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Cardiac anatomy and function vary considerably across the human population

with important implications for clinical diagnosis and treatment planning.

Consequently, many computer-based approaches have been developed to

capture this variability for a wide range of applications, including explainable

cardiac disease detection and prediction, dimensionality reduction, cardiac

shape analysis, and the generation of virtual heart populations. In this work,

we propose a variational mesh autoencoder (mesh VAE) as a novel geometric

deep learning approach to model such population-wide variations in cardiac

shapes. It embeds multi-scale graph convolutions and mesh pooling layers

in a hierarchical VAE framework to enable direct processing of surface mesh

representations of the cardiac anatomy in an e�cient manner. The proposed

mesh VAE achieves low reconstruction errors on a dataset of 3D cardiac

meshes from over 1,000 patients with acute myocardial infarction, with

mean surface distances between input and reconstructed meshes below the

underlying image resolution.We also find that it outperforms a voxelgrid-based

deep learning benchmark in terms of both mean surface distance and

Hausdor� distance while requiring considerably less memory. Furthermore,

we explore the quality and interpretability of the mesh VAE’s latent space

and showcase its ability to improve the prediction of major adverse cardiac

events over a clinical benchmark. Finally, we investigate the method’s ability

to generate realistic virtual populations of cardiac anatomies and find good

alignment between the synthesized and gold standard mesh populations in

terms of multiple clinical metrics.

KEYWORDS

mesh VAE, 3D ventricular shape analysis, virtual anatomy generation, clinical outcome

prediction, acute myocardial infarction, major adverse cardiac events, graph neural

networks, geometric deep learning
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1. Introduction

Inter-subject variability in human cardiac anatomy and

function plays a decisive role in the accurate diagnosis

and treatment of many cardiovascular diseases, including
myocardial infarction, heart failure, and reinfarction (1–3).

Therefore, it is a key objective of computational models of the
heart to be able to capture this variability across a population in

order to obtain realistic representations of cardiac morphology

and physiology. Such models not only enable a more accurate

definition of shape normality within a given subpopulation but

also improve the ability to detect abnormalities while retaining

interpretability of the diagnosis (4, 5). Cardiac magnetic

resonance imaging (MRI) is considered the gold standard

imaging modality for the non-invasive assessment of cardiac

anatomy and function in clinical practice (6). Accordingly, it

has been extensively used as the basis to investigate anatomical

shape variability in previous literature. While many works have

focused on quantifying anatomical information based on the

2D slices of the underlying cine MRI acquisition (4, 7–10),

this provides only an approximation of the heart’s true 3D

shape and therefore neglects more localized shape variability

which is crucial for the detection and diagnosis of various

cardiac diseases (2, 11, 12). Consequently, other works have

conducted cardiac shape analysis directly on 3D representations

of the heart which have either been reconstructed from 2D

slices (13–18) or been acquired using a 3D MRI acquisition

protocol (19). In order to study the anatomical variability in

the obtained 3D heart shapes, principal component analysis

(PCA) has been widely used in previous literature, as it allows

to easily and quickly identify the most important modes of

shape variation within the population (5). This low-dimensional

representation of cardiac shape information can then be used

for a variety of follow-up tasks, such as to investigate the

association of shape and cardiovascular risk factors (20, 21),

determine the probability of future major adverse cardiac

events (MACE) (2), study the connection between shape and

simulated cardiac function (22, 23), generate virtual population

cohorts for in silico trials (24), or predict myocardial infarction

(MI) (12). While the low-dimensional scores are obtained by

PCA in an unsupervised manner, supervised methods, such as

linear discriminant analysis (LDA) and information maximizing

component analysis, have also been proposed to directly take

into account information about the task-specific objective in the

cardiac anatomy modeling (25).

More recently, deep learning approaches based

predominantly on the variational autoencoder (VAE) (26)

framework have been increasingly used to capture population-

wide anatomical variability for a variety of tasks (5). Similar

to PCA, the VAE allows for the representation of 3D shape

information in a low-dimensional space with individual

components corresponding to different aspects of inter-subject

variability. However, in contrast to standard PCA or LDA

approaches, VAEs are capable of modeling considerably more

complex relations, primarily due to their deep learning-based

architecture with a high number of trainable parameters

and the presence of non-linear functions. The autoencoder

structure with a low-dimensional latent space representation

also allows for the straightforward integration with other

common image-based tasks while maintaining a good degree

of interpretability. Such tasks include the detection of coronary

artery disease (27) and hypertrophic cardiomyopathy (28),

image segmentation with shape priors (29–32), multi-task

segmentation and regression (33), image-to-image synthesis

(33), and survival prediction (34). However, the aforementioned

approaches mostly rely on representing cardiac shapes as

fixed-size 3D voxelgrids and use standard grid-based deep

learning operations. This is not only inefficient in terms of

memory and time requirements but also complicates effective

feature learning when processing anatomical surface data.

In order to overcome these issues, geometric deep learning

techniques (35) have been introduced to enable accurate

learning directly on non-Euclidean data, such as point clouds

or graphs. This enables the anatomical surface information

of the heart to be represented and processed in a highly

efficient manner targeted to the data-type at hand and hence,

has seen various applications in cardiac image analysis. For

example, point cloud-based deep learning approaches have

been proposed for the generation of virtual cardiac anatomies

(36), classification of cardiac disease (37), modeling of 3D

deformation of the heart (38), surface reconstruction of cardiac

anatomy (13, 39), combined reconstruction and segmentation

of the left ventricular (LV) wall (40), and the joint modeling of

cardiac anatomy and electrocardiogram data (41, 42). Similarly,

graph neural networks have been investigated for the simulation

of cardiac mechanics (43), reconstruction of cardiac meshes

(44), prediction of cardiac depolarization times (45), and the

estimation of wall shear stress in 3D artery models (46).

