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Introduction: Recent studies have demonstrated that sodium-glucose co-
transporter-2 inhibitors (SGLT2-i) reduce the risk of atrial fibrillation (AF) in patients
with diabetes mellitus (DM), in which oxidative stress due to increased reactive oxygen
species (ROS) contributes to the pathogenesis of AF. We aimed to further investigate
this, and examine whether the SGLT2-i empagliflozin suppresses mitochondrial-ROS
generation and mitigates fibrosis.

Methods: A high-fat diet and low-dose streptozotocin treatment were used to
induce type-2 DM (T2DM) in Sprague-Dawley rats. The rats were randomly divided
into three groups: control, DM, and DM treated with empagliflozin (30 mg/kg/day)
for 8 weeks. The mitochondrial respiratory capacity and ROS generation in the
atrial myocardium were measured using a high-resolution respirometer. Oxidative
stress markers and protein expression related to mitochondrial biogenesis and
dynamics as well as the mitochondrial morphology were examined in the atrial tissue.
Additionally, mitochondrial function was examined in H9c2 cardiomyoblasts. Atrial
tachyarrhythmia (ATA) inducibility, interatrial conduction time (IACT), and fibrosis were
also measured.

Results: Inducibility of ATA, fibrosis, and IACT were increased in rats with DM
when compared to controls, all of which were restored by empagliflozin treatment.
In addition, the rats with DM had increased mitochondrial-ROS with an impaired
complex I-linked oxidative phosphorylation capacity. Importantly, empagliflozin
seemed to ameliorate these impairments in mitochondrial function. Furthermore,
empagliflozin reversed the decrease in phosphorylated AMPK expression and altered
protein levels related to mitochondrial biogenesis and dynamics, and increased
mitochondrial content. Empagliflozin also improved mitochondrial function in H9c2
cells cultured with high glucose medium.

Discussion: These data suggest that empagliflozin has a cardioprotective e�ect,
at least in part, by reducing mitochondrial ROS generation through AMPK signaling
pathways in the atrium of diabetic rats. This suggests that empagliflozin might
suppress the development of AF in T2DM.
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Introduction

Atrial fibrillation (AF) is the most common arrhythmia
worldwide (1). The prevalence of AF is expected to increase by 2.5-
times over the next 50 years (2). At the same time, diabetes mellitus
(DM) has become one of the most common lifestyle disorders in
world. DM and AF commonly coexist, and effective therapy to reduce
the risk of AF in diabetic patients is needed; however, data regarding
the benefit of glycemic control in new-onset AF remain scarce (3, 4).

Sodium-glucose co-transporter-2 inhibitors (SGLT2-i) are novel
glucose-lowering drugs that act in a non-insulin-dependent manner
(5). The EMPA-REG OUTCOME study revealed that empagliflozin
significantly reduced the risk of major adverse cardiovascular (CV)
events in patients with type-2 DM (T2DM) who were at high risk
of CV events (6). The CANVAS Program, testing another SGLT2-
i, canagliflozin, also demonstrated its effects on CV risk reduction
(7). In addition, recent studies have suggested that SGLT2-i reduce
the risk of AF in patients (8). Initial findings have suggested
that SGLT2-i may prevent the electrical and structural remodeling
of atria by ameliorating mitochondrial function (9), suppressing
reactive oxygen species (ROS) generation, and inhibiting Na+/H+

exchanger activity (10, 11). However, the mechanisms pertaining to
the beneficial effects of SGLT2-i in the prevention of AF have yet to
be adequately investigated.

Oxidative stress refers to elevated intracellular levels of ROS,
either due to excessive ROS generation or reduced ROS scavenging,
which results in damage to lipids, proteins, and DNA (12).
Oxidative stress and inflammation contribute to the pathogenesis
of AF in patients with DM (4, 13). Indeed, previous studies
have demonstrated that the reduction of ROS generation reduces
AF inducibility in several experimental AF models (14, 15).
Mitochondria are a major source of ROS as well as a source of
intracellular energy production, and a recent study reported that
empagliflozin improved atrial mitochondrial respiration in diabetic
rats (9). However, rigorous evidence supporting the effects of
SGLT2-i on mitochondrial oxidative stress in the atrial myocardium
remains elusive. Here, we examined whether empagliflozin, an
SGLT2-i, suppresses mitochondrial ROS generation and mitigates
inflammatory as well as fibrotic remodeling of the atria, which could
potentially result in reduced AF inducibility.

Methods

Ethical approval

This research protocol conformed to the Animal Care Guidelines
for the Care and Use of Laboratory Animals of the Hokkaido
University Graduate School of Medicine and was approved by the
Animal Research Committee of Hokkaido University.

Experimental animals

All experiments were performed using 8-week-old, male Sprague-
Dawley rats. A high-fat diet (HFD) and low-dose streptozotocin
(STZ) treatment were used to induce T2DM in rats. The HFD
+ low-dose STZ model, which demonstrates a progression from
insulin resistance to hypoinsulinemia and hyperglycemia, mimics the

natural pathogenesis of T2DM in humans. Therefore, it is suitable
for investigating the pathogenesis of diabetic complications as well
as testing the efficiency of anti-diabetic agents (9, 16). Typically,
rats were fed with a HFD for 2–8 weeks in order to induce insulin
resistance, and subsequently received a low-dose injection of STZ
(20–40 mg/kg), resulting in increased blood glucose levels within 3–7
days after the STZ injection (16). In accord with the report by Shao
et al. (9), we first tested a single dose of 30 mg/kg STZ to induce DM as
a preliminary study; however, approximately half of rats died within a
week possibly due to hyperglycemia-related complications. We thus
reduced a dose of STZ to 25 mg/kg in accord with the report by Hou
et al. (17).

