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Receptor tyrosine kinases (RTKs) are a class of membrane spanning cell-surface
receptors that transmit extracellular signals through the membrane to trigger diverse
intracellular signaling through tyrosine kinases (TKs), and play important role in cancer
development. Therapeutic approaches targeting RTKs such as vascular endothelial
growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and
platelet-derived growth factor receptor (PDGFR), and TKs, such as c-Src, ABL,
JAK, are widely used to treat human cancers. Despite favorable benefits in cancer
treatment that prolong survival, these tyrosine kinase inhibitors (TKIs) and monoclonal
antibodies targeting RTKs are also accompanied by adverse e�ects, including
cardiovascular toxicity. Mechanisms underlying TKI-induced cardiovascular toxicity
remain unclear. The transient receptor potential melastatin-subfamily member 7
(TRPM7) is a ubiquitously expressed chanzyme consisting of a membrane-based
ion channel and intracellular α-kinase. TRPM7 is a cation channel that regulates
transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological
processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis,
inflammation, and atrial arrhythmias. Of importance, we and others demonstrated
significant cross-talk between TRPM7, RTKs, and TK signaling in di�erent cell types
including vascular smooth muscle cells (VSMCs), which might be a link between TKIs
and their cardiovascular e�ects. In this review, we summarize the implications of RTK
inhibitors (RTKIs) and TKIs in cardiovascular toxicities during anti-cancer treatment,
with a focus on the potential role of TRPM7/Mg2+ as a mediator of RTKI/TKI-induced
cardiovascular toxicity. We also describe the important role of TRPM7 in cancer
development and cardiovascular diseases, and the interaction between TRPM7 and
RTKs, providing insights for possible mechanisms underlying cardiovascular disease
in cancer patients treated with RTKI/TKIs.

KEYWORDS

receptor tyrosine kinase, TRPM7, cardiovascular toxicities, cancer, tyrosine kinase inhibitors,
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1. Introduction

Receptor tyrosine kinases (RTKs) are a class of membrane-spanning cell-surface receptors
that transmit extracellular signals through the membrane to trigger diverse intracellular signaling
(1). In humans, 58 RTKs have been described that fall into 20 subfamilies (2).They all
share a highly conserved structure, comprising a ligand-binding extracellular domain, an
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alpha-helical transmembrane domain and the tyrosine kinase domain
(TKD) (3). Canonically, binding of ligands to RTKs induces
dimerization and/or oligomerization of extracellular domains,
resulting in activation of TKDs via trans-autophosphorylation and
subsequent recruitment and activation of downstream signaling
proteins. The activation of RTKs leads to phosphorylation and
activation of numerous tyrosine kinases such as Abl, c-Src, Ras, PI-
3K, JAK, and ALK, which regulatecellular processes, such as cell
migration, differentiation, apoptosis, contraction, metabolism and
survival (4). Activation of RTKs and TKs is critically involved in
abnormal cell growth in cancer.

Abnormal expression and overactivation of RTKs, including
vascular endothelial growth factor receptor (VEGFR), epidermal
growth factor receptor (EGFR), and platelet-derived growth factor
receptor (PDGFR) are associated with tumor invasion, metastasis,
and tumor angiogenesis (5). Inhibiting these RTKs and their
downstream signaling pathways reduce tumorigenesis and over the
past 20 years there has been enormous interest in developing
RTKI/TKIs as anti-cancer drugs (5). Despite favorable anti-cancer
benefits, and prologed survival, TKIs are also accompanied by a
profile of cardiovascular toxicities including hypertension, heart
failure (HF) and arrhythmias (6). Understanding mechanisms of
these side effects would improve the management of TKI-related
cardiovascular toxicity and the clinical outcome.

The transient receptor potential melastatin-subfamily member
7 (TRPM7) possesses both ion channel and enzymatic functions.
TRPM7 channel is permeable to divalent cations such as Zn2+, Mg2+

and Ca2+, and the α-kinase domain phosphorylates downstream
substrates including annexin-1, eukaryotic elongation factor 2
(eEF2)’s cognate kinase (eEF2K), phospholipase Cγ2 (PLCγ2),
myosin IIA, SMAD2, tropomodulin 1, myelin basic protein (MBP),
cAMP response element binding protein (CREB), and RhoA (7–
15). TRPM7 plays an important role in the cardiovascular system,
regulating cardiac and vascular ion homeostasis, vascular smooth
muscle cell function, vascular morphology and cardiac function.
Abnormal TRPM7 activity has been implicated in hypertension,
cardiac fibrosis, inflammation and atrial fibrillation (AF) (16–
19), with TRPM7 downregulation promoting cardiovascular injury.
On the other hand, aberrant expression of TRPM7 has been
identified in various tumors, suggesting its significant involvement
in tumorigenesis and cancer development (20–28).