Following these advancements, we propose in this work a

variational mesh autoencoder (mesh VAE) as a novel approach

to cardiac anatomy modeling. The mesh VAE is specifically

designed to work directly on 3D mesh representations of

the heart and thus overcomes the limitations of voxelgrid-

based approaches. This enables the efficient processing of

high-resolution 3D cardiac anatomy data and provides a

more accurate modeling of 3D shape variability. The mesh

VAE combines graph convolution and mesh sampling layers

in a hierarchical setup to allow effective multi-scale feature

learning of non-linear relationships. At the same time, the

VAE framework ensures a high degree of interpretability with

a disentangled, low-dimensional latent space. The architecture

is also highly adaptable and can be used in combination with

different imaging modalities, disease types, and application

domains in a similar way as grid-based autoencoders.

In summary, we make the following contributions in

this work:
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FIGURE 1

Overview of the proposed cardiac shape analysis pipeline (A,B) and the two possible applications investigated in this work (C,D). First, we pass

raw cine MRI acquisitions through a multi-step 3D surface reconstruction pipeline (Section 2.2) to reconstruct 3D surface meshes of the left

ventricular (LV) anatomy as a preprocessing step (A). It consists of an image segmentation step using two cascaded U-Nets followed by a

personalized template mesh fitting step based on variational warping techniques (Section 2.2). Next, as the core part of the pipeline, we propose

a variational mesh autoencoder with an interpretable latent space z to e�ciently capture population-wide variability in 3D cardiac shapes in a

single geometric deep learning model (B) (Section 2.3). The decoder of the pre-trained mesh VAE can then be used to generate virtual

population cohorts of 3D heart meshes (C) (Section 3.5). The pre-trained encoder converts input meshes into low-dimensional latent space

representations which can serve as inputs to a MACE outcome classifier (D) (Section 3.6).

• We develop a novel variational mesh autoencoder for 3D

cardiac anatomy modeling directly on 3D surface meshes.

• We successfully embed the mesh VAE into a multi-

step cardiac anatomy modeling pipeline to enable

clinical applicability.

• We evaluate the mesh VAE’s ability to reconstruct high-

resolution anatomy meshes on a multi-domain cine MRI

dataset of myocardial infarction patients at both the

end-diastolic (ED) and end-systolic (ES) phases of the

cardiac cycle.

• We conduct a comparative analysis of the mesh VAE and

a voxelgrid-based VAE benchmark in terms of both their

reconstruction capabilities and technical specifications and

demonstrate the advantages of the mesh VAE for the

processing of anatomical surface data.

• We investigate the latent space of the mesh VAE as an

efficient low-dimensional encoding of high-dimensional

cardiac surface anatomy information in terms of its

interpretability, disentanglement, association with

generated output meshes, and accurate representation of

inter-subject shape variability.

• We analyze the suitability of the mesh VAE for the

generation of realistic virtual population cohorts of cardiac

anatomy meshes.

• We explore the utility of the mesh VAE’s latent space

representations to capture pathology-specific shape

biomarkers and predict MACE events in post-MI patients.

• We provide a pertinent literature review and a detailed

discussion of the results including the proposed method’s

limitations and possible future use cases.

2. Materials and methods

In this section, we give an overview of the proposed

cardiac shape modeling pipeline (Section 2.1), describe the

dataset and preprocessing steps (Section 2.2) used for method

development, and explain the architecture (Section 2.3), loss

function (Section 2.4), and training procedure (Section 2.5) of

the proposed mesh VAE network.

2.1. Overview

In this work, we introduce a novel variational mesh

autoencoder embedded into a multi-step pipeline to enable

efficient non-linear 3D shape analysis of the human heart

(Figure 1).
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In the first part of our pipeline, we apply several

preprocessing steps to prepare the raw images of our dataset for

3D shape modeling with the mesh VAE (Figure 1A). The input

consists of the short-axis (SAX) slices of a standard cine MRI

acquisition which we first segment using a two-step cascaded

U-Net (47) approach (Section 2.2). Next, we fit a template

mesh to the resulting SAX contours in a numerical optimization

procedure in order to obtain 3D mesh representations of the

cardiac anatomy (Section 2.2). We then use these 3D surface

meshes to train and evaluate the proposed mesh VAE to capture

cardiac shape variability across the population (Figure 1B). The

mesh VAE constitutes the core part of the shape modeling

pipeline with its architecture specifically tailored to process

complex 3D surfaces of the cardiac anatomy (Section 2.3).

This enables a variety of different clinical and research-related

use cases. As two possible sample applications, we investigate

both the generation of virtual populations of cardiac anatomy

meshes using the mesh VAE’s decoder (Figure 1C) and the

binary prediction of MACE outcomes based on 3D cardiac

shape information as encoded in the mesh VAE’s latent space

representations (Figure 1D). In the following sections, we

describe each part of the pipeline in greater detail with a

particular emphasis on the proposed mesh VAE.

2.2. Dataset and preprocessing steps

Our dataset consists of 1,021 post-MI patients for which

cine MR images were acquired a median of 3 days after the

infarction event in a multi-center study. It is based on both the

TATORT-NSTEMI trials (Thrombus Aspiration in Thrombus

Containing Culprit Lesions in Non-ST-Elevation Myocardial

Infarction; NCT01612312) and the AIDA-STEMI trials

(Abciximab Intracoronary vs. Intravenously Drug Application

in ST-Elevation Myocardial Infarction; NCT00712101) and

hence includes both Non-ST-Elevation Myocardial Infarction

(NSTEMI) and ST-Elevation Myocardial Infarction (STEMI)

patients (48–50). Electrocardiography-gated balanced steady-

state free precession sequences were used for all acquisitions.

