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Objective: Energy metabolism plays a crucial role in the improvement of heart

dysfunction as well as the development of heart failure (HF). The current study

is designed to identify energy metabolism-related diagnostic biomarkers for

predicting the risk of HF due to myocardial infarction.

Methods: Transcriptome sequencing data of HF patients and non-heart

failure (NF) people (GSE66360 and GSE59867) were obtained from gene

expression omnibus (GEO) database. Energy metabolism-related di�erentially

expressed genes (DEGs) were screened between HF and NF samples. The

subtyping consistency analysis was performed to enable the samples to be

grouped. The immune infiltration level among subtypes was assessed by

single sample gene set enrichment analysis (ssGSEA). Random forest algorithm

(RF) and support vector machine (SVM) were applied to identify diagnostic

biomarkers, and the receiver operating characteristic curves (ROC) was plotted

to validate the accuracy. Predictive nomogram was constructed and validated

based on the result of the RF. Drug screening and gene-miRNA network

were analyzed to predict the energy metabolism-related drugs and potential

molecular mechanism.

Results: A total of 22 energy metabolism-related DEGs were identified

between HF and NF patients. The clustering analysis showed that HF patients

could be classified into two subtypes based on the energy metabolism-

related genes, and functional analyses demonstrated that the identified DEGs

among two clusters were mainly involved in immune response regulating

signaling pathway and lipid and atherosclerosis. ssGSEA analysis revealed that

there were significant di�erences in the infiltration levels of immune cells

between two subtypes of HF patients. Random-forest and support vector

machine algorithm eventually identified ten diagnostic markers (MEF2D, RXRA,
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PPARA, FOXO1, PPARD, PPP3CB, MAPK14, CREB1, MEF2A, PRMT1) for risk

prediction of HF patients, and the proposed nomogram resulted in good

predictive performance (GSE66360, AUC = 0.91; GSE59867, AUC = 0.84) and

the clinical usefulness in HF patients. More importantly, 10 drugs and 15

miRNA were predicted as drug target and hub miRNA that associated with

energy metabolism-related genes, providing further information on clinical

HF treatment.

Conclusion: This study identified ten energy metabolism-related diagnostic

markers using random forest algorithm, which may help optimize risk

stratification and clinical treatment in HF patients.

KEYWORDS

heart failure, energy metabolism, random forest, nomogram, biomarker

Introduction

Heart Failure (HF) is a complex ailment that characterized

by multidimensional nature and primarily results from

myocardial infarction, cardiomyopathy, abnormal cardiac

load, and arrhythmias. The morbidity and mortality of HF

have increased rapidly in recent years, particularly among

the elderly (1), and a majority of hospitalized patients die

within 5 years of admission (2), affecting over 64 million

patients’ quality of life (3, 4). The first step in improving

the clinical management and survival rate of patients with

HF is the rapid and accurate diagnosis of the disease. The

current clinical diagnosis of HF relies on a spectrum of

biochemical markers, including BNP and NT-proBNP (5, 6).

However, several researches demonstrated that BNP lacks

sensitivity and specificity as they could increase in various

Abbreviations: HF, Heart failure; DEGs, di�erentially expressed genes; RF,

random forest algorithm; SVM, support vector machine; ROC, Receiver

operating characteristic; NF, non-heart failure people; GEO, Gene

Expression Omnibus; CM, consensus matrix; PCA, Principal component

analysis; ssGSEA, Single-sample gene set enrichment analysis; CDF,

cumulative distribution function; MEF2A, Myocyte enhancer factor 2A;

MEF2D, myocyte enhancer factor 2D; PPARA, Peroxisome proliferator-

activated receptor alpha; PPARD, peroxisome proliferator-activated

receptor delta; FOXO1, forkhead box O1; MAPK14, mitogen-activated

protein kinase 14; CREB1, cAMP responsive element binding protein 1;

PRMT1, protein arginine methyltransferase 1; CaMKII, cardiomyocytes

causes multifunctional Ca2+/calmodulin-dependent kinase II; RXRA,

Retinoid X receptor alpha; PPP3CB, Protein phosphatase 3 catalytic

subunit beta; BNP, B-type natriuretic peptide; NT-proBNP, N-terminal

pro-B-type natriuretic peptide; CTD, The Comparative Toxicogenomics

Database; TTD, The Therapeutic Target Database; UCP2, uncoupling

protein 2; PRMT1, protein arginine methyltransferase 1.

