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Myocardial infarction is the most common cause of heart failure, one of the most
fatal non-communicable diseases worldwide. The disease could potentially be
treated if the dead, ischemic heart tissues are regenerated and replaced with
viable and functional cardiomyocytes. Pluripotent stem cells have proven the
ability to derive specific and functional cardiomyocytes in large quantities for
therapy. To test the remuscularization hypothesis, the strategy to model the
disease in animals must resemble the pathophysiological conditions of
myocardial infarction as in humans, to enable thorough testing of the safety and
efficacy of the cardiomyocyte therapy before embarking on human trials.
Rigorous experiments and in vivo findings using large mammals are increasingly
important to simulate clinical reality and increase translatability into clinical
practice. Hence, this review focus on large animal models which have been
used in cardiac remuscularization studies using cardiomyocytes derived from
human pluripotent stem cells. The commonly used methodologies in
developing the myocardial infarction model, the choice of animal species, the
pre-operative antiarrhythmics prophylaxis, the choice of perioperative sedative,
anaesthesia and analgesia, the immunosuppressive strategies in allowing
xenotransplantation, the source of cells, number and delivery method are
discussed.
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1. Introduction

Heart failure (HF) is a disease in which the ventricular filling and/or myocardial

contraction are compromised due to irreversible pathological modelling in the cardiac

structure and function (1–3). Ischemic heart disease is the most common cause of HF.

More than 26 million people are living with a failing heart worldwide (4), and 1 in every

8 reported deaths was due to HF (5). This prevalence is expected to increase by 46% in

2030 (6, 7). The most common cause of HF is ischemic heart disease. Myocardial

ischemia as a result of the blockage in the coronary artery can affect myocardial

contractility, and electrical conduction, and alters cardiac energetics (8). Pathological

hypertrophic remodelling of the left ventricle, fatal cardiac tachyarrhythmia (9) followed

by a cascade of secondary damage including inflammatory reaction, myocardial cell

rupture and fibrotic scarring could collectively cause an abrupt decrease in left ventricular
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TABLE 1 Considerations in the Selection of Animal Category for
Modelling Myocardial Infarction.

Small animals Large animals
Mice, Rats, Guinea Pigs Pig, Dog, Sheep, Monkey

Life span Short Relatively long

Laboratory
turnaround time

Short Long

Heart Rate Fast (400–600 bpm in mice) Close to humans (50–116
bpm in swine)

Heart size Small Big and close to human size

Maintenance and
research cost

Low Relatively high

Heart anatomy
and kinetic

Small, rapid heartbeat Larger, close similarity to the
human heart

LAD coronary
collaterals

Difficult to identify. Easy to identify. Targeted
occlusion at specific segments
of the coronary artery can be
achieved.

MI induction
method

Mostly involved invasive
thoracotomy for LAD
coronary artery ligation with
or without reperfusion. Other
methods such as
microembolism are possible
but less common in cell
therapy research.

Various CA occlusion
methods are possible such as
ameroid constrictor, coil
embolism or non-invasive
percutaneous balloon
angioplasty inflation to
induce occlusion

Analysis of
Imaging

Expensive, high-resolution
imaging equipment specialized
for the small animal is needed

Imaging devices used in
humans can be deployed.
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ejection fraction (LVEF) and failure. Despite technological

advancement and all the current pharmacological-based

treatment options, effective therapy that could prevent damaged

hearts from remodelling and failure is still lacking. Heart

transplantation is the only cure for end-stage heart failure, but

the therapy is challenged by the lack of donor and graft rejection.

Stem cells have been the research interest and hope to

remuscularize the weakening, injured myocardium and reverse

cardiac remodelling. Compelling evidence has shown that

pluripotent stem cells (hPSCs), such as embryonic stem cells

(ESCs) or induced pluripotent stem cells (hiPSCs) offer the

indefinite source of cardiomyocytes and are the only cells which

can be scaled up to produce a clinical relevant number for

remuscularizing injured myocardium. Studies have shown that

intramyocardially injected hPSCs-cardiomyocytes engrafted,

integrated synchronously with the host myocardium, regenerated

the remodelled, thin myocardium and improved cardiac function.

Whilst the clinical benefits of other adult stem cells such as

mesenchymal stromal cells or cardiac-derived progenitor cells in

cardiac regeneration are widely acknowledged (10, 11), the extent

of remuscularization in the injured hearts was generally far more

encouraging using hPSC-cardiomyocytes, as demonstrated in the

past studies (12–15).