In this review, we summarize the implications of RTK
and TK inhibition in human cancers, with a focus on their
cardiovascular toxicities. We also describe the important role of
TRPM7 in cancer development and cardiovascular diseases, and
the interaction between TRPM7 and RTKs, providing insights for
possible mechanisms whereby anti-cancer drugs targeting RTKs
induce cardiovascular toxicity.

2. RTKs, cancer, and cardiovascular
toxicity

2.1. RTKs and oncogenesis

Under physiologic conditions, RTK activity is tightly controlled.
However, dysregulated signaling through RTKs promotes an
imbalance between cell proliferation and cell death, which is
implicated in cancer development. Mechanisms underlying the

aberrant activation of RTKs are associated with overexpression
(29), mutations (30), chromosomal rearrangement (31), autocrine
activation (32), and RTK interaction with other kinases, proteins, and
signaling molecules (5) (Figure 1).

2.2. RTKs as therapeutic targets for cancer

TKIs are a class of pharmacologic agents that block multiple
signal transduction pathways (33). In 2001, the US Food and Drug
Administration (FDA) approved the first TKI imatinib, which targets
the breakpoint cluster region protein- Abelson murine leukemia
viral oncogene homolog (BCR-ABL) oncogene, and brought a
revolutionary success to the treatment of chronic myeloid leukemia
(CML) (34). To date, over 50 TKIs have been approved by the FDA.
Major TKIs and their indications are listed in Table 1.

2.3. Cardiovascular toxicity associated with
tyrosine kinase inhibition

2.3.1. VEGFR inhibitors and cardiovascular toxicity
VEGF signaling plays a critical role in angiogenesis, cell

proliferation and survival. Following advances in knowledge about
the role of angiogenesis in promoting tumor growth (94, 95), multiple
clinical trials demonstrated that VEGFR inhibitors yield incremental
improvements in outcomes for a variety of solid tumors. However,
the increasing use of these agents is also associated with a wide
spectrum of side effects, most frequently related to cardiovascular
toxicity, which might be linked to direct effects of VEGF inhibitors
on the vasculature (96).

2.3.1.1. Hypertension
Hypertension is considered as the main cardiovascular side effect

of VEGFR-TKIs. Almost every trial reports treatment-induced blood
pressure elevation and up to 80% of patients develop hypertension,
either de novo or worsening of previously controlled hypertension
(97). As outlined in a meta-analysis including 77 VEGF inhibitors,
severe hypertension occurred in 7.4%, cardiac dysfunction in 2.3%,
arterial thromboembolism in 1.8%, and cardiac ischemic in 1.7% of
patients, and there was no significant difference in cardiovascular risk
between anti-VEGF monoclonal antibody and TKIs (98). Molecular
mechanisms underlying the development of hypertension during
VEGFR-TKI therapy remain unclear. However, many studies have
shown that VEGFR inhibitors reduce the level of vasodilators,
including nitric oxide (NO) and PGI2, which are crucial in the
development of hypertension. In patients treated with VEGFR-TKI,
plasma levels of NO and its metabolites are decreased, but return
to baseline following withdrawal (99). Also, VEGFR-TKI therapy is
associated with an elevated level of endothelin-1 (ET-1, a potent
vasoconstrictor) (100). ET-1 receptor antagonists have been shown
to be effective to treat VEGFR-TKI-associated hypertension in a pre-
clinical study suggesting the involvement of ET-1 in VEGFR-TKI-
related hypertension (101).

2.3.1.2. Thrombosis
VEGFR inhibition is known to cause both arterial thrombosis

event (ATE), particularly cardiac ischemia, and venous
thromboembolism (VTE). The risk of ATE associated with
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FIGURE 1

Schematic structure of RTKs and common mechanisms involved in oncogenesis. (A) RTKs consist of an extracellular ligand-binding domain, a
transmembrane domain, and an intracellular tyrosine kinase domain. Upon ligand binding, RTKs undergo dimerization, which further leads to activation
of the intracellular tyrosine kinase domain. (B) Abnormal activation of RTKs in turmor growth is associated with overexpression, mutations, chromosomal
rearrangement, autocrine activation, and RTK interaction.

anti-VEGF TKIs is greater than that of VTE, with an incidence
generally < 3% (102, 103). A meta-analysis of 19 randomized
controlled trials including 9,711 patients treated with anti-VEGF
TKIs showed a significantly increased risk of developing ATE when
compared with controls (OR 2.26, 95% CI: 1.38–3.68, p = 0.001),
with cardiac ischemia/infarction (67.4%) as the most common
events for ATE (104). However, another meta-analysis of 7,441
patients from 17 phrase II/III trials reported no difference in the
relative risk of VTE for anti-VEGF TKIs compared with controls
(105). Several mechanisms have been proposed to account for the
thromboembolic events of anti-VEGF therapy. Apart from the
facilitation of endothelial cell proliferation and survival, VEGF
activity is crucially involved in the maintenance of vascular integrity
(106, 107). Hence, blockage of VEGF signaling impairs the integrity
and regenerative capacity of endothelial cells, subsequently leading

to thrombosis. Moreover, decreased level of PGI2 and NO related to
anti-VEGF therapy creates a procoagulant environment in the vessel
wall, predisposing patients to thromboembolic events (106).