Rats were randomly divided into three groups: control (n = 24),
DM (n = 24), and DM + empagliflozin (30 mg/kg/day, n = 24). The
empagliflozin dose was based on previous studies (9, 18). All rats
were fed a normal chow diet for 1 week for acclimation. The DM
and DM + empagliflozin groups were fed an HFD (60 kcal% fat,
20 kcal% carbohydrate, 20 kcal% protein; D12492; Research Diets,
New Brunswick, NJ). The control group was fed a normal chow
diet throughout the study. After 4 weeks of feeding, all animals
were fasted overnight, and DM was induced by intraperitoneal
injection of STZ (25 mg/kg) dissolved in citrate buffer at pH 4.5,
into the DM and DM + empagliflozin groups. The control group
was injected with the citrate buffer alone. One week following the
STZ injection, the induction of DM was confirmed by blood glucose
levels > 300 mg/dl. The same dose of STZ (25 mg/kg) injection
as a second injection was repeated in rats whose blood glucose
levels failed to meet the diagnostic criteria. In addition, if blood
glucose levels failed to meet the diagnostic criteria even after second
STZ injection, rats were excluded from our analyses. Blood glucose
levels were measured using a glucometer (Glutest Every, Sanwa
Kagaku Kenkyusho, Nagoya, Japan), and blood insulin levels were
measured using LBIS Rat Insulin ELISA Kit (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan). The DM + empagliflozin
group was treated with empagliflozin for 8 weeks. Empagliflozin was
supplemented in HFD. Empagliflozin was supplied by Boehringer
Ingelheim Pharma GmbH and Co. (Biberach, Germany). In the
present study, we used different sets of rats (6–8 rats in each group)
for each experiment and a total of 24 rats were used for whole
experiment in each group, because it was impossible to conduct whole
experiment in the same rat due to the limited samples.

Experimental preparation

All animals were anesthetized with an intraperitoneal injection
of a mixture (MMB) made from medetomidine hydrochloride
(0.15 mg/kg, Kyoritsu Seiyaku, Tokyo, Japan), midazolam (2 mg/kg,
Astellas Pharma, Tokyo, Japan), and butorphanol (2.5 mg/kg, Meiji
Seika Pharma, Tokyo, Japan). Adequacy of anesthesia was monitored
based on the disappearance of the pedal withdrawal reflex.

Echocardiographic assessments

Following 8 weeks of treatment, transthoracic echocardiography
was performed under anesthesia attained by means of an
intraperitoneal injection of MMB. The rats were placed in
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the horizontal position, and echocardiographic parameters,
including the left atrial (LA), dimension (LAD), interventricular
septal thickness (IVST), left ventricular posterior wall thickness
(LVPWT), left ventricular end-diastolic dimension (LVEDD), and
left ventricular end-systolic dimension (LVESD), were obtained
along the parasternal long-axis and short-axis views using an
ultrasonographic system (APLIO 300 TUS-A300, TOSHIBA, Tokyo,
Japan). Fractional shortening (FS) was calculated by measuring the
percentage change in left ventricular diameter during systole.

Langendor�-perfused heart

After confirming adequate anesthesia, heparin sodium (400
IU/kg) was intraperitoneally injected, and the hearts were quickly
excised. The excised heart was mounted on a Langendorff apparatus
and retrogradely perfused with Tyrode’s solution (37◦C) containing
the following (in mmol/l): 143 NaCl, 5.4 KCl, 0.33 NaH2PO4, 5
HEPES, 5.5 glucose, 0.5 MgCl2, and 1.8 CaCl2 (pH 7.4 adjusted using
NaOH) and gassed with 100% O2 until the heart rate was stable
(19, 20).

Electrophysiological study

We assessed the interatrial conduction time (IACT), effective
refractory period (ERP), and atrial tachyarrhythmia (ATA)
inducibility. An Ag/AgCl electrode was attached to the right atrium
(RA) as a cathode to facilitate unipolar pacing, and a stainless steel
microtube for perfusion was used as an indifferent anode. Two
electrodes were attached to the LA appendage and left ventricle to
record the electrogram. IACT was measured during RA pacing at
cycle lengths of 150 and 200 ms. ERP was measured by introducing
S2 extra-stimulus with 2-ms decrements following eight regulatory
S1-S1 stimuli of 150 and 200 ms. It was defined as the longest S1-S2
interval at which S2 failed to induce a propagated response. We
measured ERP twice in each heart, and the average was taken as
the ERP used during statistical analysis. The induction of ATA was
attained by burst pacing performed five times repeatedly, at a pacing
cycle length ranging from 50 to 30 ms in 10-ms decrements for 3 s.
ATA was defined as a rapid atrial response longer than 1s (20).

Histology

Right atrial tissues were dissected from the hearts and stored in
neutral buffered formalin for 24 h. The atrial tissue sections were
stained with hematoxylin and eosin as well as Masson’s trichrome
stain to evaluate cardiomyocyte diameter and the extent of interstitial
fibrosis, respectively. The cross-sectional area of cardiomyocytes was
measured in the short-axis view. An average of 30 cardiomyocytes
per animal were analyzed. In Masson’s trichrome-stained sections,
the area occupied by interstitial fibrosis was measured using BZ-X
Analyzer software (KEYENCE, Osaka, Japan).