The pixel resolution varied across the acquired images with a

mean value of 1.36 mm (range: [1.16, 2.08] mm) and standard

deviation (SD) of 0.21 mm. Each patient was followed up for

12 months post-MI with MACE (reinfarction, new congestive

heart failure, or all-cause death) defined as the clinical endpoint.

Overall, 74 patients experienced a MACE outcome. Further

details regarding the study population and image acquisition

can be found in (2, 48–50).

We first apply a multi-step preprocessing pipeline to

reconstruct 3D surface mesh representations of the left

ventricular anatomy from the raw cine MRI acquisitions. The

first step of this pipeline consists of the segmentation of left

ventricular (LV) myocardium on the cine cardiac MRI using two

cascaded U-Nets with enhanced preprocessing (51, 52). The first

U-Net locates the LV to crop and orient the images accordingly,

while the second U-Net performs the fine segmentation. This

architecture addresses both canonical orientation for regional

metrics quantification and label imbalance for segmentation

performance improvement. Next, two personalized 3D LV

meshes at the ED and ES phases are built from the segmentation

contours for each patient. The reconstruction of these 3D

meshes uses a solution based on smooth cubic Hermite

interpolation, where, in brief, an idealized LV template mesh is

fitted to the 3D myocardium segmentation mask by combining

image registration and mesh projection techniques (17, 53, 54).

The Hermite template mesh is an idealized LV (truncated

ellipsoid of 6 longitudinal × 12 circumferential × 1 radial

elements). Since the same template is used for all the patients,

homologous points are directly obtained. Further details on the

pipeline can be found in (2). The resulting 3D surface meshes

of the left ventricular anatomy are then used as inputs for

training and evaluating the mesh VAE.We split the mesh dataset

into 70% training, 5% validation, and 25% test datasets while

maintaining the same class imbalance between MACE and no

MACE cases in each subset. Finally, we apply standardization

(i.e., subtracting the mean and dividing by the SD) to each mesh

before inputting it into the network.

2.3. Variational mesh autoencoder
architecture

As the core part of our shape modeling pipeline, we propose

a novel mesh VAE architecture, specifically designed based

on recent advances in mesh-based deep learning (55, 56) to

efficiently process triangular mesh data of the 3D cardiac

anatomy (Figure 2).

The overall architecture consists of an encoder and a

decoder connected by an interpretable 16-dimensional latent

space with the ability to capture high-dimensional cardiac

shape information in a low-dimensional representation. The

building blocks of the network follow recent advances in

mesh-based deep learning to enable effective learning of non-

linear relationships directly on triangular mesh data. The

main feature extraction is accomplished by graph convolution

blocks which are composed of spectral graph convolutional

layers (56) followed by rectified linear unit (ReLU) activation

functions. Multiple mesh downsampling operations (55) are

positioned between successive graph convolution blocks along

the encoder to allow for stepwise decreases in mesh resolution

and multi-scale hierarchical learning. The decoder follows

a symmetric design to the encoder with mesh upsampling

operations interspersed between graph convolution blocks and

the same mesh resolutions, number of levels and feature maps

as the encoder. This enables the decoder to reconstruct high-

resolution anatomical meshes from the latent space in a gradual

Frontiers inCardiovascularMedicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.983868
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Beetz et al. 10.3389/fcvm.2022.983868

FIGURE 2

Architecture of the mesh VAE. The input and output are cardiac anatomy models represented as 3D triangular meshes. All meshes in the dataset

share the same connectivity and consist of 2,450 vertices with associated x,y,z coordinates. Multi-scale feature learning directly on mesh data is

enabled by alternating graph convolution and sampling operations which are arranged in a hierarchical setup. The mesh encoder and decoder,

connected by a 16-dimensional latent space, follow a symmetric design with the same number of levels and the same mesh resolution per level.

multi-scale process akin to the stepwise encoding operation

of the encoder. Fully connected layers are introduced before

and after the latent space to connect the tensors representing

downsampled mesh information and the latent space in an

effective way. All spectral graph convolutions use the Chebyshev

polynomial approximation (56, 57) of order 5 for efficient

calculation. The mesh sampling operation uses quadric error

minimization to identify the vertices that are removed in the

downsampling step, then saves their location in barycentric

coordinates, before using these coordinate values to reinsert

them in the upsampling step (55). All input anatomies are

represented as 3D triangular surface meshes with 2,450 vertices

and identical vertex connectivity across the dataset.

2.4. Loss function

The loss function of the proposed mesh VAE is based

on the β-VAE framework (58) and consists of the sum of a

reconstruction loss term and a Kullback-Leiber (KL) divergence

term, weighted by a parameter β .

Ltotal = Lreconstruction + β ∗ LKL. (1)

The weighting parameter β is used to control the importance

of each of the two loss terms during training. Similar to previous

approaches for cardiac shape analysis using point cloud deep

learning (36), we follow amonotonic annealing schedule (59) for

β and set it to small values (starting at 0.0001) at the beginning

of training before gradually increasing it until 0.001 at the end

of training. This allows the network to put more emphasis on

the accurate mesh reconstruction task first and then step-by-step

focus more on also achieving a high latent space quality. The

Kullback-Leibler divergence term in the total loss function used

in this work is defined as follows:

LKL = DKL
[

Q(z|X)‖P(z)
]

. (2)

Here, X refers to the input mesh, z to the latent space of the

mesh VAE, and Q(z|X) to the posterior distribution of the VAE’s

latent space. P(z) is the prior distribution of the VAE’s latent

space for which we choose a multivariate standard Gaussian

distribution in this work. This helps the VAE to achieve a smooth

and disentangled latent space, thus improving the representation

of cardiac shape variability.

We select the mean squared error (MSE) between the

coordinate values of the corresponding vertices n in the input

mesh x and the reconstructed mesh y as our reconstruction loss

term. This encourages the VAE to put more emphasis on larger

vertex distances between input and ground truth meshes which

facilitates the task of capturing the full extent of cardiac shape

variability across the population.