2.3.1.3. Heart failure
Meta-analysis of trials of VEGFR-TKIs (sunitinib, sorafenib,

pazopanib, axitinib, vandetanib, cabozantinib, ponatinib and
regorafenib) including 10,647 patients demonstrated a pooled
incidence of asymptomatic HF of 2.4% and symptomatic HF of
1.2%. Notably, there was no apparent difference in the risk of
cardiovascular toxicity between the relatively specific VEGFR-TKIs
(e.g., axitinib) and those targeting against a broader range of
tyrosine kinases (e.g., sunitinib, sorafenib, and pazopanib) (108).
Mechanisms underlying VEGFR-TKI-associated HF appear to be
highly relevant to the cardiac afterload increased by endothelial
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TABLE 1 TKIs approved by FDA in cancer treatment.

Receptor Class Name of the drug Trade name Year of approval Indication

EGFR TKI Gefitinib Iressa 2003 NSCLC (35–37)

Erlotinib Tarceva 2004 NSCLC/pancreatic cancer (38, 39)

Afatinib Gilotrif 2013 NSCLC (40)

Dacomitinib Vizimpro 2018 NSCLC (37, 41)

Osimertinib Tagrisso 2015 Medullary thyroid cancer (42)

Vandetanib Caprelsa 2011 NSCLC (39)

mAb Cetuximab Erbitux 2004 CRC (43), head and neck cancer (44)

Panitumumab Vectibix 2006 CRC (45, 46)

Necitumumab Portrazza 2015 NSCLC (47)

HER2 TKI Lapatinib Tykerb 2007 Breast cancer (48, 49)

Neratinib Nerlynx 2017 Breast cancer (50, 51)

Tucatinib Tukysa 2020 Breast cancer (52)

mAb Trastuzumab Herceptin 1998 Breast cancer (53), gastric or GEJ adenocarcinoma (54)

Pertuzumab Perjeta 2012 Breast cancer (55)

Trastuzumab Kadcyla 2013 Breast cancer (56, 57)

Emtansine

Trastuzumab Enhertu 2019 Breast cancer (58), gastric or GEJ adenocarcinoma (59)

Deruxtecan

Margetuximab Margenza 2020 Breast cancer (60)

VEGFR TKI Axitinib Inlyta 2012 RCC (61)

Cabozantinib Cometriq 2012 MTC (62), RCC (63), HCC (64), DTC (65)

Lenvatinib Lenvima 2015 RCC (66), HCC (67)

Pazopanib Votrient 2009 RCC (68), soft tissue sarcoma (69)

Regorafenib Tafinlar 2012 CRC (70), GIST (71), HCC (72)

Sorafenib Nexavar 2005 RCC (73), HCC (74), or differentiated thyroid cancer (75)

Tivozanib Fotivda 2021 RCC (76)

Sunitinib Sutent 2006 GIST (77), RCC (78), or pancreatic neuroendocrine tumor (79)

Vandetanib Zactima 2011 Medullary thyroid cancer (80)

mAb Bevacizumab Avastin 2004 Colon cancer (81), breast cancer (82), or ovarian cancer (83)

Ranibizumab Lucentis 2006 AMD (84) or diabetic macular edema (85)

Ramucirumab Cyramza 2014 NSCLC (86), gastric cancer (87), or CRC (88)

Aflibercept Eylea 2012 AMD (89), diabetic macular edema (85), or CRC (90)

PDGFR TKI Avapritinib Ayvakittm 2020 GIST (91)

Ripretinib Qinlock 2020 GIST (92)

mAb Olaratumab Lartruvo 2016 Soft tissue sarcoma (93)

NSCLC, non-small-cell lung cancer; GEJ, gastroesophageal junction; RCC, renal cell carcinoma; MTC, medullary thyroid carcinoma; HCC, hepatocellular cell cancer; DTC, differential thyroid cancer;
CRC, colorectal cancer, GIST, gastrointestinal Stromal Tumors, AMD, age-related macular degeneration; TKI, tyrosine kinase inhibitors; mAb, monoclonal antibody.

dysfunction and hypertension (109). Mitochondrial dysfunction
and cytochrome C-induced apoptosis might also be important,
which are caused by the on-target VEGF signaling inhibition
of the PI3K-AKT pathway (110). Moreover, inhibition of not
only angiogenesis but also other off-targets, such as PDGFR
and the adenosine monophosphate-activated protein kinase

(AMPK), might be implicated in potential mechanisms that lead to
HF (6).