Preparation of permeabilized fibers

After careful manual dissection of right atrial tissue, the fiber
bundles were permeabilized by gentle agitation for 30 min in an
ice-cold BIOPS solution (in mmol/l; 2.77 CaK2 EGTA, 7.23 K2
EGTA, 20 taurine, 6.56 MgCl2·6H2O, 5.77 Na2 ATP, 15 Na2
phosphocreatine, 20 imidazole, 0.5 dithiothreitol, and 50 MES
hydrate; pH 7.1) with saponin (50 µg/ml), as described (21, 22).
Following permeabilization, the fibers were rinsed twice by agitation
for 10 min in an ice-cold respiration medium, MiR05 (in mmol/l;
110 D-sucrose, 60 K-lactobionate, 0.5 EGTA, 0.1% BSA, 3 MgCL2,
20 taurine, 10 KH2PO4, and 20 HEPES; pH 7.1).

Mitochondrial respiratory capacity in the
atrial muscle

We measured the mitochondrial respiratory capacity with non-
fatty acid substrates in the permeabilized cardiac muscle fibers at
37◦C using a high-resolution respirometer (Oxygraph-2k, Oroboros
Instruments, Innsbruck, Austria), as described (21, 22). After the
addition of the permeabilized atrial cardiac muscle fiber (2–3 mg)
to the chamber filled with 2 ml of MiR05 in the Oxygraph-2k
respirometer, the respiratory substrates and inhibitors were added
in the following order: (1) glutamate (G; 10 mmol/l) and malate
(M; 2 mmol/l) (complex I-linked substrates), (2) ADP (5 mmol/l),
(3) succinate (S; 10 mmol/l) (complex II-linked substrates), (4)
oligomycin (2 µg/ml) (a complex V inhibitor), (5) rotenone (0.5
µmol/l) (a complex I inhibitor), (6) antimycin A (2.5 mmol/l)
(complex III inhibitor), (7) ascorbate (2 mmol/l) and N,N,N’,N’-
tert-methyl-p-phenyldiamine (TMPD; 0.5 mmol/l) (complex IV-
linked substrates), and (8) sodium azide (10 mmol/l) (an inhibitor
of cytochrome c oxidase). Complex IV capacity was calculated as
the difference between the O2 consumption rates of ascorbate and
TMPD with as well as without sodium azide to avoid the influence
of auto-oxidation of TMPD. Respiratory rates were expressed as
the O2 consumption rate normalized to the atrial muscle mass
(pmol/s/mg wet weight of atrial muscle). The respiratory control
ratio (RCR) was calculated as ADP-stimulated respiration (State 3
respiration)/non-ADP-stimulated respiration (State 2 or 4 respiration
with oligomycin). Data acquisition and data analysis were performed
using DatLab software (Oroboros Instruments).

Mitochondrial ROS generation in the atrial
muscle

We measured mitochondrial ROS generation along with
mitochondrial respiratory capacity in the permeabilized atrial
muscle fiber using a spectrofluorometer (Fluorescence LED2-
Module, Oroboros Instruments) equipped with a respirometer, as
described (23). Mitochondrial ROS generation was evaluated after
the conversion of mitochondrial superoxide into hydrogen peroxide
(H2O2) by the addition of superoxide dismutase (SOD). Before
permeabilization of atrial muscle fibers, we added SOD (5 U/ml),
horseradish peroxidase (1 U/ml), and Amplex UltraRed reagent (10
µmol/l, Thermo Fisher Scientific, Waltham, MA) to the chamber
of the respirometer. H2O2 reacts with Amplex UltraRed in a 1:1
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stoichiometry, catalyzed by horseradish peroxidase, which yields the
fluorescent compound resorufin. The excitation and fluorescence
wavelengths were 525 and 587 nm, respectively. The fluorescence of
resorufin was continuously monitored along with measurements of
mitochondrial respiratory capacity. The H2O2 generation rate was
calibrated by the titration of H2O2 in 0.1 µmol/l increments before
and after each addition of substrate, in order to eliminate the possible
interference of substrates. The H2O2 generation rate was expressed as
pmol/s/mg wet weight of atrial muscle.

Oxidative stress in the atrial muscle

To assess oxidative stress in the atrial tissue, we measured the
enzymatic activity of SOD using an SOD assay kit-WST (Dojindo,
Kumamoto, Japan) and quantities of malondialdehyde (MDA), a lipid
peroxidation product, using an MDA assay kit (Abcam, Cambridge,
MA) as per the manufacturer’s instructions. The right atrial tissue
(5–6 mg) was used to measure activity of SOD and quantities of
MDA, respectively.

Mitochondrial enzymatic activities in the
atrial muscle

A citrate synthase (CS) activity colorimetric assay kit (BioVision,
Milpitas, CA) was used to biochemically assess the activity of CS, an
enzyme involved in the tricarboxylic acid (TCA) cycle which occurs
in the mitochondrial matrix. The right atrial tissue (5–6 mg) was used
to measure the CS activity.

Electron microscopy

Atrial tissues were fixed in 2.5% glutaraldehyde in 0.1 mmol/l
phosphate buffer at 4◦C. Tissues were then serially dehydrated in
ethanol and embedded in epoxy resin. Consecutive ultrathin sections
were mounted on copper grids and stained with 3% uranyl acetate
and 0.2% lead citrate (24). They were then examined using a
transmission electron microscope (H-7100, Hitachi, Tokyo, Japan).
Mitochondria in the atrial cardiomyocyte were identified by their
double membrane boundary and the presence of cristae, and their
area was measured using ImageJ software.

Quantitative real-time reverse transcription
polymerase chain reaction

Gene expression levels were quantified by real-time RT-PCR as
previously described (25). Ribonucleic acid (RNA) was extracted
en masse from atrial tissue (8–10 mg) using QuickGene-810
(FujiFilm, Tokyo, Japan) as per the manufacturer’s instructions.
Complementary DNA (cDNA) was synthesized using a high-
capacity cDNA reverse transcription kit (Applied Biosystems, Foster
City, CA). A TaqMan quantitative PCR was performed using
the StepOnePlusTM Real-Time PCR System (Applied Biosystems,
Waltham, MA) to amplify samples for transforming growth factor
(TGF)-β, collagen type I, collagen type III, tumor necrosis factor

(TNF)-α, interleukin (IL)-1β, and IL-6 cDNA. These transcripts
were normalized using glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). The primers were purchased from Applied Biosystems.