Lreconstruction =
1

N

N
∑

n=1

(xn − yn)
2 (3)

2.5. Network training and
implementation

We train the mesh VAE for 250 epochs with a learning

rate of 0.001 and a batch size of 8 using the Adam optimizer

(60) on a CPU. The reparameterization trick (26) is applied

during training. All general deep learning code in this work

was based on the PyTorch framework (61), while the PyTorch

Geometric library (62) was used for graph-specific deep

learning operations. The machine learning classifiers for the
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experiments in Section 3.6 were implemented using the scikit-

learn library (63).

3. Experiments and results

We evaluate the proposed mesh VAE in a variety of

different settings using various evaluation metrics (Section 3.1)

to showcase its versatility and demonstrate its usefulness in

multiple applications related to cardiac shape analysis. These

include an assessment of its ability to accurately reconstruct 3D

cardiac mesh inputs (Section 3.2), a comparative analysis with

a voxelgrid-based deep learning benchmark (Sections 3.2, 3.3),

and an investigation of its latent space quality (Section 3.4).

In addition, we evaluate its ability to generate realistic virtual

population cohorts of cardiac anatomies (Section 3.5) and the

utility of its latent space to predict MACE events (Section 3.6) as

two possible sample applications of the mesh VAE.

3.1. Evaluation metrics

We utilize multiple metrics in this work to enable a thorough

evaluation of the mesh VAE in a variety of settings and tasks.

We select the mean surface distance (MSD) (Equation 4)

between two triangular meshes X and Y as our first metric

to quantify the averaged difference between two anatomical

surfaces. This allows the assessment of the general alignment

between our method’s predictions and the corresponding

gold standard.

MSD(X,Y) =
1

2

(

1

|X|

∑

x∈X

d(x,Y)+
1

|Y|

∑

y∈Y

d(y,X)

)

(4)

In addition to the average distance between two meshes, we

also want to obtain the maximum difference between the two.

This allows us to see whether larger deviations are present in

smaller regions on the mesh surfaces which is important for a

more localized cardiac shape analysis. We choose the Hausdorff

distance (HD) between input meshes X and Y for this purpose.

HD(X,Y) = max

{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

(5)

While MSD and HD provide a geometric quantification of

mesh alignment, we also aim to provide an assessment in terms

of commonly used clinical metrics to facilitate the proposed

method’s application in clinical practice. To this end, we choose

the LV endocardial volume and the LV myocardial mass to

validate the anatomical realism of the virtual meshes generated

by our method across a given population. Here, we define the LV

mass as the difference between LV epicardial and LV endocardial

volumes multiplied by a constant (ρ = 1.05 g/mL) to represent

the average density of the myocardial tissue.

An advantage of any variational autoencoder architecture is

the existence of a latent space that aims to provide an accurate

low-dimensional and disentangled representation of the high-

dimensional population distribution. In order to improve

interpretability and performance on multiple follow-up tasks,

each dimension of the latent space ideally encodes a different

aspect of the inter-subject anatomical variability. To this end, we

quantify the contribution of each latent space dimension u using

the activity metric (64).

Activityu = CovX(Eu∼q(u|X)[u]) (6)

Here, X refers to the input meshes, E to the expected

value, Cov to the covariance, and q to the posterior probability

distribution of the latent space component u. Intuitively,

a higher activity score indicates that a larger amount of

population-wide shape variability is captured by the given latent

space dimension.

Finally, in order to assess the utility of the mesh VAE’s

latent space representation for the binaryMACE prediction task,

we select the area under the receiver operating characteristic

(AUROC) curve as our metric due to the class imbalance in

our dataset.

3.2. Mesh reconstruction

In our first experiments, we want to assess whether

the proposed mesh VAE is capable of accurately encoding

and reconstructing the complex high-dimensional anatomical

meshes at both the ED and ES phases of the cardiac cycle. To

this end, we first train separate mesh VAE models for each

of the two cardiac phases and evaluate their reconstruction

performance qualitatively by comparing the output meshes with

the corresponding input meshes of the unseen test dataset. The

obtained results for five sample cases are depicted for both ED

and ES phases in Figures 3A,B, respectively.

We observe that the shapes of the input and reconstructed

meshes closely resemble each other on both a local and global

level and for both the ED and ES phases. The relationship

between epicardial and endocardial surfaces remains consistent

between input and predicted meshes, while the most noticeable

differences appear in regions with remaining slice misalignment

artifacts and at the base of the left ventricular anatomy. We

also notice a slight smoothing effect of the mesh VAE outputs

compared to the respective input meshes, especially in localized

regions affected by surface reconstruction artifacts.

In order to quantify the mesh VAE’s encoding and

reconstruction ability, we calculate both the mean surface

distance (Equation 4) and the Hausdorff distance (Equation 5)

between the predicted meshes and gold standard meshes of the

test dataset (Table 1). This enables an assessment of both the

average and worst-case performance of how accurately the mesh
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FIGURE 3

Qualitative reconstruction results of the mesh VAE for five sample cases. Results are presented separately for ED (A) and ES (B) phases. Predicted

meshes are color-coded based on the vertex-wise distances to their corresponding input meshes.

TABLE 1 Reconstruction results of the mesh VAE and the 3D VAE on

the test dataset.

Phase Method Hausdorff

distance (mm)

Surface distance

(mm)

ED
3D VAE 6.43 (±2.57) 1.26 (±0.48)

Mesh VAE 4.73 (±1.46) 0.96 (±0.23)

ES
3D VAE 6.64 (±2.81) 1.53 (±0.66)

Mesh VAE 4.43 (±1.23) 0.99 (±0.20)

Values represent mean (± standard deviation) in all cases.