2.3.1.4. QT prolongation
The incidence of QT prolongation associated with VEGFR-TKIs

varies widely among individual drugs. Vandetanib has the highest
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incidence and the most significant prolongation, with up to 8%
of patients exhibiting a corrected QT (QTc) interval duration of
>500 ms (111). Meta-analysis of VEGFR-TKI related clinical trials
demonstrated an incidence of 4.4% of all-grade QT prolongation
when compared to non-TKI therapy (112). The exact mechanism
of QT prolongation from anti-VEGF TKIs is unclear, while it has
been hypothesized that these TKIs might interact with the human
ether-a-go-go-related gene (hERG) potassium channels, predisposing
to QT prolongation (113). Of major significance, hypomagnesemia,
possibly due to abnormal TRPM7 activity, is a major cause of long
QT syndrome (114).

2.3.2. EGFR inhibitor and cardiovascular toxicity
EGFR is a cell surface protein that binds to epidermal

growth factor, thus inducing receptor dimerization and tyrosine
autophosphorylation leading to cell proliferation. Mutations in this
gene have been associated with a number of cancers, including
adenocarcinoma of the lung (115), glioblastoma and epithelial tumors
of the head and neck (116). Based on the FDA Adverse Events
Reporting System (FAERS), a public database that contains nearly 17
million (adverse event) AE reports, EGFR TKIs have been associated
with HF and cardiac arrhythmias such as atrial fibrillation and QT
prolongation (117). In a retrospective cohort study of 123 patients
with advanced non-small cell lung cancer (NSCLC) who received
Osimertinib, the first third-generation EGFR-TKI, the incidence of
cardiac AEs was 4.9% (118).

2.3.2.1. Heart failure
A meta-analysis of 10 randomized clinical trials involving 12,000

patients treated by trastuzumab, a monoclonal antibody targeting
HER2 (the family member of EGFR), indicated that the incidence
of asymptomatic decline of left ventricular ejection fraction (LVEF,
normal range 50–70%) and symptomatic HF was 7.5 and 1.9%,
respectively (119). A case-control study of 53 patients receiving
HER2-targeted therapy further found that an LVEF < 55% at
any surveillance timepoint was associated with higher risk for HF,
suggesting that baseline cardiac function might be an important
factor that determines the cardiac outcome (120). Additionally, an
increasing number of case reports have demonstrated significant HF
induced by Osimertinib in patients with lung cancer, a problem
that could be complicated by the coincidence of QT prolongation
(121–123). In animal studies, Threadgill et al. found that wild-type
mice displayed cardiac dysfunction and increased cardiac fibrosis
after 3-month exposure to EGFR-TKIs (124). Intriguingly, female
mice exhibited increased cardiac adverse effects, suggesting that sex
might influence the susceptibility to TKI-mediated toxicity (124).
Furthermore, taking advantages of the myoblast cell line H9c2 and
in vivo rat cardiomyocytes, Korashy et al. showed that Gefitinib,
a selective inhibitor of EGFR, induces cardiovascular toxicity
through modulating the cardiac PTEN/AKT/FoxO3a pathway and
the formation of CYP1A1-mediated reactive metabolites (125).

2.3.2.2. Cardiac arrhythmia
In a retrospective study based on the world health organization

(WHO) pharmacovigilance database VigiBase, among 98,765 adverse
reactions reported with NSCLC-targeted therapies including EGFR-
TKIs, 1,783 (1.8%) were cardiac arrhythmias (126). The most
frequently reported cardiac arrhythmia associated with EGFR-TKIs is

QT prolongation. Rociletinib, a third-generation EGFR-TKI targeting
common EGFR-activating mutations, was found to increase the risk
of corrected QT prolongation compared to chemotherapy (6.7 vs. 0%)
in patients with advanced or metastatic NSCLC (127). Case reports
showed that Osimertinib induced QT prolongation in patients with
lung cancer, while discontinuation of the drug led to the alleviation
of prolonged QT interval (121, 123, 128). The scenario is further
complicated by the concurrence of HF, while whether there is a
casual link remains unclear (121, 123). These studies also recommend
that careful monitoring of electrocardiogram (ECG) and serum
potassium, a cation that importantly affects QT interval, is required
in neoplastic patients receiving EGFR-TKIs therapy (128). It is also
worth noting that several clinical studies failed to provide evidence
supporting any correlation between anti-EGFR therapy and cardiac
abnormalities including QT prolongation, and thus future adequately
powered clinical trials are still required (129, 130).