To establish a suitable disease model for reliable

experimentation, investigators need to take into account the

animal species of choice, the subject availability, the cost and

the similarity/difference between the human subject as well as the

methods to induce myocardial injury that produces the

appropriate pathological microenvironment mimicking clinical

conditions which is suitable for testing therapeutic

remuscularization intervention. Table 1 summarizes the different

considerations in the use of small animals (mice, rats) and large

animals (pigs, dogs, monkeys) for modelling ischemic heart disease.
2. Cardiac remuscularization study
using large animals – the importance
and rationale

An ideal disease model should mimic the pathophysiology in

humans in order to more accurately and reproducibly examine

any novel therapy that would successfully translate into clinical

applications. In preclinical research, any new therapy would first

be tested in small animal models. This is because small animals

such as rodents have a short life cycle, hence requiring low

maintenance cost and high availability are instrumental in

producing statistically meaningful analysis within a comparatively

shorter time over the use of large animals (Table 1). An early rat

HF model was established by Pfeffer et al. using coronary artery

ligation (16). The groundbreaking study dated back to 1979 also

served as an important foundation for the development of the

successfully translated drug Captopril, the angiotensin-converting

enzyme that profoundly improved heart function and survival in

post-myocardial infarction (MI) patients (17).

Nonetheless, the differences in heart anatomy, size,

hemodynamic characteristics and responses to drugs or treatment
Frontiers in Cardiovascular Medicine 02
between small animal models and humans are likely the cause of

failed translation to clinical trials. These differences could also

explain the rather disappointing clinical results observed in most

major human stem cell therapy trials, despite the overwhelmingly

positive outcome and optimism reported in laboratory small

animal studies. In 2016, Zwetsloot et al. presented a systematic

review and meta-analysis of preclinical studies involving cardiac

stem cell treatment in MI animal models (18). They concluded

that the magnitude of effects of CSC treatment in the small

animal MI model was found to be greater than that of large

animals. Moreover, the recent incidence of cardiac arrhythmias

reported from non-human primate and pig studies following

human cardiomyocyte transplantation was not previously observed

in small animals possibly due to their high heart rate (13, 19, 20).

Hence, small animal studies may offer important preliminary

insights about the tested treatment, but a reassessment of its

therapeutic efficacy must be performed on large animals whose

systems are physiologically and anatomically more resembles

humans prior to starting clinical trials. This is also in line with the

recommendations by the transnational alliance for regenerative

therapies in cardiovascular syndromes (TACTICS) international

group that large mammals should be used as confirmatory studies

in view of their resemblance to human disease (21).
3. Strategies to induce myocardial
infarction in large animals

Many strategies have been introduced to create MI and HF

models in large animals, with the primary objective to occlude
frontiersin.org
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major coronary vessels and induce ischemic injury. These include

invasive thoracotomy-enabled permanent left anterior descending

(LAD) coronary ligation, reversible LAD coronary artery ligation

ischemic reperfusion-induced myocardial injury, coronary micro-

embolism, hydraulic occluder or ameriod constrictors, or less-

invasive percutaneous transluminal coronary angioplasty (PTCA)

balloon occlusion-reperfusion of the coronary artery (Table 2).

Nevertheless, the most common strategies employed in recent

preclinical remuscularization studies using large animals were

mainly the thoracotomy/permanent LAD ligation (24) or

ischemic reperfusion (30) and PTCA-assisted balloon occlusion/

reperfusion of LAD contrary artery (20). Unlike others, these

methods allow occlusion to take place at the specific location of

the LAD coronary arteries and produce predictable, consistent

infarct size which is pivotal for remuscularization study. Notably,

the mortality of the LAD occlusion method in large animals is

considerably high as they are prone to surgical-induced trauma,

high risk of bleeding and developing fatal ventricular fibrillation

following MI (35).

For assessing the efficiency and efficacy of cardiomyocyte

therapy on cardiac remuscularization, the animal model must

develop clear infarction to create the need for cellular

reconstitution. Methods such as coronary microembolism,

pacing-induced tachycardia and toxic injury can induce dilated

cardiomyopathy even without the presence of clear infarcts,

making them less common methods used for the cardiac

remuscularization-related study (36).
3.1. Irreversible occlusion of left anterior
descending coronary artery

Among the most commonly used methods for modelling MI in

large animals is by surgically ligating the LAD coronary artery (37),

with or without reperfusion (35). This method requires invasive

thoracotomy and complex surgical procedures to minimize

unnecessary tissue injury, infection and animal suffering that

allow good post-operative recovery. The advantage of this

method is the convenience of getting a direct visual of the heart

anatomy to identify and choose the site of ligation along the

LAD coronary artery since the ligation site determines the

resultant infarct size, as well as the mortality rate of the animal

(38, 39). In Tan et al. (2021) study, they performed a permanent

LAD coronary ligation without reperfusion on Yorkshire-

landrace swine (∼13 kg) heart, with the ligature placed at the

first branches of LAD and left coronary circumflex (24). This led

to an ejection fraction of ∼40% with a scar size of 15% in the

swine MI model. Some studies presented rather arbitrary and

confusing descriptions in their methodology especially the choice

of ligation site, which may explain the inconsistencies that

complicate the inter-study analysis (40). In Kashiyama et al.