Western blotting and antibodies

Atrial tissues were harvested, snap frozen in liquid nitrogen, and
stored at −80◦C until use. For lysate preparation, atrial tissues (8–
10 mg) were homogenized and dissolved in cell lysis buffer (Cell
Signaling Technology, Danvers, MA) supplemented with Complete
Protease Inhibitor Cocktail (Roche, Basel, Switzerland). Following
centrifugation at 15,000 rpm for 20 min at 4◦C, supernatants were
separated into aliquots and stored at −80◦C until the time of
the assay. The protein concentrations were determined using a
standardized colorimetric assay. Proteins were fractionated using
SDS-PAGE, transferred to a polyvinylidene fluoride membrane, and
blocked with 5% BSA or 5% milk for 1 h at room temperature
(23–25◦C) or overnight at 4◦C. Target antigens were labeled
overnight with primary antibodies at 4◦C. Binding of the primary
antibodies against nuclear factor (NF)-κB (#3034; dilution 1:1,000;
Cell Signaling), phosphorylated NF-κB (#3037; dilution 1:1,000; Cell
Signaling), AMP-activated protein kinase (AMPK) (#2532; dilution
1:1,000; Cell Signaling), pAMPK (#2535; dilution 1:1,000; Cell
Signaling), peroxisome proliferator-activated receptor γ coactivator
(PGC)-1α (#4259; dilution 1:1,000; Cell Signaling), mitochondrial
transcription factor A (TFAM) (#sc-23588, dilution 1:1,000; Santa
Cruz Biotechnology, Dallas, TX), mitofusin 1 (Mfn1) (#ab126575;
dilution 1:1,000; Abcam, Cambridge, UK), mitofusin 2 (Mfn2)
(#ab56889; dilution 1:1000; Abcam), optic atrophy 1 (OPA1)
(#ab42364; dilution 1:1000; Abcam), dynamin-related protein 1
(Drp1) (#ab184247; dilution 1:1000; Abcam) was detected using
specific horseradish peroxidase-conjugated secondary antibodies.
Bands were detected using an enhanced chemiluminescence assay
and quantified using ImageJ software (National Institutes of Health,
Bethesda, MD). The band intensity for the protein being investigated
was normalized to the intensity of GAPDH (Cell Signaling
Technology) in each lane.

H9c2 cell culture and measurement of
cellular mitochondrial function

H9c2 cardiomyoblasts (CRL-1446TM, ATCC, Manassas, VA) were
cultured in Dullbecco’s Modified Eagle’s Medium (25 mmol/l glucose,
Sigma-Aldrich, St. Louis, MO) supplemented with 10% fetal bovine
serum (Gibco) at 37◦C with 5% CO2 in air (26). Then, H9c2 cells
were maintained in the same medium (defined as high glucose [25
mmol/l]), or cultured in the same medium plus empagliflozin (10
µmol/l) (defined as high glucose + empagliflozin) or in the same
medium but lowered glucose concentration (2.5 mmol/l) (defined as
low glucose) for 24 h before measurement of cellular mitochondrial
function (27). Approx. 30 min before the measurements, cells were
trypsinized with 0.025% trypsin/PBS and suspended in MiR05 buffer,
followed by cell count with Countess (Invitrogen). After the addition
of cells (0.5–1.0 million cells) to the chamber (2 ml) of the Oxygraph-
2k respirometer, we measured mitochondrial respiratory capacity
and mitochondrial ROS generation with the same protocol except
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addition of digitonin (1.5 µmol/l) for cellular permeabilization
before adding glutamate and malate, as described with minor
modifications (28).

Statistical analysis

Data are expressed as mean ± standard error (SE) or median
(interquartile range) as appropriate. Statistical differences between
the three independent groups were determined by one-way ANOVA
or the Kruskal-Wallis test. For the post-hoc test, Tukey’s or
Dunn’s multiple comparison test was performed. Differences were
considered significant at p values < 0.05. Statistical analyses were
performed using GraphPad Prism ver. 7 (GraphPad Software, San
Diego, CA).

Results

Animal characteristics

Table 1 presents the characteristics of each group. Blood glucose
levels in the DM group were significantly higher than those in the
control group and were decreased by treatment with empagliflozin.
There were no significant differences in body weights between the
groups. The data of time course of changes in blood glucose levels and
body weight are shown in Supplementary Figure 1. The number (%)
of rats requiring the second STZ injection was comparable between
DM and DM + EMPA groups [4/24 (16.7%) in DM vs. 4/24 (16.7%)
in DM+ EMPA, p= 1.00]. Supplementary Table 1 shows comparison
of blood glucose levels, blood insulin levels and body weight between
rats requiring single and double STZ injections. Compared to the
controls, DM rats had a hypertrophied LV (characterized by increased
IVST and LVPWT), whereas the increased LVPWT seemed to resolve
to a significant extent following treatment with empagliflozin. There
were no significant differences in LA or LV sizes and systolic function
between the groups. Supplementary Table 2 shows both heart and
right atrial weight.