2.3.3. PDGFR inhibitor and cardiovascular toxicity
PDGFR signaling pathway plays a critical role in promoting

cardiomyocyte proliferation and heart regeneration (131). Various
TKIs that inhibit VEGFR/PDGFR were shown to induce significant
cell death in human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs) (132). Additionally, in an animal
model of myocardial infarction, PDGF gene transfer was able to
improve left ventricular function (133). In considering the potential
cardioprotective effect of PDGF, it is not surprising that anti-PDGFR
therapy in cancer patients was associated with cardiac AEs. Sunitinib,
a TKI with multiple targets including PDGFR, was reported to
induce blood pressure elevation and LVEF reduction (134). Similarly,
Dasatinib, a multitargeted TKI, was shown to prolong ventricular
effective refractory period and impair left ventricular mechanical
function in dogs at a low-dose administration (135). Moreover, in a
recent Japanese cohort study, cardiotoxic AEs including congestive
HF, pericardial effusion and QT prolongation were frequently
reported in patients with chronic myeloid leukemia (CML) and
gastrointestinal stromal tumor (GIST) (136). However, findings of
these studies should be interpreted carefully, since the observed
cardiac effects might be attributed to other targets of the treatment,
while available evidence regarding PDGFR-selective TKIs still lacks.

3. TRPM7 as a potential contributor to
RTKI-induced cardiovascular toxicity

3.1. TRPM7 in the cardiovascular system

TRPM7 human gene is located on the long arm of chromosome
15, consisting of 19 exons and encoding a 1,863 amino acid protein
with a molecular weight of 210 kDa (137). The basic structure
of TRPM7 consists of N-terminal hydrophobic region (H1) and
four Melastatin Homologous Regions (MHR), six transmembrane
segments, and C-terminal transient receptor potential (TRP)
region followed by the coiled coil (CC) domain connecting
loop, serine/threonine-rich domains and an α-type kinase domain
(Figure 2) (4).

TRPM7 expression has been confirmed in the most abundant
cell types of the cardiovascular system including VSMCs, endothelial
cells (ECs) and cardiomyocytes (16, 138, 139). In 2005, we were
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FIGURE 2

Schematic structure of the TRPM7 chanzyme. It consists of six transmembrane segments with the channel pore formed between segment 5 and 6.
TRPM7 channel is permeable to divalent cations including Mg2+, Ca2+, and Zn2+.The α-kinase domain is able to phosphorylate diverse downstream
substrates such as annexin-1, RhoA, myosin IIA, eEF2, SMAD2, and PLCγ2, at specific phosphorylation residues.

amongst the first to identify and characterize TRPM7 in VSMCs,
where the chanzyme acts as a functionally important regulator of
Mg2+ homeostasis and cell growth (16). We recently further showed
that TRPM7 is membrane-bound in VSMCs, mediating Mg2+

and calcium (Ca2+) influx and exerting effects on cell migration
and proliferation (17). TRPM7 was found to be a contributor to
the development of a proliferative phenotype of VSMCs trigged
by angiotensin II (Ang II), and vascular calcification induced by
phosphate (140, 141). In ECs, Inoue and Xiong discovered the
TRPM7-like outward rectifying currents by whole-cell patch-clamp
experiments (138). The physiological function of TRPM7 in ECs is
more likely to associate with its Mg2+ permeability, since silencing
TRPM7 mimics the effects of Mg2+ deficiency on cell behavior and
Mg2+ regulates endothelial barrier functions through TRPM7 (142,
143). Additionally, endothelial functions such as cell adhesion and
tube formation are negatively regulated by TRPM7 with mechanisms
involving the extracellular signal-regulated kinase (ERK1/2) pathway
(144). TRPM7 and its sister homolog TRPM6 are also observed
in cardiomyocytes from all chamber walls of human hearts (139).
Cardiac TRPM7 influences cardiac action potentials in a Mg2+-
sensitive manner, while TRPM7 deletion in embryonic myocardium
disrupts cardiac automaticity via the regulation of Hcn4 expression
(145, 146).