study, they reported using permanent LAD coronary artery

ligation in cynomolgus macaques (6 years, 4–6 kg) but without

specifying the exact segment of LAD coronary where the ligature

was placed (26). In their study, the ejection fraction was found to

decrease by 30% in the control macaques.
Frontiers in Cardiovascular Medicine 03
Noteworthy that in MI models, there are differences in the

coronary collateral perfusion network in the animal species of

choice which can significantly affect the resultant infarct size and

the extent of the ischemic bed. In swine and non-human

primates, the coronary arterial architecture with limited collateral

vessels is similar to that of humans (41, 42). Therefore, a ligation

at a specific coronary segment can produce consistent and

predictable infarct size. The only setback in using the swine

model is the rapid changes in body weight from juveniles and

this may complicate long-term analysis as this alters the baseline

of swine cardiac physiology (43). Canine, on the other hand, has

an extensive collateral coronary network (44). Placement of the

ligature at the similar coronary artery segment may not produce

the intended, consistent infarct size (45), because the infarct size

decreases as the collateral flow in the canine heart increases (46).
3.2. Gradual LAD coronary occlusion using
ameriod constrictor

Ameroid constrictor was first introduced in 1957 (47),

consisting of an inner hygroscopic casein ring that, upon fluid

absorption, gradually expands against a fixed metal sheath and

occludes the vessel where it is placed (48). This method induces

chronic progression of coronary artery disease and develops

chronic myocardial ischemia in large animals, especially in pigs.

LAD occlusion using an ameroid constrictor demonstrated a

steady decline in cardiac function from 8 to 12 weeks, with a

50% reduction in the ejection fraction (49), inducing chronic HF

in the mini swine model with high reproducibility (50). Ameroid

constrictor comes in various sizes to fit the diameter of the vessel

of interest which is to be constricted. A study has shown that

different device size (tested 2.25, 2.50 and 2.75 mm) has minimal

effects on the resultant coronary flow and ischemic area

following the constriction in pigs (51). This may not be the case

in the canine model as the collateral vessels gradually develop

and reduce the regional ischemia and infarct size (51). The

modelling of chronic coronary stenosis using ameroid

constrictors in large animals is generally less popular due to the

laborious animal care and maintenance cost underlying the study.
3.3. Transient LAD occlusion to induce
ischemic/reperfusion injury

In clinics, rapid recovery of coronary blood flow through

balloon angioplasty is one of the treatment strategies for acute

MI. Ischemic/reperfusion (I/R) injury is a paradoxical

phenomenon where cellular injury results from the rapid

restoration of blood flow after prolonged oxygen deprivation.

This is due to the abrupt surge in oxygen level, which increases

the production of free radicals and calcium influx that causes

mitochondrial damage (52, 53). This is followed by an

accelerated inflammatory response which deteriorates cardiac

functions and causes irreversible myocardial cell death (54). To

model this pathological process in animals, temporary
frontiersin.org
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obstruction of LAD flow could be achieved by ligating the LAD

coronary artery using a silk suture with the ligature tied against a

piece of polyethene tubing parallel to the artery (55). Releasing

the polyethene tube would then allow reperfusion and introduce

reoxygenation injury. Alternatively, cardiac ischemia-reperfusion

injury can also be achieved using a minimally invasive

intervention without thoracotomy, by using an inflatable

intracoronary balloon catheter (12, 13, 22). Although this

method omits thoracotomy and reduces invasive tissue trauma, a

specialized skillset and expensive facility are also required in

performing the procedure under fluoroscopy.

In the I/R injury model, the length of the induced ischemic

time (or the coronary artery occlusion time) also affects the

outcome of the infarct size, in addition to the location of LAD

coronary artery blockage as previously mentioned. In a recent

study by Silvis et al. (2021), they examined the effects of different

coronary artery balloon occlusion times (60, 75 and 90 min) and

the reperfusion time on the myocardial infarct size in pigs (56).

They showed a positive correlation between ischemic time and

infarct size determined by the area at risk. However, a longer

reperfusion time after the occlusion of 75 min, examined after 1,

3 and 7 days, did not affect or exacerbate the infarct size further.

In short, the occlusion time of 30–180 min in duration has

proven to cause significant ischemic-induced infarction in a large

animal (57, 58). In most recent studies involving cardiac

remuscularization study using human cardiomyocytes, the

occlusion time used in establishing the I/R MI model were

60 min (swine) (33), 90 min (swine or non-human primates) (13,

22) and 180 min (non-human primates) (30).
3.4. Pre-MI induction preparation to reduce
the incidence of fatal arrhythmias

The incidence of arrhythmias is common in MI models,

especially the two most commonly used large animal species

swine (59) and non-human primates. In the anaesthetized MI

porcine model, fatal arrhythmia following coronary occlusion was

found to be almost inevitable (38). Approximately 15%–40% of

MI models in pigs died of ventricular tachycardias (VT) and

ventricular fibrillation (VF) minutes after coronary occlusion (59,

60). Some studies eliminated VF upon onset of MI in pigs by

defibrillation at 200 J (56, 61).

