD

Angiotensin-converting enzyme 2 (ACE2) is a major component

of the vasoprotective axis of the renin-angiotensin system (RAS). The

serum level of ACE2 protein in PAH-CHD patients decreased

significantly with the increase of mPAP, which is likely a marker of

severity and prognosis in PAH-CHD patients (82). Prostaglandins

are also involved in the development of PAH, and previous studies

have reported overexpression of cyclo-oxygenase 2 (Cox-2) protein,

a catalyzer of prostaglandin, in the blood of children with PAH-

CHD (83). Zhang et al. (84) performed the first proteomic analysis

of plasma from PAH-CHD patients using iTRAQ technology and

showed that about 190 differential proteins were detected in

different types of PAH-CHD patients. Ten differential proteins

were identified when comparing CHD and PAH-CHD patients

(SAA1 protein, complement Factor H-related Protein 2, anti-Factor

VIIIscFv, Carbamoyl-phosphate synthetase I, APCS protein, von-

Willebrand factor, BRF1 protein, glyceraldehyde-3-phosphate

dehydrogenase, glycosylphosphatidylinositol phospholipase D, and

intestinal lactoferrin receptor). High mobility group box protein 1

(HMGB1) is a ubiquitous nuclear protein that is constitutively

expressed in most cells. It has been reported that the HMGB1 level

was significantly elevated in patients with PAH-CHD compared to

patients without PAH and healthy controls, as well as correlated

significantly with PAP and PVR (85). Similarly, Li et al. (86) found

that plasma growth differentiation factor 15 (GDF15) level was

significantly elevated in children with PAH-CHD compared to

those with CHD without PAH, and positively correlated with

functional class, uric acid, NT-proBNP, and hemodynamic indices.

Pim-1 (provirus integration site for Moloney murine leukemia

virus) kinase, a calcium/calmodulin-dependent serine/threonine

protein kinase, is a downstream regulator of STAT3 and is

implicated in apoptosis, proliferation, differentiation, and tumor
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formation. As reported by Zhu et al. (87), Pim-1 was highly expressed

in patients with PAH-CHD compared to healthy controls and

patients with CHD without PAH, which had significant value for

the diagnosis of PAH-CHD when the plasma Pim-1 concentration

reached 16.80 ng/ml, and had a reference value for the diagnosis of

severe PAH-CHD when the plasma Pim-1 concentration was

20.53 ng/ml. Meng et al. (88) found that osteopontin (OPN)

expression was higher in PAH-CHD patients than in those with

CHD but no PAH, and positively correlated with pulmonary

hypertension status. Furthermore, OPN partially acted through

anb3-integrin-Akt and anb3-integrin-ERK1/2 cascades to enhance

the proliferation and migration of PASMC in rats, and played an

important role in vascular remodeling of PAH. Connective tissue

growth factor (CTGF), which functions as a downstream mediator

of TGF-β signaling is also closely associated with pulmonary

vascular remodeling and may be a promising diagnostic biomarker.

It was found that plasma CTGF level was significantly higher in

patients with PAH-CHD and in patients with cyanotic PAH-CHD

than in patients without cyanotic PAH-CHD (89). Copeptin has

been used as a surrogate biomarker for arginine pressor (AVP)

secretion. Gaheen et al. (90) evaluated plasma copeptin levels in 25

children with PAH-CHD and found that elevated plasma copeptin

level in children was a good predictor of severe PAH and poor

prognosis. Plasma copeptin level has significantly positively

correlation with mPAP, PVR, and pulmonary blood flow, and

negatively correlated with right ventricular diastolic function.

Recently, it has been shown that endothelial inhibitory hormone

was elevated in pediatric PAH-CHD patients compared with

healthy controls and controls with CHD, and associated with

disease severity, disease improvement, and poorer survival in PAH-

CHD (91).
7. Integrating omics in PAH-CHD

Cybermedicine uses computational biology tools to integrate

multi-omics big data to potentially improve the diagnosis, prognosis,

and treatment of complex diseases, and is now successfully applied

to PH, coronary heart disease, diabetes, chronic lung disease, and

developments in medicine (92). With the integration of multi-omics

data, more biological processes, disease types, and key mechanisms

for customized therapy will be identified (93).

Yuan et al. (94) integrated proteomics and metabolomics for

the first time, followed by bioinformatics analysis, and found

many differential proteins, metabolites, and key pathways in

patients with ventricular septal defect (VSD)-PAH compared to

VSD controls. The protein alterations included upregulation of

DBH, ADIO, ANPEP, GP1BA, and TFR1 and downregulation of

GNAS. The abnormal metabolites were increased 5-HT, taurine,

creatine, sarcosine, 2-oxobutanoate, as well as decreased

vanillylmandelic acid, 3,4-dihy-droxymandelate, 15-keto-

prostaglandin F2α, fructose-6-phosphate (F-6-P), L-glutamine,

dehydroascorbate, hydroxypyruvate, threonine, L-cystine,

1- aminocyclopropane-1-carboxylate. The key pathways involved

cAMP signaling pathway, ECM-receptor interaction, AMPK

signaling pathway, HIF-1 signaling pathway, PI3K -Akt signaling
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pathway, and nepicastat hydrochloride monohydrate. In addition,

three predictors (based on plasma concentrations of DBH,

ANPEP, and ADIO) were detected in patients with congenital

ventricular septal defect PH. Ma et al. (95) performed 16 S rRNA

sequencing and metabolomics analysis on bronchoalveolar lavage

fluid of PAH associated with the congenital Left-to-Right shunts

(LTRS), patients with LTRS but no PAH, and the healthy group.

The integration of multi-omics showed that the pulmonary

microbes and metabolites may be potentially effective

biomarkers. Specifically, microbial composition analysis indicated

that the Bacteroidetes phylum was less abundantly altered, while

Lactobacillus, Alicycliphilus, and Parapusillimonas were

significantly altered, which may contribute to PAH-LTRS in

children. Moreover, metabolome profiling data showed that

metabolites involved in Purine metabolism, Glycerophospholipid

metabolism, Galactose metabolism, and Pyrimidine metabolism

were significantly disturbed in the PAH-LTRS cohort.
8. Conclusions and future directions

The development of PAH-CHD is complicated, involving

multiple signaling pathways and molecular mechanisms, which

remains to be further studied for screening serum biomarkers,

combination of diagnostic protocols, and individualized precision

therapeutic strategies. Recent application of omics such as

genomics, epigenetics, transcriptomics, metabolomics and

proteomics has improved the understanding of the pathogenesis

of PAH-CHD. Particularly, proteomics has provided new

perspectives for the diagnosis, treatment, and prognosis of PAH-

CHD. However, little work has been done on PAH-CHD

epigenomics and metabolomics yet, especially the former, which

should be given more attention in future research.
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