Electrophysiology

A representative electrocardiogram trace during the induction of
ATA in each group is shown in Figure 1A. We observed both regular
and irregular ATA in the induction experiment. We defined a regular
ATA as atrial tachycardia (AT) and an irregular one as AF. In the
control and the DM+ empagliflozin group, ATA was induced in one
of 8 rats (12.5%), which showed an irregular RR interval, defined
as AF. In the DM group, ATA was induced in 6 of 8 rats (75%),
of which 4 ATAs were defined as AF and the remaining 2 were as
AT. ATA inducibility (Figure 1B), ATA duration (Figure 1C), and
IACT (Figure 1D) were significantly increased in the DM group when
compared to the control group, all of which was normalized following
treatment with empagliflozin. There was no significant difference in
the ERP (Figure 1E).

TABLE 1 Characteristics of rats in three groups.

Control
(n = 24)

DM
(n = 24)

DM + EMPA
(n = 24)

Blood glucose, mg/dl 209± 8 374± 11∗ 201± 10†

Blood insulin, ng/ml 0.38± 0.02 0.25± 0.01 0.28± 0.01

Body weight, g 527± 15 515± 13 546± 12

LAD, mm 4.3± 0.1 4.3± 0.1 4.3± 0.1

IVST, mm 1.4± 0.1 1.5± 0.1∗ 1.4± 0.1

LVPWT, mm 1.4± 0.1 1.6± 0.1∗ 1.5± 0.1†

LVEDD, mm 7.9± 0.1 7.8± 0.2 8.0± 0.2

LVESD, mm 5.1± 0.1 4.8± 0.2 5.0± 0.1

FS, % 35.8± 0.9 38.4± 1.7 38.6± 0.9

Heart rate, bpm 278± 10 267± 10 274± 7

Values are expressed as mean ± standard error. ∗p < 0.05: vs. Control, †p < 0.05: vs. DM
(One-way repeated ANOVA with post hoc Tukey’s multiple-comparison test). LAD, left atrial
dimension; IVST, interventricular septal thickness; LVPWT, left ventricular posterior wall
thickness; LVEDD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic
dimension; FS, fractional shortening; DM, diabetes; EMPA, empagliflozin.

Histological analysis of atrial muscle

Masson’s trichrome staining of the atrial muscle revealed that
fibrotic area was more abundant in the DM group than in the control
group, but the extent of fibrosis was lesser in the diabetic rats treated
with empagliflozin (Figures 2A, B). Compared to the control group,
the cardiomyocyte cross-sectional area was significantly larger in the
DM group, which again seemed to be attenuated by empagliflozin
treatment (Figure 2C).

Fibrosis and inflammatory signaling in the
atrial muscle

As NF-κB plays a crucial role in the signaling pathways involved
in fibrosis and inflammation, we investigated NF-κB signaling. As
shown in Figure 3A, the phosphorylation of NF-κB, promoted by
DM, was downregulated following treatment with empagliflozin.
TaqMan quantitative PCR analysis revealed that mRNA expression of
TGF-β, collagen type I, collagen type III, TNF-α, IL-1β, and IL-6 was
markedly enhanced in the DM group when compared to the control
group (Figures 3B–G), and treatment with empagliflozin significantly
reduced the mRNA expression of collagen type I, collagen type III,
TNF-α, IL-1β, and IL-6. TGF-β mRNA expression was comparable
between the DM and DM+ empagliflozin groups.

Mitochondrial function in the atrial muscle

The absolute values of mitochondrial respiration in each state
are shown in Figure 4A. Diabetic rats had a lower mitochondrial
RCR with complex I-linked or complex I + II-linked substrates than
controls (Figure 4B). Empagliflozin treatment improved the complex
I-linked RCR in the atrial muscle (Figure 4B). Mitochondrial H2O2
generation with either complex I-or complex I+II-linked substrates
during state 3 (i.e., ADP-dependent state) was significantly elevated in
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FIGURE 1

Electrophysiological study. (A) Representative electrogram traces obtained from rats in the three groups. (B) Incidence of atrial tachyarrhythmia (ATA). (C)
Duration time of ATA. (D) Interatrial conduction time (IACT) at pacing cycle length of 150 ms (a) and 200 ms (b). (E) E�ective refractory period (ERP) at
pacing cycle length of 150 ms (a) and 200 ms (b). Data are expressed as mean ± SE (n = 8 per group). *p < 0.05: vs. Control, †p < 0.05: vs. DM (One-way
repeated ANOVA with post hoc Tukey’s multiple-comparison test and Fisher’s exact test). DM, diabetes; EMPA, empagliflozin.
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FIGURE 2

Histological study. (A) Representative images of right atrial tissue stained with Masson’s trichrome (upper panels) and hematoxylin as well as eosin
(bottom panels). (B) Area of fibrosis. (C) Cardiomyocyte cross-sectional area. Data are expressed as mean ± SE (n = 8 per group). *p < 0.05: vs. Control,
†p < 0.05: vs. DM (One-way repeated ANOVA with post hoc Tukey’s multiple-comparison test). MT, Masson’s trichrome stain; HE, hematoxylin and eosin
stain; DM, diabetes; EMPA, empagliflozin.

the DM group when compared to the control group, which improved
with treatment using empagliflozin (Figure 4C).

The enzymatic activity of CS was significantly reduced in the
DM group when compared to that in the control group, and the
administration of empagliflozin increased this enzymatic activity
(Figure 4D).

Oxidative stress in the atrial muscle

Consistent with the increased mitochondrial ROS generation,
the atrial concentration of MDA was significantly higher in the
DM group than in the control group, and empagliflozin treatment
decreased MDA concentration to nearly the same level as that in
control rats (Figure 4E). Furthermore, SOD activity was significantly
decreased in the DM group when compared to that in the control

group. This decrease was also reversed in the group that was
administered empagliflozin (Figure 4F).