3.4.1. Amiodarone
Amiodarone is a class III antiarrhythmic drug and non-

competitive beta-blocker agent indicated to treat cardiac

dysrhythmias and it has been used as a prophylaxis means to

prevent VF during the early onset of MI (62), and to treat VF

post-AMI. The study has also shown that amiodarone, in

combination with lidocaine the anaesthetics and class 1b

antiarrhythmic agent (63, 64), reduced the incidence of fatal

arrhythmia in the ovine MI model (65). This combination of

prophylaxis regimen has also been adopted by Murry’s

laboratory in their macaque MI study using human embryonic

stem cells-derived cardiomyocytes in 2014 (20). They
frontiersin.org
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administered 100 mg amiodarone daily for 5 days prior to MI

induction to 10 days after MI induction through the oral route,

in addition to using lidocaine bolus at 1 mg/kg and by infusion

at 20 μg kg−1 min−1. The same laboratory removed amiodarone

from their standard of prophylaxis care in their recent report in

2018 but used it in one animal with refractory VF/VT (bolus

intravenous infusion) at 85 min of ischemia and given again in

combination with lidocaine (75 mg) and dopamine (10 μg kg−1

min−1) for 24 h after reperfusion due to sinus tachycardia (12).

However, they also acknowledged the omission of the

amiodarone from their study accounted for a higher incidence of

arrhythmias pre-cell injection.

3.4.2. Heparin
Heparin is an anticoagulant with heterogenous size and activity

(66).– The primary mechanism of action of heparin is to bind and

enhance the activity of antithrombin III and is required for

performing percutaneous coronary intervention procedures

during I/R modelling in large animals similar to the clinical

practice, in order to reduce thrombosis (67, 68). Some studies

also infused heparin before introducing I/R injury even in

thoracotomy-open chest coronary artery ligation surgery when

PCI was not used (30), to maintain a high activated clotting time

(∼250–350 s) (69), which were found to inversely correlated with

the likelihood of abrupt vessel closure (70, 71).
4. Choice of sedative, anesthesia and
analgesia

The surgical procedures required to perform in vivo cardiac

remuscularization studies are mostly invasive, some of which

require a thoracotomy, percutaneous coronary intervention, and

for enabling direct intramyocardial cell injection. Handling large

animals to prepare them for these procedures is challenging and

inhumane without proper and effective perioperative sedation,

general anaesthesia and analgesia. The outcome of infarction in

swine was also reported to be affected by the choice of

anaesthesia and breed (72). Employing a suitable anaesthetic

strategy during MI modelling in the large animal is important

for achieving adequate anaesthesia during the induction of the

intended pathophysiological changes, as well as securing stable

post-surgery hemodynamic and recovery, and reducing the risk

of anaesthesia-related mortality due to malignant hyperthermia

or complications following long anaesthesia (73). Here, the

choice of pre-emptive sedatives, anaesthesia and analgesia used in

large animal studies in Table 2 are discussed.
4.1. Pre-emptive sedation and analgesia

Large animals, such as porcine, canine or nonhuman primates

require sufficient restraint for any interventions without

jeopardizing the safety of the handlers. Ketamine is a widely used

intramuscular administered, non-competitive N-Methyl-D-

aspartate (NMDA) receptor antagonist and dissociative
Frontiers in Cardiovascular Medicine 09
anaesthetic of which the state of anaesthesia is cataleptic with

intense amnesia, analgesia and hypertonus (74). It is a Class III

controlled substance governed by the Drug Enforcement Agency

(DEA) in the United States, as well as regulated by the local

authority of many countries like Malaysia.

Ketamine is more widely used for less painful interventions but

offers good restraint in large animals e.g., blood collection. It is a

known irritant upon intramuscular injection due to its acidity

and has a high risk of developing neuronal damage and loss of

sensation in rhesus macaques (75) or muscle damage in

marmosets (76). It is also a direct negative inotrope and has the

ability to inhibit neuronal and extra-neuronal catecholamine

uptake (77). Ketamine provides fast-acting and rapid-onset

sedation (78) due to its high hydrosoluble characteristic that

allows a rapid increase in bioavailability in the central nervous

system (79).

Most procedural sedation and pre-emptive analgesic strategy

used in the studies summarized in Table 2 included ketamine

prior to the induction of any inhalational anaesthetic agent.

However, none of them administered ketamine as monotherapy.

Instead, ketamine was combined with other drugs with analgesic

effects such as xylazine, midazolam, atropine or propofol. This is

because gas anaesthesia alone provides no pain control and can

be stressful to the subject upon its withdrawal and recovery.

Combinations with xylazine the α2-agonist or other NMDA-

antagonist such as diazepam or midazolam can achieve good

sedation and excellent analgesia. The combinations also showed

to prevent seizures and promote muscle relaxation (80). One of

the advantages of using both combo ketamine/xylazine and

ketamine/midazolam could abrogate the swallow reflex during

endotracheal intubation (81).

Ketamine can cause hypersalivation in large animals and

humans (82). This can be addressed by co-administering

anticholinergics atropine (82). Furthermore, other combination

such as ketamine/propofol, collectively called “Ketofol”, is

used for short procedural sedation (12, 20). Propofol is a

sedative-hypnotic agent with good sedation and muscle

relaxation effects which could address the observed ketamine-

induced muscle spasm in rhesus macaques (83). Ketofol has

also been found to reduce adverse respiratory events as

compared to propofol treatment alone (81), as well as

demonstrated neuroprotective and anti-inflammatory

responses in mice with toxic status epilepticus (84). However,

the combination was also associated with a high incidence of

tachycardia (85, 86).