non-HF diseases such as pulmonary arterial hypertension and

renal failure (7). Furthermore, BNP and echocardiography is

operator-dependent, which limits its diagnostic precision to

some degree (5, 8). The emergence of gene testing raised hope

for early and diagnosis of HF, which helps better understand

the mechanisms underlying the development of HF and identify

the potential diagnostic markers. Several biomarkers have been

identified to serve as diagnostic and prognostic markers for

HF patients (9), whereas the ability of individual markers to

differentiate between disease and healthy controls is usually

not very powerful (10). Therefore, searching for novel multi-

biomarker diagnostic profile was urgently needed to more

accurate diagnosis and develop new therapeutic targets in

HF patients.

Perturbations of cardiac energy metabolism is an important

characteristic of heart failure in the early stages (11–13). During

aerobic conditions, the healthy heart derives its contractile

energy from fatty acids and glucose, whereas this balance

is disrupted under cardiac stress condition, which can have

a profound impact on the function of the heart (14). The

current study has indicated that energy metabolism is promoted

in early and compensated HF states and that a decrease in

metabolic capacity may result in the progressive defects seen

in more severe cases of HF (10). It is likely that targeted

improvements in energy metabolic efficacy will improve the

symptomatic status of HF patients. For example, some energy

metabolism-related genes such as UCP2 and PRMT1 were

found to modulate the energy metabolism in cardiomyocytes

after HF, which involved in remodeling of the ventricular

wall and the maintenance of cardiac function (15, 16). More

importantly, some energy metabolism-related genes like the

myocyte enhancer factor 2 (MEF2) family, including MEF2A,

MEF2D, has been considered as core transcription factors in

cardiac development and reprogramming (17), which may serve

as a potential candidate gene for the cardiac abnormalities (18).

These studies suggest that further understanding of the value
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of the energy metabolism in HF patients will be crucial to

clarifying the process of HF and developing new therapeutic

options (19).

Given the huge burden of HF and the important role

of energy metabolism, we obtained energy metabolism-relate

DEGs between HF and non-heart failure (NF) samples in the

GEO database. By the help of these DEGs data, we used random

forest algorithm (RF) and support vector machine (SVM)

to identify the diagnostic biomarkers in HF and constructed

and validated an energy metabolism-related genetic diagnostic

nomogram to predict the risk of HF. Moreover, we predicted

key genes related drugs and miRNA. In a word, this study

could provide theoretical support for early warning signs of

HF and assist in improving risk stratification and guiding

clinical decision-making.

Materials and methods

Data collection

The two profiling datasets, GSE66360 (n = 99) (20)

and GSE59867 (n = 436) (21) were obtained from gene

expression omnibus database (GEO, http://www.ncbi.nlm.nih.

gov/geo/). The training group (GSE66360) includes HF patients

induced by acute myocardial infarction (n = 49) and non-

HF cohort (n = 50), and the test group (GSE59867) have

HF (n = 34) and non-HF (n = 30). Normalization of the

microarray data was performed using the normalize quantiles

function of the preprocessCore package in R software (version

3.4.1). The probes were transformed into gene symbols based

on the annotation information provided in the platform.

These datasets were stripped of probes corresponding to

multiple genes, and then we calculated the average expression

value of each gene measured by multiple probes as the

final expression value. The energy metabolism-related genes

were obtained through the Molecular Signatures Database

(http://www.gsea-msigdb.org/gsea/msigdb/) that is one of the

most widely used and comprehensive databases of gene

sets for performing gene set enrichment analysis. In total,

48 genes related to energy metabolism were collected from

Wiki Pathways.

Di�erential expression analysis of energy
metabolism-related genes

The gene expression profiling was annotated through

the corresponding annotation packages of the R software.

The “limma” R software package was applied to analyze

the differential expressed energy metabolism-related genes.

Those genes which met the criteria (P < 0.05 and |log2(fold

change)|>1) were considered as DEGs. The heatmap and

boxplot were constructed to show the differential expressed

genes which were highlighted. Finally, the chromosomal

locations of the DEGs were demonstrated using Circos and the

protein-protein interaction (PPI) networks of the DEGs were

predicted by the search tool for the retrieval of interacting genes

(STRING, version 11.5; https://cn.string-db.org) with minimum

required interaction score ≥ 0.7 (22).