Mitochondrial content in the atrial muscle

To assess morphological changes of the mitochondria, we
evaluated atrial mitochondria in rats using electron microscopy.
Figures 5A, B show representative electron microscopic images of
the subsarcolemmal and intermyofibrillar mitochondria. In the DM
group, both subsarcolemmal and intermyofibrillar mitochondrial
areas in the atrial tissue were significantly decreased compared to the
control group (Figures 5C, D). Empagliflozin treatment ameliorated
the reduced mitochondrial areas in the DM group (Figures 5C, D).
However, there was no structural change in the atrial mitochondria
of diabetic rats.

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1005408
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Koizumi et al. 10.3389/fcvm.2023.1005408

FIGURE 3

Studies on fibrotic and inflammatory signaling pathway. (A) Representative western blot results and analysis for the expression of NF-κB and
phosphorylated NF-κB (pNF-κB). The value is represented as the ratio of pNF-κB to NF-κB (n = 6 per group). (B–G) Relative mRNA levels of TGF-β,
collagen type I, collagen type III, TNF-α, IL-1β and IL-6 were measured by quantitative real-time RT-PCR (n = 8 per group). Data are expressed as mean ±
SE. *p < 0.05: vs. Control, †p < 0.05: vs. DM (One-way repeated ANOVA post hoc Tukey’s multiple-comparison test). NF-κB, nuclear factor-κB; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α; IL, interleukin; DM, diabetes; EMPA,
empagliflozin.

Protein expression related to AMPK-PGC-1α

signaling and mitochondrial dynamics in the
atrial muscle

AMPK plays a major role in the signaling pathways related
to energy metabolism and mitochondrial biogenesis. Although
there was no significant difference in the protein expression
of AMPK between the groups (Figure 6A), phosphorylated
AMPK and its downstream molecules; PGC-1α and TFAM,

were downregulated in the DM group, which improved upon
treatment with empagliflozin (Figures 6B–E). Protein expression of
Mfn1, Mfn2, and OPA1, all of which are related to mitochondrial
fusion, was significantly downregulated, while Drp1, which is
related to mitochondrial fission, was upregulated in the DM
group when compared to the control group (Figures 6F–I).
These changes in the atrial muscle of diabetic rats all seemed
to be reversed to a large extent by the administration of
empagliflozin (Figures 6F–I).

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2023.1005408
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Koizumi et al. 10.3389/fcvm.2023.1005408

FIGURE 4

E�ects of empagliflozin on mitochondrial respiratory capacity and ROS generation, as well as oxidative stress in the atrial tissue. (A) Summarized data of
mitochondrial respiration during each state (n = 8 per group). (B) Respiratory control ratio (RCR) with CI-linked substrates (a) and CI+II-linked substrates
(b). The line indicates median and error bars indicate the interquartile range (n = 8 per group). (C) Mitochondrial H2O2 generation with CI-linked
substrates (a) and CI+II-linked substrates (b) (n = 8 per group). (D) Citrate synthase activity (n = 6 per group). (E) MDA concentration (n = 8 per group). (F)
SOD activity (n = 6 per group). Data are expressed as mean ± SE or medians (interquartile range), as appropriate. *p < 0.05: vs. Control, †p < 0.05: vs. DM
(One-way repeated ANOVA with post hoc Tukey’s multiple-comparison test or Kruskal-Wallis test with post hoc Dunn’s multiple comparison test). GM,
state 2 respiration with glutamate +malate; GM3, state 3 respiration with glutamate and malate; GMS3, state 3 respiration with glutamate; malate and
succinate; 4o, state 4 respiration with oligomycin; C, complex; H2O2, hydrogen peroxide; DM, diabetes; EMPA, empagliflozin.
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FIGURE 5

Morphological assessment of mitochondria in the atrial tissue. Representative electron microscopic images of subsarcolemmal [(A); scale bar = 6 µm]
and intermyofibrillar [(B); scale bar = 6 µm] mitochondria. Summarized data of area of subsarcolemmal (C) and intermyofibrillar (D) mitochondria (n = 3
per group). Data are expressed as mean ± SE. *p < 0.05: vs. Control, †p < 0.05: vs. DM (One-way repeated ANOVA post hoc Tukey’s multiple-comparison
test). M, mitochondria; DM, diabetes; EMPA, empagliflozin.

Mitochondrial function in H9c2 cells

We further measured the mitochondrial respiratory capacity
and mitochondrial ROS generation in H9c2 cells to examine
whether empagliflozin has a direct effect on cardiac mitochondria
beyond glucose-lowering effect. Figure 7A shows the time schedule
of the culture study. Empagliflozin treatment increased state 3
respiration with complex I-linked substrates (Figure 7Da) and
reduced mitochondrial H2O2 generation with complex I-linked
substrates during state 3 in H9c2 cells (Figure 7Ba). In contrast, there
were no significant differences in mitochondrial respiratory capacity

and mitochondrial H2O2 generation between the high glucose and
the low glucose groups (Figures 7B–D), indicating that alteration
in glucose concentration may not affect mitochondrial function in
H9c2 cells.