TRPM7 activity is regulated by various vasoactive agents such
as Ang II, aldosterone, bradykinin and C-type natriuretic peptide
(CNP) (16, 147–149). Ang II enhances TRPM7 protein expression
through Ang II type 1 receptor-mediated ERK1/2 signaling, which
contributes to phenotypic change and proliferation of VSMCs

(140). Chronic treatment with aldosterone upregulates the plasma
membrane expression of TRPM7 in HEK cells, a process occurring
via a mineralocorticoid receptor (MR)-dependent genomic signaling
cascade involving serum- and glucocorticoid-regulated kinase 1
(SGK1) and a functional TRPM7 α-kinase domain (148). Bradykinin,
a known vasodilator, was found to mediate the expression of
TRPM7 and its kinase substrate annexin-1 in VSMC via molecular
mechanisms involving phospholipase C (PLC), protein kinase C
(PKC) and c-Src (149). Furthermore, C-type natriuretic peptide
(CNP), a peptide produced by the vascular endothelium, has recently
been shown to affect TRPM7-mediated Ca2+ entry in chondrocytes
and stimulate bone growth via activating natriuretic peptide receptor
2 (NPR2) (147).

Growing evidence indicates an impoartnt role for TRPM7 in
cardiac development (146). TRPM7 plays an indispensable role
for myocardial proliferation during early cardiogenesis, as TRPM7
deletion before embryonic day 9 led to congestive heart failure
and death by embryonic day 11.5 (150). These findings highlight
the importance of TRPM7 in the integrity and function of the
cardiovascular system.

3.2. TRPM7 and cardiovascular diseases

3.2.1. Cardiac fibrosis
Cardiac fibrosis is defined as the excessive accumulation of

fibrillar extracellular matrix in the cardiac interstitium, a pathological
process contributing to various heart diseases including HF,
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myocardial infarction, dilated and ischemic cardiomyopathies and
arrhythmias (151). We demonstrated that TRPM7 deficiency is
associated with cardiac dysfunction, inflammation and fibrosis in
mice by Mg2+ dependent effects (17). Intriguingly, TRPM7 was
observed to contribute to cardiac fibrosis induced by Ang II and
hydrogen peroxide (H2O2) (152, 153). In these studies, 2-APB, a
pharmacological non-specific inhibitor of TRPM7, was shown to
attenuate cardiac fibrosis via effects on cardiac fibroblasts (152, 153).
Given the important role of TRPM7 played in cardiac fibrosis,
several studies have investigated TRPM7 as the potential therapeutic
target. Tang et al. showed that Astragaloside IV, an important
constituent of traditional Chinese medicine, inhibits cardiac fibrosis
through modulating TRPM7 (154). Moreover, it was also shown that
sacubitril, a drug well-known for treating heart failure, ameliorates
cardiac fibrosis by acting on fibroblasts and cardiomyocytes via
inhibiting TRPM7 channel (155).

3.2.2. Hypertension
Hypertension is a well-known major risk factor for cardiovascular

diseases and exerts negative effects on healthy longevity (156). Direct
evidence supporting TRPM7 involvement in the development of
hypertension was first demonstrated in Ang II-induced hypertension,
where the development of hypertension was amplified in TRPM7-
deficent mice. This was associated with impaired endothelial function
and amplified cardiac remodeling and left ventricular dysfunction
(18). On the other hand, it was shown that TRPM7 inhibition
by pharmacologic agents reduced hypertension induced by leptin.
(157). Leptin receptor and TRPM7 colocalized in glomus cells of
carotid bodies, where leptin regulates blood pressure through acting
on TRPM7 (157). Furthermore, calpain, the substrate of TRPM7
kinase, might also play an important role in the development of
hypertension. Calpain acts as downstream mediators in Ang II-
induced cardiovascular remodeling, while calpastatin, a calpain-
specific inhibitor, was able to prevent Ang II-dependent cardiac
hypertrophy and perivascular inflammation (158). In addition,
TRPM7 might contribute to hypertension via its Mg2+ permeability.
Despite inconsistent findings to support the correlation between
serum Mg2+ and hypertension, Mg2+ supplementation at a dose of
368 mg/d for 3 months has been shown to lower blood pressure in
adults (159–161).

3.2.3. Cardiac arrhythmia and ischemic heart
disease

In the last decade, increasing evidence have established a link
between TRPM7 and atrial fibrillation (AF), which is most commonly
sustained arrhythmia and a major cause of morbidity and mortality
(19, 162–164). Elevated TRPM7 expression has been observed
in atrial myocytes and peripheral blood from patients with AF
(162, 164). Yue et al. further showed that TRPM7 is the major
Ca2+ permeable channel in human atrial fibroblasts, which might
contribute to atrial fibrosis in human AF (19). These findings suggest
that TRPM7 is associated with the pathogenesis of AF, which might
be related to its cation permeability property. TRPM7 is highly
expressed in sinoatrial node, where it influences diastolic membrane
depolarization and automaticity, suggesting a possible role of TPRM7
in sick sinus syndrome and atrioventricular block (146). TRPM7
might also be implicated in ventricular arrhythmias, since cardiac

TRPM7 deletion in mice is associated with a high risk of developing
cardiomyopathy, characterized by impaired repolarization and
ventricular arrhythmias (150). Importantly, attention has also been
drawn to the involvement of TRPM7 in ischemic heart disease (IHD),
since increased expression of TRPM7 and TRPM6 was observed
in cardiac biopsies from patients with IHD (139). Consistently,
in a murine model of myocardial infarction, TRPM7 expression
was remarkably upregulated in cardiac fibroblasts, accompanied by
enhanced Ca2+ influx (165).