Consensus clustering for heart failure
samples

According to energy metabolism-related genes, HF samples

were grouped into different classifications using “Consensus

Cluster Plus” package in R software (23). Based on the consensus

matrix (CM) and cumulative distribution function (CDF)

curves of the consensus score, we determined the optimal

cluster number (24). Meanwhile, we performed principal

component analysis (PCA) between clusters. The “limma”

package was then applied to screen for the energy metabolism-

related genes between clusters (|log2(fold change)|>2 and

P < 0.05).

Functional and pathway enrichment
analysis

To assess the functional enrichment of DEGs identified

between clusters, we performed Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

enrichment analyses using “ClusterProfiler” R package (25).

GO database describes our understanding of biology from

three GO domains, including biological process (BP), molecular

function (MF), and cellular component (CC). The KEGG

database provides information about high-level functions in the

biological system.

Immune landscape analysis

ssGSEA is an extension method of the Gene set enrichment

analysis analysis (GSEA), using for quantifying infiltrating

immune cells. This tool allows the definition of an enrichment

score that represents the absolute enrichment level of the gene

sets in each sample within a given dataset. To investigate the

association between immune infiltration level and two subtypes,

ssGSEA was performed by the R package “GSVA” to investigate

the differences in immune cell infiltration in two clusters (26).

Person method was used to calculate the correlation between

immune cells and genes related to energy metabolism.
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Identification of energy
metabolism-related diagnostic
biomarkers

To screen significant diagnostic biomarkers in HF, two

machine learning algorithms including RF and SVM were

performed on the identified energy metabolism-related DEGs.

These two models were analyzed using the explanatory feature

of the R package “DALEX.” Optimal models were chosen

by plotting residual distributions. The receiver operating

characteristic (ROC) curve was used to assess the diagnostic

performance of twomodels (6). The area under the curve (AUC)

was used to measure the overall predictive validity of the risk

in HF where AUC = 0.50 signals random prediction, 0.60 <

AUC ≤0.70 signals poor, 0.70 < AUC ≤ 0.80 signals fair, 0.80

< AUC ≤ 0.90 signals good and AUC > 0.90 signals excellent

validity. Based on out-of-band data, we calculated the average

modeling error rate for all genes using the R package “random

forest.” A random forest model was then constructed, and

the Gini coefficient method was used to calculate dimensional

importance value (7).

Construction and validation of the
nomogram

Based on the identified energy metabolism-related

diagnostic biomarkers by random forest algorithm, we further

established a nomogram to predict the occurrence of HF using

R package “rms.” The “Points” column indicates the score for

each gene below, and the “Total Points” column represents the

sum of all the scores. Specifically, we obtained the “Points” for

each gene by drawing a line straight upward from each gene to

the point scale in the nomogram. The “Points” were then added

together and positioned on the scale of “Total points” to further

convert them into risk probability of HF. The calibration curve

was used to assess the nomogram’s predictive accuracy, while

the ROC curve was used to examine the predictive power of

the model.

Prediction of biomarker-related miRNA
and drugs

“Enrichr” database is a comprehensive online tool for gene

enrichment analysis, including a large number of genomic

annotation libraries that can be used for analysis and download,

such as transcription, pathways, ontology (GO), diseases/drugs,

cell types, which may accumulate biological knowledge for

further biological discoveries. In this manuscript, we predicted

the regulatory correlation between miRNA with 10 diagnostic

biomarkers in “Enrichr” database (https://maayanlab.cloud/

Enrichr/) and visualized it using Cytoscape 3.9.1 software.

Meanwhile, the related drugs were also evaluated in Enrichr.

Statistical analysis

Statistical analysis was performed by R (version 4.1.1)

software. Perl and “limma” package were used to analyze the

data. Using “Consensus Cluster Plus” package to classify the

samples. T-test or Wilcoxon rank-sum test were applied to

analyze the continuous variables according to the normality.

Pearson chi-square test was applied to examine the differences

of categorical variables. All significant thresholds were set at a

two-sided P < 0.05.