Discussion

In this study, we tested the cardioprotective ability of
empagliflozin against atrial remodeling and explored the underlying
mechanisms associated with mitochondrial function in a murine
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FIGURE 6

Western blotting analyses regarding mitochondrial biogenesis, fission, and fusion. (A, B, D–I) Representative western blot results and analyses for the
protein expression of AMPK, phosphorylated AMPK, PGC1-α, TFAM, Mfn1, Mfn2, OPA1, and Drp1. (C) The value expressed is the ratio of pAMPK to AMPK.
GAPDH was used as an endogenous control. Data are expressed as mean ± SE (n = 6 per group). *p < 0.05: vs. Control, †p < 0.05: vs. DM (One-way
repeated ANOVA with post hoc Tukey’s multiple-comparison test). pAMPK, phosphorylated AMP-activated protein kinase; PGC-1α, peroxisome
proliferator-activated receptor γ coactivator-1α; Mfn, mitofusin; OPA1, optic atrophy 1; Drp1, dynamin-related protein 1; GAPDH, glyceraldehyde
3-phosphate dehydrogenase; DM, diabetes; EMPA, empagliflozin.
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FIGURE 7

E�ects of empagliflozin on mitochondrial respiratory capacity and ROS generation in H9c2 cells. (A) Time schedule of culture study [High glucose (25
mmol/l); n = 4, High glucose + EMPA (10 µmol/l); n = 3, Low glucose (2.5 mmol/l); n = 3]. (B) Mitochondrial H2O2 generation with CI-linked substrates
(a) and CI+II-linked substrates (b). (C) O2 consumption with CI-linked substrates (a) and CI+II-linked substrates (b). (D) Respiratory control ratio (RCR)
with CI-linked substrates (a) and CI+II-linked substrates (b). Data are expressed as mean ± SE. *p < 0.05: vs. High glucose, †p < 0.05: vs. High glucose +
EMPA (One-way repeated ANOVA with post hoc Tukey’s multiple-comparison test. Abbreviations are as defined in Figure 4.
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model of T2DM. The major findings are as follows: (1) empagliflozin
seemed to reverse inducibility of ATA, and conduction slowing;
(2) empagliflozin suppressed atrial remodeling which resulted
from inflammatory and profibrotic signaling; (3) empagliflozin
improved mitochondrial respiratory capacity, suppressed excessive
generation of mitochondrial ROS, increased mitochondrial content,
and reduced the enhanced oxidative stress in the atrial myocardium;
(4) empagliflozin restored the altered atrial protein expression linked
to mitochondrial biogenesis, mitochondrial fusion, and fission to
levels similar to those in control rats.

Atrial remodeling in T2DM

AF and T2DM are common diseases, and T2DM is an
independent risk factor for the development of AF (3, 29). The
pathogenesis of AF in T2DM includes structural, electrical,
electromechanical, and autonomic remodeling (4, 30).
Hyperglycemia induces enhanced oxidative stress in the atrium
and other organs via different mechanisms (30). The key mediators
of arrhythmogenic atrial remodeling in DM are oxidative stress and
inflammation (30). Previous studies of atrial samples from diabetic
patients have revealed excessive generation of ROS accompanied by
impaired mitochondrial oxidative metabolisms (31). Oxidative stress
activates NF-κB and enhances the expression of TGF-β1 and TNF-α,
which can potentially result in atrial fibrosis. Much like previous
reports, we also have observed that myocardial interstitial fibrosis is
a hallmark of atrial structural remodeling, which leads to slowing
down of electrical conduction, as well as electrical heterogeneity in
the atrium, finally resulting in the induction and maintenance of AF
(9, 20).

Our findings support the notion that advanced atrial fibrosis is a
major contributor to the development of AF in patients with T2DM.
In addition, we demonstrated that mitochondrial oxidative stress
and pro-inflammatory signaling are enhanced in the diabetic atrium.
Thus, a therapeutic strategy aimed at reducing mitochondrial ROS
generation and inflammation in the atrium, may contribute to the
prevention of AF in T2DM patients.

The role of mitochondria in oxidative stress

Oxidative stress is defined as a state in which cell injury and the
excessive generation of ROS in vivo overwhelms the cell’s inherent
antioxidant defenses, thus damaging proteins, lipids, and DNA.
In cardiomyocytes, the mitochondria play a central role in energy
metabolism and are major source of ROS, as well as NADPH oxidases,
and NOS uncoupling (32–34). Indeed, a previous study demonstrated
that mitochondrial dysfunction is linked to atrial remodeling, leading
to postoperative AF in patients (35). Furthermore, recent studies have
suggested that mitochondrial oxidative stress can promote AF via
RyR dysfunction with Ca2+ leakage (from sarcoplasmic reticula) as
well as inflammatory and profibrotic cytokine release (34, 36).

In diabetic hearts, oxidative stress and inflammation are
implicated as the central mediators of AF (37–39). Glucose
fluctuations, which are common in DM, promote ROS generation,
and ROS-induced oxidation in the mitochondria can further
exacerbate oxidative stress (40, 41). Hence, mitochondrial
dysfunction and oxidative stress are closely related and a therapeutic

approach targeting mitochondrial dysfunction holds potential as a
novel treatment in AF.

SGLT2-i may protect against atrial
remodeling and the development of AF

SGLT2-i, originally developed to treat T2DM, have been shown
to decrease CV death and hospitalization due to heart failure in these
patients. Recent studies have also suggested that SGLT2-i reduces
the risk of AF in patients with DM (8, 42). However, a previous
randomized controlled study reported that intensive glycemic control
did not affect the rate of new-onset AF (43). In addition, the
cardioprotective benefits of SGLT2-i have also been demonstrated
in non-diabetic patients (44, 45). These reports suggest that SGLT2-
i improves the outcomes of patients independent of DM status and
via mechanisms other than the lowering of blood glucose levels. The
protective mechanism of SGLT2-i involves many aspects including
both direct and indirect effects on the heart (46). In the present
study, empagliflozin improved mitochondrial function in H9c2 cells,
but alteration in glucose concentration did not change mitochondrial
function. Given that there is no SGLT2 expression in the heart,
empagliflozin may have direct effects on cardiac mitochondria
independently of glucose levels.