4. Cross-talk between TRPM7, Mg2+,
and RTKs

Intracellular Mg2+, which is regulated by TRPM7 cation channel
activation, is an essential cation and second messenger involved in
tyrosine kinase signaling and regulation of RTKs (166). Mechanisms
whereby Mg2+ regulates the activation of RTKs are elusive, however
the current concept of “two metal catalysis” shows the requirement
of two Mg2+ ions for proper kinase phosphorylation. In physiologic
conditions, the ligand-receptor interaction induces binding of the
first Mg2+ ion to the kinase, which allows the binding of the second
Mg2+ leading to a proper signal propagation of the TK. This complex
signaling pathway is deficient in conditions of Mg2+ deprivation
(167). Moreover, affinity analysis showed that the binding-free
energies of ATP to target enzymes are lower in the presence of Mg2+

ions than those in the absence, suggesting that Mg2+ enhances the
binding affinities of ATP to the protein kinases (168) (Figure 3).

In renal distal convoluted tubule (DCT), EGF increases TRPM6
activity and surface expression, while in cancer patients receiving
anti-EGFR treatment, serum level of Mg2+ was significantly
decreased (169–171). In a similar fashion, EGF through binding to
EGFR and activating downstream signaling, regulates cell membrane
proteins expression and currents of TRPM7 (21, 172). PDGF was
shown to dramatically enhance the gene and protein expression of
TRPM7 in a time-dependent manner in hepatic stellate cells (HSCs),
and PDGF-induced cell proliferation was prevented by TRPM7
inhibition (173). Consistently, Xu et al. found that carvacrol, a
pharmacological inhibitor of TPRM7, attenuated the activation and
proliferation of HSCs induced by PDGF through TRPM7-meidated
cellular signaling involving the mitogen-activated protein kinases
(MAPK) (174). In a human osteoblast cell line, PDGF upregulated
TRPM7 expression after 4 h of treatment, an effect that could be
sustained for a 24 h-period (175). The regulation of TRPM7 by
PDGF was further shown to importantly modulate Mg2+ influx, and
proliferation and migration of human osteoblasts (175). Moreover,
nerve growth factor (NGF) via its receptor TrkA, a family member
of RTKs, regulated the outward-rectifying TRPM7-like currents in
hippocampal neurons through a phospholipase C (PLC)-dependent
manner (176). Taken together, these studies have highlighted a critical
regulation of TRPM7 by the RTKs signaling, which is associated with
important biological effects in various cell types.

It is worth noting that most evidence connecting RTKs and
TRPM7 were from non-cardiovascular studies. The direct evidence
demonstrating a link between TKIs and TPRM7 in the cardiovascular
system was from our previous study and this link was primarily
functional (177). We showed that in VSMCs, EGF promotes Mg2+

influx through the TRPM7 channel and consequently regulates
VSMCs function and vascular morphology. Of importance, the effects
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FIGURE 3

Potential cross-talk between RTKs and TRPM7 and the potential involvement in RTKs inhibition-related cardiovascular toxicity. RTKs inhibition blocks the
interaction between RTKs and TRPM7, and leads to TRPM7 dysfunction. Through mechanisms involving TRPM7, RTKs inhibition might cause
cardiovascular damages in cancer patients. The MAPK pathway, the PI3K/AKT/mTOR pathway, the JAK/STAT pathway, and the PLCγ/PKC pathway are
downstream signaling cascades activated by RTKs. The dashed line indicates the possibility that RTKs and TRPM7 interact. This still awaits confirmation.

of EGF on TRPM7 and VSMCs were attenuated by gefitinib, a
TKI that exclusively targets EGFR. In addition, we also found that
in VSMCs from TRPM7 kinase-deficient mice (TRPM7+/1kinase)
and aortic tissues from TRPM7-kinase dead (TRPM7R/R) mice,
EGFR expression and EGFR phosphorylation (Y845) were reduced,
respectively, supporting a significant cross-talk (177). Moreover, our
study demonstrated that EGF/EGFR was able to mediate the kinase
activity of TRPM7 in VSMCs, due to the observation that EGF
enhanced TRPM7 phosphorylation at Ser 1511 (177).