A ketamine/acepromazine/butorphanol procedural analgesia

mix was used by Nakamura et al. (2021) in minipigs.

Acepromazine is a phenothiazine tranquillizer of which sedation

is achieved via inhibiting alpha-adrenergic, dopamine receptors

in the central nervous system. It provides only mild to moderate

sedation in pigs and requires a normal liver function to be

metabolised and excreted through the kidneys. Acepromazine is

not by itself an analgesic but it can enhance the effects of

analgesic opioids, and in this instance, butorphanol (87). It also

prolonged the anaesthetic effects of ketamine and reduced the

proportionate dosage of ketamine (88).
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4.2. Inhalation anaesthetic

The two most common inhalational anaesthetic agents used in

the recent cardiac remuscularization studies in large animals are

isoflurane and sevoflurane (Table 2). Isoflurane is a widely

chosen inhalational anaesthesia for experimental interventions.

However, it is also known for its dose-dependent depression of

cardiac performance. This can be resolved by adding nitric oxide

to isoflurane anaesthesia to reduce the depressant effects on the

heart. Studies have also shown that isoflurane neither contributes

to coronary steal at clinically-meaningful concentrations (89) nor

causes myocardial ischemia in dogs (90). In fact, isoflurane has

been demonstrated to have protective effects against myocardial

I/R injury (91). Sevoflurane shares similar characteristics to

isoflurane, but it exerts dose-dependent depression of the cardiac

functions such as stroke volume, cardiac output or left

ventricular contractility without affecting the heart rate (92).

Noteworthy, sevoflurane was found to have a 30% lower

incidence of VF than isoflurane, as well as comparatively greater

hemodynamic stability and lower mortality in a porcine I/R study.
4.3. Post-operation analgesia

Buprenorphine and fentanyl are the two opioid analgesics of

choice in large animal studies involving invasive surgery.

Buprenorphine is a µ (mu) receptor partial agonist but the

binding is strong and hence the effect is long-lasting and able to

displace other short-acting pure μ agonists (93). It is also a weak κ

(kappa) receptor antagonist, making it a weak inducer of opiate

effects. Fentanyl, on the other hand, is short-acting, but a more

potent, pure µ-receptor agonist. Both opioids have little effect on

the heart (94, 95), but buprenorphine is more favourable than

fentanyl because it causes less respiratory depression at high doses

with a ceiling effect (96). Whereas fentanyl demonstrated dose-

dependent respiratory depression at high doses.

Ketoprofen and carprofen are non-steroidal anti-inflammatory

drugs (NSAIDs) drug with analgesic effects and have lower toxicity

profiles in animals than other NSAIDs. Both are propionic acid

derivatives acting through the inhibition of cyclooxygenase and

impedes prostaglandins biosynthesis. These NSAIDs were found

effective in postoperative pain relief in dogs (93) but have reported

the risk of gastrointestinal complications including stomach ulcers

(97). Ketoprofen is also known to affect platelet aggregation and

care should be taken in case of gastrointestinal bleeding (98).
5. Cardiomyocyte source, route of
delivery and cell number

Successful remuscularization of an injured heart requires

promising regeneration of the dead myocardial tissue in order to

restore the myocardial muscle density and contractile strength.

Many cell candidates have been tested in laboratories or clinics

(10), but this review will only discuss the past animal studies that
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used human cardiomyocytes derived from hiPSCs. Methods and

the efficiency of deriving functional cardiomyocytes from human

PSCs have been improved substantially, either by using growth

factors, small molecules, or combinations of both at a defined

culture time (99).

A myriad of methods has been introduced to administer cells

into the heart, with an aim to maximize cell homing, retention,

engraftment and subsequent survival and function. Previously,

cell administration via the systemic intracoronary route in

cynomolgus monkeys has proven inefficient with a high

incidence of embolism and poor graft survival (100). Local

intramyocardial route, however, is the most favourable method to

deliver cardiomyocytes, either via trans-endocardial or trans-

epicardial injection. The trans-endocardial route is considerably

less invasive than other local injection methods as it can be

achieved via the percutaneous catheter. The unique challenge in

implanting cells into the myocardium is the characteristic of the

heart being a constantly contracting organ, which creates

the mechanical force that squeezes the injected cells out through

the needle track (the “washout” effect) or the broken blood

vessels because of direct injection (101, 102).

To achieve high cell retention, epicardial implantation of a

cardiac patch may be considered. The only shortcoming of this

delivery method is the inevitable, invasive thoracotomy required for

the implantation. Recently, a minimally invasive intrapericardial

cell injection was proposed (102). The authors performed the

procedure through two small incisions (one for insertion of a

camera probe and another for a needle with exosomes in

hyaluronic acid hydrogel) on the pig chest wall and showed

minimal inflammation. They also tested the delivery method using

hiPSC-derived cardiac progenitor cells in decellularized porcine

heart matrix hydrogel and demonstrated promising cell

engraftment on the epicardial surface, minimal immune response

as well as the evidence of in vivo cardiomyocytes differentiation of

the injected cardiac progenitors. However, this reported benefit was

only tested and observed in rat hearts.