Currently, several molecular and cellular mechanisms by which
SGLT2-i protects the CV system have been identified (47–49). The
reduction of oxidative stress is considered a potential mechanism
for the suppression of cardiac remodeling by SGLT2-i, by balancing
abnormal Na+ and Ca2+ levels and protecting mitochondrial
function (48). A previous study by Li et al. reported that empagliflozin
ameliorated myocardial oxidative stress by reducing NADPH activity
in the ventricular myocardium of a diabetic mouse (50). Shao
et al. reported that empagliflozin restored the reduced mitochondrial
respiratory capacity and reversed atrial structural remodeling in
HFD/STZ-induced DM rats (9); however, the effects of empagliflozin
on mitochondrial oxidative stress in the atrial myocardium had not
been examined before. In the present study, for the first time, we
demonstrated that empagliflozin has the effect of reducing excessive
generation of mitochondrial ROS and oxidative stress, leading to
improved mitochondrial oxidative phosphorylation capacity in the
atrial myocardium of diabetic rats.

Underlying mechanisms of the e�ects of
SGLT2-i on mitochondrial function

The master regulator of cellular energy homoeostasis, AMPK,
is activated in response to stresses that deplete the cellular
supply of ATP, such as low glucose, hypoxia, and ischemia.
Importantly, AMPK tightly regulates endogenous cardioprotective
signaling pathways (51, 52). The activation (i.e., phosphorylation)
of AMPK mitigates the impaired expression of proteins involved in
mitochondrial homeostasis, as well as antioxidant genes (53, 54),
which influence the increase in mitochondrial biogenesis and the
decrease in mitochondrial ROS generation (13). In addition, AMPK
influences the homeostasis of mitochondrial dynamics through
phosphorylation of the mitochondrial fission factor (13, 55).

As AMPK activation is impaired in diabetes, the AMPK signaling
pathway is considered a potential candidate for the treatment
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FIGURE 8

Scheme of atrial remodeling via mitochondrial dysfunction in rats with
DM. ROS, reactive oxygen species; NF-κB, nuclear factor-κB; TGF-β,
transforming growth factor-β; TNF-α, tumor necrosis factor-α; AF,
atrial fibrillation; pAMPK, phosphorylated AMP-activated protein
kinase; PGC-1α, peroxisome proliferator-activated receptor γ

coactivator-1α.

of DM and more specifically, its cardiac complications (56).
Moreover, previous studies have reported that altered AMPK activity
is implicated in the pathogenesis of AF in diabetic as well as
non-diabetic patients, and that AMPK activators mitigate cardiac
remodeling, in addition to delaying the occurrence of AF (13).

In the current study, we revealed that empagliflozin enhanced
AMPK phosphorylation that was likely already impaired, and its
downstream dysregulation of PGC-1α and TFAM expression, leading
to an improvement in mitochondrial biogenesis, respiratory function,
as well as reduction in ROS generation. In addition, empagliflozin
adequately counteracted the excessive upregulation of Drp1 and
depletion of the mitochondrial fusion proteins Mfn1, Mfn2 and
OPA1, as well as the morphological alteration of the mitochondria,
suggesting that empagliflozin potentially influences mitochondrial
dynamics via AMPK activation.

Empagliflozin has been reported to reverse diabetic
myocardial microvascular injury via AMPK-mediated inhibition of
mitochondrial fission, and it ameliorated adverse cardiac remodeling
and heart failure in a non-diabetic porcine model by enhancing
myocardial energetics via AMPK activation (57, 58). Suggested
mechanisms for AMPK phosphorylation include increasing the
AMP/ATP ratio and the phosphorylation of liver kinase B1 (LKB1),
an upstream activator of AMPK (57, 59). Our results are in line
with those of previous studies and suggest that AMPK-mediated
restoration of mitochondrial function plays a vital role in the
mechanism of empagliflozin-induced inhibition of atrial remodeling.
Taken together with our present findings and previous reports,
we propose a possible mechanism for the cardioprotective effects
of empagliflozin in the prevention of atrial remodeling in T2DM
(Figure 8).

Study limitations

Our study has certain limitations that need to be acknowledged.
Firstly, the dose of empagliflozin used was greater than the clinical
dose commonly used in humans, to ensure sufficient SGLT-2

inhibition. Secondly, because our study used murine models, our
findings cannot be directly generalized in humans. Thirdly, we could
not explore mechanisms other than mitochondrial biogenesis and
dynamics, although recent experimental studies suggest that SGLT2-
i can balance the abnormal homeostasis of Na+ and Ca2+ and/or
mitigate the enhanced activity of calcium and calmodulin-dependent
protein kinase II, which are expected to reduce mitochondrial
Ca2+ levels (13). Fourthly, the following anesthetics; medetomidine
hydrochloride (0.15 mg/kg), midazolam (2 mg/kg), and butorphanol
(2.5 mg/kg) were used in all three groups of rats, as described
(60). However, midazolam and butorphanol are likely to have
inhibitory effects on mitochondrial complex I, II, III, and apoptosis
(61, 62). Although these anesthetics were equally administered to
each rat with same doses in all groups, we could not completely
exclude the possibility of inhibitory effect of anesthetics on atrial
mitochondrial function in rats. Finally, we did not comprehensively
investigate cardioprotective mechanism of empagliflozin in diabetes,
further mechanistic studies are needed to assess beneficial effects of
empagliflozin on atrial mitochondria.

Conclusion

Empagliflozin treatment reduced mitochondrial oxidative stress
and prevented atrial remodeling in a murine model of T2DM.
Empagliflozin restored impaired mitochondrial biogenesis and
dynamics, most likely via AMPK-mediated pathways. Our findings
highlight the therapeutic potential of empagliflozin in prevention of
AF in patients with T2DM.
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