Results

Identification of di�erentially expressed
energy metabolism-related genes

A total of 22 energy metabolism-related DEGs, including

PRKAG2, PPARD, MEF2D, ESRRA, RXRA, PPARA, TFB1M,

PPARGC1B, PPP3CB, PRMT1, MED1, MAPK14, FOXO3,

NCOA1, FOXO1, MEF2A, PPP3R1, HDAC1, PRKAB2, CREB1,

CAMK2G, UCP2, were identified as different expression

genes (Figure 1A). Among them, 11 genes were significantly

downregulated and 11 genes were significantly upregulated

(Figure 1B). A gene’s chromosomal location can provide

information about its evolutionary history, including gene

duplication patterns, and gene duplication events (27). Herein,

chromosomal location information of these energy metabolism-

related genes was performed by the genome visualization

tool named CIRCOS, providing insights into the evolution

of these gene family. We can find that a total of 44 energy

metabolism-related genes were distributed throughout the 18

chromosomes and the highest numbers of these genes (n =

6) were located on chromosome 2 (Figure 1C). PPI analysis

was conducted to explore the interactions of these energy

metabolism-related DEGs at the protein level. As shown in

Figure 1D, the PPI network showed that MEF2A, MEF2D,

CREB1, HDAC1, MED1 and ESRRA may have higher numbers

of interacted proteins.

Molecular subtype of heart failure based
on energy metabolism-related genes

Consensus clustering is a method that provides quantitative

analysis results to determine possible subtypes based on gene

expression profiling data, which can be used to discover new

molecular subtypes and thus redefine disease classification.

In this study, consensus clustering was performed to identify
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FIGURE 1

Identification of di�erentially expressed energy metabolism-related genes. (A,B) Expressions of di�erentially expressed energy

metabolism-related genes. (C) Circos plot showing the location of genes in 22 chromosomes. (D) Protein-protein interaction networks.

FIGURE 2

Consensus clustering analysis of energy metabolism-related genes. (A) The cumulative distribution function (CDF) curve of samples in the HF

cohort. (B) The relative change in area under the CDF curve for k = 2–9. (C) Sample clustering heatmap when consumption k = 2. (D) PCA

analysis for cluster A and cluster B. (E,F) The di�erent expression of 48 genes between two clusters.
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FIGURE 3

Functional analyses of DEGs identified between clusters. (A,B) Gene Ontology (GO) functional analysis. (C) Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis.

FIGURE 4

Correlation analysis between energy metabolism-related genes and immune microenvironment. (A) The relationship between two clusters and

the level of immune cell infiltration. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001. (B) The relationship between

46 energy metabolism-related genes and immune cell infiltration.

HF subtypes based on energy metabolism-related genes.

According to the CDF curve and the CDF Delta area curve,

clustering results are relatively stable when the number of

clusters was set to 2 (Figures 2A,B). Figure 2C presented

a heatmap of clustering results (k = 2) and the PCA

result showed a clear distribution between cluster A and

cluster B (Figure 2D), suggesting that energy metabolism-

related genes have potential diagnostic value for HF patients.

Figure 2E presented a heatmap of 48 genes expression level

between two clusters. The result of the boxplot showed that

FOXO1, RXRA, CREB1, MAPK14, MEF2A,PPARD, FOXO3,

EP300, CAMK3, MEF2C, MYBBP1A, NCOA1, PPP3CA,

PPP3CC, PPRC1, TFAM, TFB2M were significant differential

expressed between cluster A and cluster B (P < 0.05,

Figure 2F).

Functional analyses of di�erent clusters
of HF patients

To examining the differences in gene functions and

pathways between the subgroups grouped by energy

metabolism-related genes, we extracted DEGs using the “limma”

R package with a threshold of FDR < 0.05 and |log2FC | ≥ 2. A

total of 378 DEGs were identified between cluster A and cluster

B, and then GO and KEGG enrichment analysis were conducted

on these DEGs. The result demonstrated that the DEGs were

mainly correlated with immune response regulating signaling

pathway (BP), secretory granule membrane (CC), immune

receptor activity (MF) (Figures 3A,B, Supplementary Figure 1),

osteoclast differentiation, and lipid and atherosclerosis

(Figure 3C).
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FIGURE 5

Identification of diagnostic biomarkers using RF and SVM model. (A) Boxplots of the residuals of the sample. Red dot stands for root mean

square of residuals. (B) Cumulative residual distribution map of the sample. (C) AUC verification results of the two models on the training dataset.

(D) The influence of the number of decision trees on the error rate. (E) Results of the Gini coe�cient method in the random forest classifier.