Studies have shown that the number of transplanted

cardiomyocytes determines the degree of remuscularization in the

injured heart (103). The range of cardiomyocyte numbers which

were tested in the∼40 g macaque infarcted hearts was between 400

and 1,000 million human induced pluripotent stem cells-derived

cardiomyocytes, through intramyocardial injection (12, 20, 30).

Assuming the average monkey body weight in those studies was

9 kg, the dose for every kg body weight in a human would be 44–

111 million cells or 3–7 billion cells in an adult human with an

average body weight of 70 kg. However, these numbers remain

inconclusive, as a question was raised about the clinical relevance

in proportion to the size of a human heart of which the left

ventricle contains only∼5 billion cardiomyocytes (104).

Another common approach in preclinical CM transplantation

studies in addition to intramyocardial injection is by epicardial

implantation of engineered heart tissue. A recent study by

Querdel et al. (2021) showed that EHT made of high

cardiomyocyte dose (1.5 × 2.5 cm, 12 × 106 cardiomyocytes)

improved heart function in guinea pigs, with in situ time-

dependent cardiomyocyte proliferation within the implanted
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EHT (103). The authors also claimed to have successfully upscaled

to generate a 7 × 5 cm human-relevant-sized EHT with 450 million

cells for clinical use. In a MI study using Gottingen minipigs

(weight 20–25 kg each), Suzuki et al. (2021) transplanted four

large, 2.5 × 2.5 cm cardiac tissue made with 2.5 million

cardiomyocytes on the aligned nanofibers to the infarcted

myocardium (1 billion cells in total, 50 million kg−1 for a 20 kg

minipig) (25). They concluded the treatment improved cardiac

function and angiogenesis with antifibrotic effects but low

engraftment, possibly due to immune rejection.
6. Strategies to overcome xenogenic
cell immune rejection and
immunosuppression

In most cases, the established MI animal models used for

testing the regenerative capability of any cell candidate were from

xenogenic sources, e.g., human cardiomyocytes to swine or

macaques’ hearts. One of the key determinants of successful

clinical use of cardiomyocyte therapy is dictated by the degree of

engraftment and survival of the transplanted xenogenic cells and

this outcome is affected by the immunologic responses of the

host recipient upon transplantation. Most of the preclinical cell

therapy experimentation involves xenotransplantation (12).

Transplantation of non-autologous cells can result in immune

reactions that are primarily caused by acute cellular rejection,

mainly because of the T cell alloantigen recognition of the major

histocompatibility complex (MHC) (105). Some allogenic cell

candidates may have the ability to evade immunorecognition and

avoid graft rejection, like the mesenchymal stromal cells (MSCs).

These cells are known to be immunomodulatory-privileged and

can effectively modulate the immune system by inhibiting T cell

proliferation or maturation after transplantation (106). This

suggests that MSC transplantation might not need

immunosuppression even if the cells are of an allogenic source

(107). However, such privilege was found to be withheld when

the cells were differentiated (108).

The very original concept of the creation of human iPSCs was

the possibility to derive them from autologous sources, and offering

cell therapy with the patient’s own cells for transplant would

resolve the problem with immunorejection (109, 110). However,

the high cost underlying each iPSC line generation and the

significantly longer time (months) required for differentiation

and up-scaling may not be feasible for some clinical conditions

which in need of immediate treatment. Hence, getting a universal

human iPSC line that could serve “off-the-shelves” would make

cell therapy more readily available for the use of broader patients.

The idea of cryobanking human induced pluripotent stem cells

(iPSCs) generated from HLA homologous donors matching for

human leukocyte antigen (HLA)-A, HLA-B, and HLA-DR alleles

has been first advocated in the United Kingdom (111). Instead of

using autologous cells, matching the compatibility of the

allogeneic iPSCs based on these three most notorious triggers of

immune rejection would turn the cell lines transplantable for a

larger patient population with good graft survival (111, 112).
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However, this approach may only apply to countries in which

the population has low diversity in HLA haplotypes (113).

Moreover, the conflicting finding was also observed in iPSC-

derived cardiomyocytes which revealed the need for

immunosuppressants despite the reduced immune reactivity due

to MHC matching (114).

In 2019, Schrepfer’s laboratory revealed that generating

allogeneic human iPSCs with hypo-immunogenicity is in fact

possible (115). These allogeneic human iPSCs inactivated their

major histocompatibility complex MHC class I and class II genes

(B2M and CIITA, respectively), as well as upregulated the non-

MHC ligand CD47 to silence innate immunity. They tested the

hypoimmunogenic human iPSCs in allogenic humanized NSG-

SGM3 mice and showed the successful formation of teratoma.