VAE can process unseen 3D shape information. As a benchmark

method for comparative validation, we choose a 3D VAE which

is designed for 3D voxelgrid data and has previously been used

to process 3D cardiac surface information (28, 65). We train and

evaluate the 3DVAE on the same training and test datasets as our

mesh VAE and report the results in Table 1. In order to apply the

3D VAE to our mesh dataset, we first voxelize each 3D triangular

mesh and then place it in the center of a 128×128×128 voxelgrid

with a voxel size of 1.5× 1.5× 1.5 mm. The resulting voxelgrids

serve as the input and gold standard data for the 3D VAE.

The architecture, loss function, and training procedure of the

3D VAE are chosen to be as close as possible to the mesh

VAE’s design in order to enable a fair comparison. The graph

convolutions and mesh pooling layers are replaced by standard

convolution and max pooling operations, respectively.

We find that the mesh VAE obtains mean surface distance

values considerably below the pixel resolution of the underlying

image acquisition (1.36 mm) for both ED and ES phases. It

also achieves significantly lower distance scores than the 3D

VAE for both HD and MSD metrics and for both ED and ES

phases. For both evaluated methods and phases, the Hausdorff

distance values are substantially larger than the MSD scores

indicating that certain small localized regions exhibit larger

differences between reconstructed and gold standard meshes

than the global average.

3.3. Technical comparison

In addition to assessing the mesh VAE in terms of its

reconstruction performance, we also evaluate its memory

footprint in comparison to the 3D VAE. To this end, we

calculate both the size of each data instance used as an input

to the respective networks and the number of trainable network

parameters in each approach (Table 2).

In terms of both metrics, the mesh VAE shows considerably

better scores than the 3D VAE. It requires only about 25

times fewer trainable network parameters and processes
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TABLE 2 Technical comparison of the mesh VAE and the 3D VAE.

Method Data type Data instance size Network

parameters

3D VAE Voxelgrid ∼2.1×106 (128×128×128) ∼1.1× 106

Mesh VAE Mesh ∼7.4×103 (2450×3)∗ ∼4.4× 104

∗Vertex connectivity is the same for each mesh in the dataset.

approximately 285 times smaller input data while still

representing the underlying cardiac anatomy with higher

fidelity. This also allows us to train the mesh VAE on a standard

CPU as opposed to the GPU required for the 3D VAE. While

this makes a direct comparison of the run time difficult, we

would expect it to lead to a considerably faster execution of the

Mesh VAE.

3.4. Latent space analysis

After having shown the mesh VAE’s ability to accurately

model 3D cardiac shapes with high efficiency, we want to further

investigate its latent space as a key architectural component

to successfully represent inter-subject anatomy changes. As

indicated by the two terms in the VAE’s loss function, the

objective of the latent space is similarly two-fold. On the

one hand, it aims to provide a suitable low-dimensional

encoding of high-dimensional input meshes that allows for

accurate reconstruction. On the other hand, it is also tasked to

represent important aspects of population-wide shape variability

in a disentangled and interpretable way by approximating a

multivariate Gaussian distribution. While the experiments in

Section 3.2 show the adequacy of the mesh VAE’s latent space for

the reconstruction task, we want to focus on its role in modeling

variability in this section.

To this end, we first pass all meshes of our dataset

through the pretrained encoder of the mesh VAE to obtain

the latent space representation of each case. We then use these

representations to calculate the activity of each latent space

component. Intuitively, the activity scores give an indication

as to how much of the overall shape variability across the

population is captured by a given latent space dimension.

We follow these steps separately for the mesh VAEs trained

on ED and ES data, respectively, and report the results in

Figure 4. Hereby, the activity of each latent space dimension is

presented as a percentage of the total activity, and latent space

dimension are arranged in decreasing order of their respective

activity percentages.

We observe that while the majority of the 16 latent space

components capture more than 8% of the overall population

variability each, a few components model close to 0%. Among

the significantly contributing components, differences between

the most and least active dimensions are relatively small at

approximately 3%. Results are mostly consistent between the

ED and ES phases with the ED phase showing one additional

significantly contributing component and consequently slightly

smaller activity scores for each of them.

After quantifying the variability in the low-dimensional

latent space, we want to investigate the effect of changes in the

individual latent space components on 3D shape variability. This

allows us to identify if different latent space dimensions are

responsible for modeling different aspects of the 3D anatomical

variability. To this end, we first determine the mean latent space

encoding across the population and then vary individual latent

space components while keeping the other components fixed

at the population mean value. We next pass these latent space

representations through the decoder of the pre-trained mesh

VAE in order to visualize the effect of the change in the particular

latent space component on the 3D anatomy. Each individual

latent space component is varied by 3 standard deviations from

its mean value in both the positive and negative directions to

analyze shape changes in both sides of the unimodal probability

distribution. Based on our findings in Figure 4, we depict the

resulting meshes corresponding to changes in the four most

active latent space components, the least active one, and the one

with the largest activity difference between ED and ES phases in

Figure 5.

We observe that variations in each of the four most active

latent space components result in gradual and easily identifiable

changes in 3D anatomical shapes for both the ED and ES phases.

These include changes in overall heart size, the pointedness of

the apex, the basal plane tilt, and the longitudinal curvature and

elongation of the ventricle. Variations along the least active latent

space component do not cause any easily noticeable changes

to the overall shape in either the ED or ES phase. We also

find clear 3D shape changes when varying the last component

with significant activity scores for the ED phase (component

11), while the same component for ES phase represents the first

component with low activity scores and does not produce any

easily visible 3D shape changes.