Assessment of the immune infiltration
level between clusters

Based on the results of functional analyses, we further

explore the correlation of immune cell infiltration level between

two clusters. First, we confirmed the role of immune cell

infiltration in HF development. As the Supplementary Figure 1

shown, nearly half of immune cell levels (12/23) were

found more abundant in HF samples vs. the healthy control

(P < 0.001), suggesting that patients with HF already show

signs of systemic-immune activation, and may contribute to

the progression to HF. More importantly, we found that

most of immune cells (17/23) have also different infiltration

levels in two clusters (Figure 4A). Compared to the cluster

B, cluster A generally had lower levels of immune cell

infiltration, especially of activated dendritic cell, gamma delta

T cell, immature dendritic cell, MDSC, macrophage, mast

cell, natural killer cell, neutrophil, plasmacytoid dendritic cell,

regulatory T cell, and Type 2 T helper cell (P < 0.001).

Furthermore, we assessed the correlation between 48 energy

metabolism-related genes and 24 immune cells (Figure 4B).

There was a strong correlation between the expressions

of most of the energy metabolism-related genes and the

infiltration of immune cells, especially MAPK14, FOXO1,

and RXRA.

Establishment and evaluation of RF and
SVM model

Compared RF and SVM, according to the training dataset

(GSE66360), we found that RF had the less sample residual

(Figures 5A,B). Similarly, the AUC of the random forests model

(AUC = 1.000) and SVM model (0.938) showed that RF

model had a higher degree of differentiation (Figure 5C). As

shown in Figure 5D, 400 decision trees were selected as the

final model parameter based on the relationship plot between

the model error and the number of trees. Figure 5E presented

the variable importance of the output results in the process

of the construction of random forest model based on the

Gini coefficient method. For further analysis, 10 genes with a

significance > 2 were identified as candidate genes. Among

ten variables, MEF2D, RXRA, and PPARA were the most

important, followed by FOXO1, PPARD, PPP3CB, MAPK14,

CREB1, MEF2A, PRMT1.

Establishment of the clinical nomogram

Based on the ten diagnostic biomarkers from the RF model,

we developed a clinical predictive nomogram (Figure 6A) and

people can use the nomogram score to predict the risk of HF.
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FIGURE 6

Construction of a nomogram model for HF diagnosis in training cohort (GSE66360). (A) The nomogram was used to predict the occurrence of

HF. (B) Calibration curve to assess the predictive power of the nomogram model. (C) The receiver operating characteristic (ROC) analysis of

nomogram.

FIGURE 7

Construction of a nomogram model for HF diagnosis in test cohort (GSE59867). (A) The nomogram was used to predict the occurrence of HF.

(B) Calibration curve to assess the predictive power of the nomogram model. (C) The receiver operating characteristic (ROC) analysis of

nomogram.

Using calibration curve, we evaluated the predictive accuracy

of the nomogram and the result indicated the nomogram

has high accuracy for risk prediction of HF (Figure 6B). The

corresponding ROC analysis revealed that the AUC value of

the constructed diagnostic model was 0.91, which proved the

predictive performance of this clinical nomogram (Figure 6C).

We next verified the stable of the nomogram using the test

cohort (GSE59867) (Figure 7A). The calibration curve of this

nomogram was close to diagonal line (Figure 7B) and the AUC

value was 0.84 (Figure 7C), further validating the accuracy and

robustness of our nomogram.

Prediction of related drugs and miRNA

Ten drugs were identified the energy metabolism-related

drugs, which may be the potential therapies for heart failure

target (Table 1). RXRA, PPARA and PPARD were the top

three genes most relevant to these drugs, indicating that these

biomarkers have great potential to serve as a drug target for

HF treatment. Furthermore, we constructed a miRNA–gene

association network and displayed 15 potential miRNA targets

of 10 energy metabolism-related biomarkers, which may play

a regulatory role in the development of HF (Figure 8). Among

them, miR-3177-5p and miR-1284 contributed to the regulation

of the highest number of target genes (n = 6), followed by

miR-4532, miR-4640-3p, miR-4445, miR-515-3p, miR-519e, and

miR-3659 (n= 5).

Discussion

Heart failure is a deadly chronic disease that owns a high

symptom burden and a poor health status. Patients with HF

often fail to benefit from treatment as a result of a lack of

an early diagnosis, resulting in poor prognosis. It has been

demonstrated in numerous studies that HF is caused by severe
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TABLE 1 The prediction of energy metabolism-related drugs.