Experimental treatment with the EGFR inhibitor erlotinib causes
hypomagnesemia that gradually increases after 3 weeks of treatment,
suggesting a cumulative chronic effects on the Mg2+ handling by
kidneys and intestines (178). Oxidative stress is another important
mechanism that might be responsible for reduced activity of Mg2+

channels observed after EGFR inhibition. Erlotinib activated Nox4,
a NADPH oxidase highly expressed in the cardiovascular system
that generates H2O2 (179), and it was previously demonstrated
that H2O2 cause inhibition of TRPM6 and TRPM7 activities and
subsequently reduction in Mg2+ (180, 181). However, it is still elusive
whether these important mechanisms are observed in cells from
the vasculature.

Vascular dysfunction in hypertension resembles the vascular
phenotype in aging, with hypertension being defined as a condition
of premature vascular aging (182). Cellular and experimental
studies demonstrated that TRPM7-deficiency is associated with
increased molecular markers of senescence, including p16, WRN
and phosphorylation of P66Shc (183). Importantly, expression of
these markers is increased in experimental hypertension, induced
by infusion with Ang II or aldosterone, chronic kidney ischemia
and pulmonary arterial hypertension (182). Important pathologic

implications of the TRPM7-Mg2+ axis deficiency is associated
with cardiovascular inflammation by mechanisms dependent on
macrophage infiltration to cardiac tissues leading to increased
galectin-3, IL-6, IL-10, phosphor-P66Shc and reduced phosphor-
Stat3 leading to cardiac fibrosis and diastolic dysfunction (17).
Additionally, TRPM7 is downregulated in VSMC from PAH patients
and in experimental models, effects that were exacerbated by
waixenicin A, a TRPM7 inhibitor. Intracellular mechanisms involved
MEK/ERK pathway (184).

Another important factor that should be taken into consideration
is that TRPM7 is highly permeable to Zn2+. Hence, downregulation
of TRPM7 induced by TKI might affect intracellular concentration
of Zn2+. Clinical investigations showed reduced serum Zn2+ as
adverse effect of EGFR inhibition and Zn2+ supplementation was
able to reduce dermatitis these patients (185). Of importance,
Zn2+ is a potent antioxidant and its deficiency is associated with
mitochondrial and endoplasmic reticulum (ER) stresses, increased
ROS production and dysregulation of cellular metabolism (186).
Clinically, Zn2+ deficiency is associated with high incidence of
cardiovascular diseases, including hypertension and diabetes (187).
Mechanisms underlying these effects are still elusive and might
involve oxidative stress and inflammatory response.

Mg2+ deficiency is directly associated with risk for diabetes
development. Physiologically, Mg2+ is a co-factor of the ATPase that
limits the opening of the ATP-sensitive potassium channels, leading
to increase in calcium influx and results in insulin release. Therefore,
low Mg2+ reduces ATPase activity and consequent hyperactivity
of the ATP-sensitive potassium channels (KATP), inhibiting Ca2+

influx resulting in defective insulin secretion (188). Furthermore,
hypomagnesemia interferes with optimal binding of insulin to
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receptor and because IRS are TK receptor, reduced in Mg2+ interferes
with intracellular signaling pathways mediated by IRS1 and IRS2
activation (167, 189). Of importance, a randomized clinical trial
involving 1,122 subjects showed that hypomagnesemia is associated
with the development of impaired glucose tolerance and type 2
diabetes (190).

It should be highlighted that while it is clear that there is
important cross-talk between RTK/TK and TRPM7 at the functional
level, direct interacting p-tyr sites between RTKs/TKs and TRPM7
still awaits confirmation. However, there is growing evidence that
both TRPM6 and TRPM7 possesses phosphorylation sites, which
potentially may link to the RTK/TK pathway (14, 191). Moreover,
adaptor proteins may act as links between the systems.

5. Conclusion and future perspective

RTKs such as VEGFR, EGFR and PDGFR are important
therapeutic targets for human cancers, however, inhibitors of
RTKs and TKs are also accompanied by a profile of adverse
cardiovascular effects through unclear mechanisms. Since the
cross-talk between RTKs and TRPM7 exists in multiple cell
types, and TRPM7 is critically involved in both cancers and
cardiovascular diseases, we suggest that TRPM7 might play a role
in the cardiovascular toxicity associated with RTKI/TKIs (Figure 3).
TRPM7 is ubiquitously expressed and while it is an important
regulator of intracellular Mg2+, it also influences intarcellular Ca2+

homeostasis and downstream kinases and substartes that may
also play a role in TRPM7-RTK/TK crosstalk. Unraveling these
TRPM7-dependent processes might provide greater insights into
the molecular mechanisms that underlie cardiovascular disease in
patients treated with RTKI/TKIs.
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