3.5. Generation of virtual cardiac mesh
populations

As a first possible sample application of our mesh VAE,

we next want to analyze whether it is able to generate new

as well as realistic 3D cardiac meshes altogether. Such virtual

population cohorts have a variety of use cases, such as data

augmentation for disease classification or electrophysiological

computer simulations as part of in silico trials. Hereby, the

synthesized meshes should be as indistinguishable as possible

from the real ones on both an individual and a population level.

In order to evaluate the mesh VAE’s performance in this task,
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FIGURE 4

Activity values of each latent space dimension as a percentage of total activity in mesh VAEs trained separately on ED (A) and ES (B) data. Latent

space dimensions are presented in decreasing order of their activity percentage values.

FIGURE 5

E�ect of changes in the individual latent space components (rows) on the 3D mesh shapes reconstructed by the decoder of the mesh VAE for

ED (A) and ES (B) phases. Results are shown for the four most active latent space components (1–4), the least active one (16), and the one with

the largest activity di�erence between ED and ES phases (11).
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FIGURE 6

Sample meshes generated by separate pretrained ED (A) and ES (B) mesh VAEs.

we draw random samples from the multivariate latent space

distribution and pass each of them through the trained decoder

of the VAE to obtain the corresponding virtual output meshes.

We perform this procedure separately for themesh VAE decoder

trained on ED and ES and depict 8 sample results for each phase

in Figure 6.

We observe that the generated meshes exhibit a degree of

shape variation close to that of the true population for both the

ED and ES phases, while still maintaining realistic anatomical

shapes on an individual level. Typical shape changes regarding

for example the overall heart size, mid-cavity diameter, or basal

plane tilt, are successfully represented in the virtual population.

In addition, the heart meshes at ES phase generally show a

thicker myocardium and a smaller overall volume than the ED

population, which is again reflective of the true population. Since

we use separate networks for the ED and ES phases, no per-case

correspondence between individual generated meshes of the two

phases is enforced.

In order to quantify the realism of the generated heart

population, we first randomly sample 1,000 latent space vectors

and pass them through the mesh VAE’s decoder to obtain a

large virtual population of 3D cardiac meshes. We then calculate

the widely used clinical metrics LV volume and LV mass for

each mesh in the generated population and report the resulting

population mean and standard deviation values in Table 3.

For a comparative analysis, we also provide the same scores

for the meshes in the unseen test dataset, which we assume

as our gold standard in this work. We apply this procedure

for both ED and ES phases using the respective pre-trained

networks and report the results separately for each phase in

Table 3.

We find similarmean and standard deviation values between

the synthesized mesh population and the gold standard mesh

TABLE 3 Clinical metrics of generated and gold standard mesh

populations.

Phase Clinical metric Gold standard Mesh VAE

ED
LV volume (ml) 156 (±42) 152 (±40)

LV mass (g) 123 (±28) 120 (±26)

ES
LV volume (ml) 81 (±32) 79 (±28)

LV mass (g) 128 (±32) 125 (±31)

Values represent mean (± standard deviation) in all cases.

population for both evaluation metrics and cardiac phases. The

average difference in population means across all scores is 2.5%,

with slightly larger deviations for the ED phase compared to the

ES phase.

3.6. MACE prediction

In addition to its utility for generating virtual mesh

populations, we also want to investigate whether the mesh VAE

can capture pathology-specific information that is useful for

cardiac disease detection and diagnosis. In this work, we focus

on MACE as a possible sample outcome and want to first

study whether there exist differences in the mesh VAE’s latent

space representations of post-MI subjects with and without an

associated MACE. We therefore pass all MACE cases through

the encoder of the pre-trained mesh VAE, average the resulting

latent space representations, and then feed the resulting mean

vector through the pre-trained decoder to obtain the average

mesh representation of all MACE cases in the population. We

repeat the same process for all cases without MACE and depict
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FIGURE 7

Cardiac anatomy meshes reconstructed by decoders of pre-trained mesh VAEs from averaged latent space representations of patients with and

without subsequent MACE. Results are shown for ED (A) and ES (B) data.

the obtained averaged meshes in Figure 7A for ED data and in

Figure 7B for ES data.

We observe that the differences between averaged MACE

and noMACE anatomies are small for ED data, but easily visible

for ES data. This indicates that ED shape alone is considerably

less predictive of incidentMACE outcomes than ES shape, which

is in line with clinical guidelines and previous research work (2).

Since the observed differences in 3D ES shapes between

averaged MACE and no MACE cases were obtained using

the same pre-trained decoder for mesh reconstruction, they

should be caused by corresponding differences in the mesh

VAE’s latent space representations. As a next step, we want

to investigate whether these low dimensional representations

of 3D cardiac anatomies are not only suitable to represent

subpopulation-specific average shapes, but also to predict future

MACE outcomes for individual patients. To this end, we employ

a logistic regression classifier to predict the binary outcome

MACE vs. noMACE based on per-patient latent space encodings

obtained from the mesh VAE encoder. As a clinical benchmark,

we select the ES volume as a widely used metric in clinical

practice and use it as the input to the another logistic regression

model with the same settings. We choose the AUROC as a

comparative metric for binary prediction performance due to

the high class imbalance between MACE and no MACE cases

in the dataset. In order to maintain the same class imbalance in

the respective train and test sets and to improve the robustness

of our analysis, we conduct stratified 10-fold cross validation

experiments with both classifiers and report the averaged results

in Table 4.

We find that the mesh VAE’s latent space representations

achieve an about 7% higher AUROC score than the ES volume

values for the task of binary MACE prediction. We note,

however, that the primary objective of this experiment is only

to showcase the utility of the mesh VAE for a possible clinical

application and not to present a method optimized for MACE

prediction specifically, which we leave for future work.

TABLE 4 Results of binary MACE classification.

Metric ES volume Mesh VAE

AUROC 0.627 (±0.042) 0.671 (±0.038)

Values represent mean (± standard deviation).