Index Name P-value Adjusted Odds Combined Gene

P-value ratio score

1 phthalic acid CTD 00001559 5.02E-08 2.15E-05 658.58 11068.58 RXRA;PPARA;PPARD

2 DIETHYL PHTHALATE CTD 00000348 1.02E-07 2.91E-05 503.52 8105.11 RXRA;PPARA;PPARD

3 Pirinixic acid TTD 00010254 1.23E-05 3.30E-04 555.03 6273.06 RXRA;PPARA

4 Difenoconazole CTD 00003609 1.48E-05 3.84E-04 499.5 5554.53 RXRA;PPARD

5 15(R)-Prostaglandin D2 CTD 00007048 1.75E-05 4.16E-04 454.07 4973.59 PPARA;PPARD

6 Triphenyltin hydroxide CTD 00000355 1.75E-05 4.16E-04 454.07 4973.59 RXRA;PPARD

7 4602-84-0 CTD 00005951 2.04E-05 4.57E-04 416.21 4494.85 RXRA;PPARA

8 gemfibrozil CTD 00007055 4.87E-07 6.91E-05 285.14 4144.43 RXRA;PPARA;PPARD

9 7614-21-3 CTD 00000893 2.35E-05 4.57E-04 384.17 4094.01 RXRA;PPARA

10 gemfibrozil TTD 00008191 2.35E-05 4.57E-04 384.17 4094.01 RXRA;PPARA

FIGURE 8

The prediction of energy metabolism-related miRNA.

energy metabolism disorders, resulting in insufficient energy

supply to the heart (14). As a consequence, researchers are

looking for novel diagnostic biomarkers and investigating the

molecular level of energy metabolism in HF, which could lead

to a number of positive effects on the clinical outcome of HF.

Growing evidence demonstrated that microRNAs and mRNAs

may be promising biomarkers of cardiovascular disease and

HF in particular (9). However, few studies have examined the

aberrantly expressed genes associated with energy metabolism

in HF vs. normal tissues. Thus, this study sought to identify
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candidate biomarkers for detecting HF and explore how energy

metabolism may contribute to it.

As far as our knowledge goes, this is a novel study

that analyzed GEO datasets to identify diagnostic biomarkers

associated with energy metabolism in patients with HF. A total

of 22 energy metabolism-related DEGs were identified between

HF and normal tissues, including 11 upregulated genes and

11 downregulated genes. The result of consensus clustering

analysis indicated that HF patients could be classified into two

clusters based on 48 energy metabolism-related genes. Generally

speaking, proposing new subtypes through the clustering could

contribute to provide more precise treatment options (28) and

thus our finding is the first time to prove potential diagnostic

and therapeutic utility of energy metabolism gene set in HF. GO

and KEGG enrichment analyses indicated that DEGs between

the two clusters are mainly associated with the immune response

regulating signaling pathway. Based on the result of these

functional analyses, we further explored the association of

immune infiltration between two clusters and found that HF

patients have different immunity status across different cluster.

These results generally agree with the previous finding that

immune activation plays an essential role in the progression of

HF (29). In fact, various forms of HF may be affected by the

immune system, according to more recent evidence (30, 31).

For example, regulatory T cell may be crucial in suppressing

cellular immune responses, controlling both inflammation and

infection during the development of HF (32). Some studies also

indicated that inflammation-related effector cytokines, such as

IL-17 family members and IL-22 are associated with Th17 cells

(33), and these effector cytokines were demonstrated to regulate

the MMP/TIMP system to influence myocardial fibrosis (34,

35). Excessive numbers of monocytes, macrophages, dendritic

cells, and lymphocytes have been found to increase myocyte

apoptosis, hypertrophy, and interstitial fibrosis during chronic

heart failure (36). These findings are consistent with our own,

demonstrating the validity of the results in the present study

as well as the crucial role played by the immune response

in HF (37). Thus, it is crucial to precisely control various

types of immune cells to ensure a safe and effective treatment

for HF patients. Furthermore, more research is required to

better understand the role of immune cells in the heart in

homeostasis and energy metabolism, aiming to identify the

therapeutic methods targeting immune in patients with diverse

kinds of HF.