The iPSC differentiated derivatives, endothelial and

cardiomyocytes from the same hypoimmunogenic line also

showed similar survival in the mice up to 50 days, confirming

engineering process did not compromise the iPSC function and

its hypo-immunogenicity. Cowen’s laboratory also suggested the

removal of CIITA in human PSCs but they proposed selective

deletion of HLA-A/-B/-C instead of B2M to preserve the

expression of HLA-E and HLA-G, the HLA class Ib molecules

that retain the tolerance to natural killer (NK) cells (116). They

also introduced the expression of PD-L1 (T cell checkpoint

inhibitor) and HLA-G in addition to CD47. In their findings,

these modifications were able to be protected from the

immunosurveillance of T cells, NK cells and macrophages.
6.1. Drug-induced immunosuppression

While awaiting to materialize the use of hypoimmunogenic

hiPSC lines in clinics, an immunosuppression regimen is needed

for any allogenic cell transplantation in the current in vivo large

animal studies or in human studies. Immunosuppressive agents

are used either alone or in combinations to eliminate the effect

caused by host immune rejection following cell transplantation.

Calcineurin inhibitors and glucocorticoids are the two common

types of immunosuppressive drugs used in allogeneic cell

transplantation studies in large animals and using the two in

combinations is a more preferred strategy as it yielded superior

effects than using a single, individual drug approach.

6.1.1. Calcineurin inhibitor
Calcineurin is calcium and calmodulin-dependent serine/

threonine protein phosphatase which activates T cells (117).

Calcineurin inhibitor is commonly seen as the choice of

immunosuppressive agent in many large animal preclinical

studies of cardiac regenerative therapy, such as cyclosporine A

(CsA) or tacrolimus (Table 2, Immunosuppression). CsA binds

to cyclophilin while tacrolimus binds to immunophilin FK506

binding protein 12 (FKBP12) in the cytoplasm. Both complexes

prevent the downstream calcineurin-calmodulin complex-

mediated dephosphorylation of nuclear factor of activated T-cells

(NFAT) and upregulation of interleukin-2 (IL-2), the key

cytokine which activates T cell proliferation. Some studies
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supported that CsA can enhance the immunosuppressive capability

of MSCs, but the evidence is only limited to in vitro observations

(118, 119). A study was performed to examine the serum level

for animal safety after CsA administration (15 mg−1 day−1, twice

daily via oral route) in the I/R pig model (weight ∼33 kg) (120).
All readings of the serum levels were found within the reference

value, suggesting that the dose is safe to keep CsA serum

concentration at 82%. This CsA dosage is still adopted in many

recent pig MI studies (24, 33). In non-human primates, CsA was

given to maintain a serum trough level of 200–250 μg/L (12, 20).

Tacrolimus is also used to replace CsA in case of recurrent

rejection (121) and has fewer side effects that are seen in CsA

like hypertrichosis and gingival hyperplasia (121).

6.1.2. Steroid
Glucocorticoids are steroid hormones (prednisone and

methylprednisolone) that modulate the gene expression of T and

B cells, and some other nucleated cells that illicit acute immune

rejection. The binding of prednisolone to glucocorticoid receptors

on transplanted cells inhibits the downstream nuclear factor-κВ
mediated expression of growth factors and secretion of

proinflammatory cytokines (122). The binding inhibits the

proliferation of several leukocytes including T and B cells,

monocytes, macrophages and granulocyte, and made steroids a

standard immunosuppressant for heart transplant recipients for

induction and maintenance of immunosuppressive state in

recipient patients. Long-term consumption of glucocorticoids is

also coupled with undesired side effects on the heart as well as

other organs (123).

6.1.3. Antibodies
Abatacept is a human cytotoxic T-lymphocyte antigen

(CTLA4)-Ig fusion protein which was initially developed as an

inhibitor of the CD28/B7 pathway (BMS-188667) (124). The

antibody is used to block the interaction of CD80 and CD86 of

the antigen-presenting cells with CD28 costimulatory molecule

on T cells to prevent its activation. In primates, CTLA4-Ig was

tested and found to be effective in suppressing the acute rejection

of MHC-mismatched renal allografts (125) and preventing the

antibody formation against ovine red blood cells (126) in

cynomolgus monkeys.

Basiliximab and daclizumab are chimeric human/murine

monoclonal antibodies both targeting the alpha chain of CD25

high-affinity interleukin2 receptor of T cells, and preventing

activation of T cells (127). The monoclonal antibody is largely

used in renal transplantation with a significantly low acute

rejection rate, which also allows rooms to lower the dosage of

calcineurin inhibitors or steroids postoperatively.

6.1.4. Mycophenolate mofetil
Mycophenolate mofetil (MMF, or RS-61443), and its

hydrolyzed active form mycophenolic acid, inhibits inosine-

monophosphate-dehydrogenase isoenzymes I and II, the rate-

limiting enzymes crucial in de novo guanosine nucleotide

synthesis (128). The inhibition of purine synthesis impedes the

proliferation of stimulated T-lymphocytes, as well as the vessel
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cells such as smooth muscle cells (129), fibroblasts (130) and

endothelial cells (131). Unlike other immunosuppressants, MMF

can also reduce the prevalence of vascular graft disease, one of

the main causes of allograft failure due to the progressive

development of intimal hyperplasia. In a swine study, MMF also

showed to abrogate cardiac allograft vasculopathy and increased

graft survival (132). MMF is known to cause gastrointestinal

intolerance or toxicity and this serves as the basis of the MMF

dose reduction in patients who underwent allotransplantation

(133). Studies have also shown that MMF dose reduction also

increased the incidence of sustained rejection (134).