4. Discussion

In this work, we have presented a novel geometric deep

learning approach specifically designed for cardiac mesh

processing as part of a multi-step cardiac shape analysis pipeline

and demonstrated its versatility in multiple applications.

4.1. Mesh reconstruction

In our experiments, we find that the mesh VAE is able to

accurately encode and decode complex 3D cardiac anatomy

shapes with high degrees of realism, by attaining average surface

distances between predicted and ground truth anatomies in the

test dataset smaller than the underlying image resolution. This

demonstrates that it is not only capable of capturing anatomical

surface information in individual cases, but also correctly

represents population-wide variability in cardiac shapes. These

results are consistent across both the ED and ES mesh datasets

and show that the mesh VAE is suitable for processing cardiac

anatomy data at various phases of the cardiac cycle, albeit

with separate networks for each phase. As these represent

the two extreme ends of the cardiac cycle, we hypothesize

that an application to intermediate frames is equally feasible.

We observe this good alignment between predicted and input

meshes not only on a global but also on a local surface level. This

indicates that inter-subject shape variation is also successfully

captured on a smaller, more localized scale which promises
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to aid in the discovery of new image-based biomarkers of

cardiac abnormalities that go beyond the purely volume-based

metrics widely used in current clinical practice. The largest

localized prediction errors occur at regions with remaining slice

misalignment artifacts and near the base of the left ventricle.

We believe this to be at least partially a consequence of the

limitations of the 3D surface reconstruction step (Section 4.6)

rather than an issue of the mesh VAE itself. In fact, the observed

slight smoothing effect of the mesh VAE typically occurs in

localized regions that are still affected by reconstruction artifacts.

This hints at potentially favorable effects of this small smoothing

behavior, since its implicit slight misalignment corrections

often result in more anatomically plausible 3D meshes without

significant loss of true localized shape details. Multiple ways

that would likely reduce the smoothing effect can be easily

integrated into our mesh VAE framework, such as increasing the

weight value of the reconstruction loss term during training or

using a reconstruction loss that puts a disproportionately higher

penalty on larger vertex-wise reconstruction errors. However,

such measures could also lead to other unwanted effects, such as

a reduced quality of the latent space distribution or an increased

number of unnatural local deformations in the output meshes

that mimic errors in the original 3D surface reconstruction

process. In general, we note that the anatomically accurate

reconstruction results have been achieved on a challenging

dataset of pathological subjects acquired from multiple studies,

in contrast to more homogeneous datasets of healthy subjects,

such as the UK Biobank study (66). This further demonstrates

the robustness of our mesh VAE.

4.2. Latent space quality

The ability of themeshVAE to successfullymodel 3D cardiac

shape variability across the population is further corroborated

by the analysis of its latent space. We find that variations in

latent space components are associated with realistic changes

in reconstructed 3D shapes and that individual components are

responsible for encoding different aspects of the population-

wide shape variability. Examples of such easily visible effects

include changes to the overall heart size, mid-ventricular

diameter, and basal plane tilt, which are all similar to previous

findings in cardiac shape modeling (19). This high degree of

disentanglement enables an improved understanding of the

key components of cardiac shape variations and higher levels

of interpretability for the multiple clinical applications of the

mesh VAE. When comparing the contribution of individual

latent space components to overall shape variability, we find

that some components are responsible for a larger percentage

of the total variation than others. This is similar to the

results of other widely used shape analysis techniques, such

as PCA, where different principal components account for

different proportions of the overall variance. Contrary to PCA,

however, we find that the differences in activity percentage

scores decrease only very slowly for the majority of components

before a sharp drop after the 11th and 10th most contributing

components for ED and ES data, respectively. All following

components play almost no part in explaining the population

variance. This is in contrast to PCA where the percentage

of explained variance by each component typically decreases

sharply for the first fewmost contributing components with very

little change between less contributing components (2, 19–21).

We hypothesize that this is due to the non-linearities in the

mesh VAE’s architecture which enable the modeling of richer

and more condensed relationships between high-dimensional

input data and low-dimensional latent space representations

compared to purely linear approaches, such as PCA. This results

in a different way of encoding shape variability with more equal

activity scores for each contributing component. When varying

along the latent space components with close to zero activity

and observing the effect on the reconstructed 3D anatomies,

we indeed find very little change, especially on a global

level (Figure 4). However, similar to PCA, such components

might still encode meaningful information about smaller, more

localized shape variations. This induces a certain amount of

risk when removing seemingly non-contributing components

post-training, as otherwise important variability might be

inadvertently removed. When experimenting with different

latent space sizes in our mesh VAE, we find that differences in

reconstruction accuracy are minimal between larger and smaller

latent space dimensionalities. We also observe that 5–50% of

the latent space dimensions have minor contributions to the

overall variance, regardless of the choice of latent space size.

Hence, we reason that the more condensed encoding of the

same amount of shape information is a property of the overall

mesh VAE architecture itself rather than solely a consequence of

the latent space size. This also shows that changing the latent

space size has little effect on removing potentially redundant

latent space dimensions as the network adjusts its encoding

accordingly. Furthermore, we also notice that training the same

network with the same parameter settings can result in varying

numbers of significantly contributing latent space dimensions.

This indicates that the various sources of randomness involved

in training deep learning networks (e.g., trainable parameter

initialization, order of cases seen during training) affect the way

the mesh VAE encodes shape information in the latent space.

As such, we conclude that our choice of 16 as the latent space

size reflects a reasonable trade-off between having too many

modes and a representation that is too condensed, both of

which would negatively affect interpretability. This also means

that our choice is not a fixed optimal value but rather that it

should be chosen with the particular dataset and downstream

application in mind. When comparing the results for ED and ES

meshes, we find very minor differences with only one additional

contributing latent space component for ED and similar levels

of disentanglement. We therefore conclude that the mesh VAE

Frontiers inCardiovascularMedicine 12 frontiersin.org

https://doi.org/10.3389/fcvm.2022.983868
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Beetz et al. 10.3389/fcvm.2022.983868

can successfully capture 3D shape variability at different phases

of the cardiac cycle.