Lacking sensitivity and specificity is the main limitation

for the early diagnosis in HF (38–40), whereas novel multi-

gene diagnostic biomarker may resolve this dilemma. In

our study, 10 energy metabolism-related diagnostic markers

were identified using random forest algorithm, which allows

diagnosis of HF with high stability and accuracy. Among them,

MEF2A and MEF2D, are both essential regulator of cardiac

morphogenesis and myogenesis, which can bind specifically to

the MEF2 element in the regulatory region of many muscle-

specific genes (41). PPARA and PPARD, which mainly regulate

fatty acids and lipid metabolism, function as transcription

activator for cardiac fatty acid oxidation (42). Similarly, FOXO1

(31–34) and MAPK14 (35, 43) are highly expressed during

the progress of cardiac hypertrophy which contributes to

HF development. Our immune cell association analysis also

noted that MAPK14, FOXO1 have a strong association with

immune cells, indicated that these two genes may play immune-

inhibiting roles in HF. In the contrast, activated CREB1

may reduce the excessive burden on the heart and heart

hypertrophy (44, 45). Loss of PRMT1 in cardiomyocytes causes

multifunctional CaMKII dysregulation, resulting in dilated

cardiomyopathy and heart failure (15, 46). RXRA, receptor

for retinoic acid, is demonstrated to be involved in the

adipogenic/lipogenic regulation (47, 48), which has significant

correlation with cardiovascular aging process, which contributes

to the development of HF phenotype and outcome (49).

PPP3CB, belonging to α-catalytic subunit gene family members

(50), has been reported to be significantly up-regulated in

the atrial myocyte hypertrophy of mitral regurgitation patients

(51). Based on above 10 biomarkers, we constructed and

validated a novel diagnose nomogram to risk prediction of HF

patients. Compared with other predicted nomogram (AUC =

0.655∼0.720) (52), the AUC value of our nomogram, which

was 0.91 in the training cohort (GSE66360) and 0.84 in the

test cohort (GSE59867), indicated that it may have exceptional

potential for making an early diagnosis of HF from patient

blood samples.

In addition to the construction of clinical nomogram,

anticipating gene-miRNA and gene-drug interactions is also

an important task that helps understand the potential miRNA

targets of energy metabolism-related genes and better guide

clinical medication in HF. In this study, we predicted 10

related drugs using Enrichr based on 10 energy metabolism-

related biomarkers. Most of these drugs are still in its infancy

and remains exploratory. Among them, pirinixic acid, a

potent PPARA receptor activator, exhibits anti-inflammatory

properties in human neutrophils and may be useful as

therapeutic agents (53). In fact, upregulating PPARA has been

reported to promote mitochondrial energy metabolism and

prevents HF (50) and the activated PPARA could increase high-

density lipoprotein and reduce plasma lipids (54). Another

predictive drug, diethyl phthalate was found to induce the

antioxidant and immune responses in zebrafish embryos

under DBP/DEP exposure (48). In a Helsinki Heart Study

of primary prevention, gemfibrozil treatment has been found

to reduce coronary events by 34% (55), which can also be

considered for HF management. However, most predicted

drugs lacked clinical outcomes and these components still

need further research for clinical targeted therapy. As for

miRNA, it is not only a diagnostic biomarker, but also a
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therapeutic target for HF. In our prediction, we constructed

a miRNA-gene network and these targets and miRNA may

be served as potential biomarkers in HF. For example,

regulating miR-615-3p/HMGB3 axis have been reported to

promote glycolysis under hypoxic conditions at least partly.

Notably miR-519e had similar mechanism (56), which helps

us better understanding of the molecular mechanism of energy

metabolism in HF.

Limitation also exists in this study. First, the important

clinical information could not be obtained since it was

retrospective in our study. Moreover, the functions and

molecular mechanisms of these ten biomarkers in HF need

to be further studied in vitro and in vivo experiments.

Furthermore, it will be necessary to conduct large-

scale prospective studies with strict follow-up protocols

in the future to confirm the clinical feasibility of the

proposed biomarkers.

Conclusions

In summary, we applied random forest-based feature

selection to identify the 10 high-performance biomarkers for

HF classification, and a clinical nomogram was constructed

to visualizes the 10 identified biomarkers, which could

better guide the clinical decisions. Further prediction

potential miRNA and drugs of these 10 biomarkers

provided further application on clinical HF treatment. We

proved potential diagnostic utility of energy metabolism

gene set in HF, and hope to assist in improving risk

stratification and provide the potential treatment targets

in HF.
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