6.1.5. Multiple drug regimen
In most of the cardiomyocyte transplantation studies using large

animals, immunosuppression was achieved with multiple drug

regimens (MDR) which combine multiple types of

immunosuppressants. In a study by Zhu et al. (2018)., the group

tested cardiovascular progenitor cell (CVPC) transplantation into

an MI cynomolgus monkey model (28). In their study, they found

that cyclosporine (30–45 mg/kg) alone could not effectively reduce

immune rejection of CVPCs. This outcome was greatly improved

by delivery of a multiple-drug regimen (MDR) consisting of

cyclosporine (30–45 mg/kg/day), methylprednisolone (1 mg/kg/day

with a loading dose of 500 mg), and basiliximab (1.5 mg/kg/day

from day 1 till day 4), evident by the presence of the transplanted

cells after 28 days of transplant. Yet, the transplanted cells were

not detected after 140 days. On the other hand, Murry’s

laboratory used cyclosporin, methylprednisolone and abatacept in

their human cardiomyocytes-to-macaque heart studies (12, 20, 22).

They reported no evidence of all rejection with their MDR. In line

with the finding, Romagnuolo and colleagues (2019) who

employed the same MDR combination also showed minimal

cellular rejection based on the grading criteria for human heart

allografts (13).

Some interesting modifications in Murry’s MDR were noticed

comparing their two macaque studies and one study in swine,

particularly the dosage of methylprednisolone. In Chong et al.

(2014), methylprednisolone was given at 500 mg on the day of

cell administration, and the dosage was maintained at 0.1–

1.5 mg/kg until the animals were sacrificed. They did not observe

any graft rejection. However in Liu’s study (2017),

methylprednisolone was reduced to 30 mg/kg on the day of cell

delivery, and the maintenance dose was adjusted/increased to

6 mg/kg for the subsequent 2 days and 3 mg/kg until the animals

were sacrificed. One graft rejection was observed due to

interrupted immunosuppression as a result of a damaged

intravenous catheter. In their pig study, the dosage of

methylprednisolone was, once again, adjusted to 3.0 mg/kg 2

days before transplantation until 2 weeks, down to 1.5 mg/kg for

subsequent maintenance. The dosage of methylprednisolone was

further reduced to 1.0 mg/kg in some experimental subjects due

to complications by porcine cytomegalovirus and pneumocystis

pneumonia. The reason behind these substantial changes in

methylprednisolone from 2014 was not mentioned, despite the

consistent dosage of the other two immunosuppressants

Abatacept and cyclosporin used in their macaques’ studies. CsA,
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however, was increased to achieve a serum trough level >400 ng/ml

in their recent pig study (22).
7. Discussion

This review provides a comprehensive overview of the animal

models for cardiac remuscularization study. Successful

establishment of the model would need to be confirmed using

multiple analyses and imaging such as echocardiography,

magnetic resonance imaging, cardiac pressure-volume loop

analysis etc. The choice of anaesthesia, analgesia and antibiotic

regimen post-surgery is key to increasing the survival of the

animal subjects carrying the injured hearts. Nevertheless, the

method of choice is based on the experimental needs and

objectives. Transplantation of allogeneic cells would require

effective immunosuppression to avoid host-vs.-graft rejection of

the cells. While the best regimen has not been concluded, the

selection of the immunosuppressive strategy is generally aimed

toward achieving low toxicity-related side effects, highly efficient

immunosuppression, and a high rate of engraftment and survival

of the transplanted cells.

Nonetheless, ongoing concerns regarding the incidence of

arrhythmias post-CM transplantation (herein refers to

engraftment arrhythmias), were possible due to the presence of

the nodal cells within the transplanted cardiomyocytes (12, 13,

30, 135). This problem has become the primary impediment to

advancing the therapy to clinical trials. Intensive research has

been ongoing to decipher pathways that direct chamber-specific

cardiomyocyte differentiation to eliminate the presence of nodal

cells in the culture and increase the population of ventricular

cardiomyocytes in the subsequently transplanted graft.

Alternatively, using a pharmacological approach to mitigate

engraftment arrhythmias could also be a viable option (22).

In 2014, the European Society of Cardiology Cellular Biology of

the Heart Working Group issued a position paper to urge for

improving the preclinical assessment of novel cardioprotective

therapies. In the statement, the experts attributed the low

translatability of laboratory findings into clinics to the lack of

rigorous tests during the preclinical animal study (136). One of

the shortcomings was the preference over using reductionist cell

or rodent models than employing a more integrative large

mammal I/R model which simulates clinical reality. We

summarize the methodology from the most recent cardiac

remuscularization studies using large animals to provide an

overview of the differences in reporting between laboratories,

and their strategies in establishing MI models, cell source and

delivery, as well as post-operative care analgesia and

immunosuppression regimen. To increase the reproducibility

and transparency of any future in vivo work, adherent to the
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guideline is urged to facilitate the minimum information and

standard required to be included in reporting and publishing

animal research experiments (137).
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