4.3. Generation of virtual cardiac mesh
populations

In addition to accurately capturing 3D anatomical patterns

of existing subjects, we also find that the mesh VAE is capable

of generating realistic virtual populations of 3D heart meshes.

Hereby, we observe a high degree of realism in both the

individually generated meshes and in the amount of variability

present in the overall virtual population, which closely mimics

the true underlying population. We have shown this both

qualitatively and quantitatively by calculating commonly used

clinical metrics on a population level. We also note that we find

not only a good alignment between virtual generated population

and gold standard population in terms of their mean values

but also in terms of their standard deviation scores, indicating

that the variability across the population is well-captured in the

virtual population. The mesh VAE achieves these positive results

for both ED and ES phases which shows its versatility to different

datasets and suggests the possibility of a feasible extension to

other phases of the cardiac cycle. For example, the generated ES

anatomies typically exhibit a thicker myocardium and an overall

smaller size than their ED counterparts which is reflective of real

cardiac morphology. The high degree of realism in the generated

meshes is also visible on both a global and local level. This is

particularly important for virtual population cohorts used in

computer simulations of cardiac electrophysiology which model

conduction patterns granularly for each face in a mesh. We

also note that all generated virtual meshes retain the same

vertex connectivity as a result of the chosen network architecture

which is another beneficial property for many follow-up tasks.

In our experiments, we find that sampling from a latent space

distribution based on encoder predictions of the training dataset

leads to better mesh generation results than sampling from a

multivariate standard Gaussian distribution. We attribute this

to the trade-off between the reconstruction and latent space

terms in the loss function which cause the latent space to only

approximate the idealized prior distribution in order to retain a

high reconstruction accuracy.

4.4. MACE prediction

As a compact low-dimensional representation of high-

dimensional cardiac anatomies, the latent space should also

be able to capture subpopulation-specific differences based

solely on information in the input shapes. In our experiments,

we observe such differences for the MACE vs. no MACE

subpopulations in the ES data and to a lesser extent in the ED

data. In both cases, we hypothesize this to be a reflection of the

information contained in the 3D shapes instead of a potential

inadequacy of the latent space itself. This is corroborated by

findings in previous work and clinical practice where metrics

based on ES heart shapes are considerably more predictive

than corresponding ED-based scores (2). We then show how

these latent space differences for ES data can be successfully

used to predict MACE outcomes and outperform a common

clinical benchmark. We presume that the classifier’s access to

a condensed representation of the full 3D shape information

as opposed to a single value to coarsely approximate said 3D

shape is the key reason for this result. This allows the classifier

to take into account finer and more localized patterns without

getting overwhelmed by too much information, as the complex

3D shape has already been sensibly encoded by the mesh

VAE’s encoder in a non-linear way. We note, however, that the

objective of this experiment was not to achieve the best possible

classification performance but rather to generally showcase

the utility of the mesh VAE’s latent space representation for

this task. Hence, we achieve good results without any specific

classification loss term during network training but relying only

on general encodings of shape variability. Such a multi-task

learning approach would likely have improved the separability

of the latent space to further differentiate betweenMACE and no

MACE cases, while maintaining a high degree of interpretability.

This high degree of extensibility is a key advantage to the

presented mesh VAE approach which we aim to explore further

in future work.

4.5. Network architecture and training

In general, the positive results obtained by the mesh VAE in

the previously discussed experiments demonstrate that both its

architectural design, loss function, and training procedure were

adequately chosen for effective cardiac anatomy modeling with

3D surface mesh data. The graph convolutional layers combined

with the mesh downsampling and upsampling operations

enable multi-scale feature learning in a hierarchical setup that

successfully considers both global and local aspects of cardiac

shape variability, which is important to its many possible

clinical and research applications. While this is in principle

similar to conventional convolution and pooling operations on

voxelgrid data, we find that these achieve higher reconstruction

errors than a geometric deep learning architecture that is

specifically designed to process triangular surface mesh data.

In addition, the mesh VAE achieves this outperformance in

terms of accuracy while using only about 4% of the number

of trainable parameters. This significantly reduces the training

time and memory requirements of the algorithm and allowed us

to train and evaluate our deep learning models on a standard

CPU as opposed to a GPU which is typically required for the

3D voxelgrid VAE. At the same time, the mesh VAE allows for

anatomical shapes to be represented as triangular surfacemeshes
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which reduces the required data storage costs considerably

compared to voxelgrids despite not losing any anatomical

information. Furthermore, meshes allow for a continuous

encoding of vertex coordinates as opposed to the discretization

needed to store similar data in grid-based formats. This sets

an upper bound on the possible data resolution due to limited

available memory which in turns affects the quality of the

anatomical representation.

The choice of VAE framework also allows for

straightforward ways to include other metadata, such as

patient characteristics or acquisition conditions, into the

network as conditional inputs in addition to the anatomical

shape information (36, 67). These can, for example, be

included as per-vertex features in combination with the

coordinate values, or concatenated to the latent space vector

or intermediate layers of the network (36, 67, 68). Such an

extension enables subpopulation-specific cardiac anatomy

modeling while still using a single network and dataset. This is

in contrast to PCA, which would need to be applied separately

for each subpopulation and would hence only be able to use

smaller partitions of the original dataset without making use of

synergies across the subpopulations. In order to then achieve the

same performance, more data would likely be necessary, whose

acquisition is particularly costly in case of medical images.

Regarding the mesh VAE’s training procedure, we find

that setting the weighting parameter β in the loss function

to a suitable value for the given dataset is important to find

the right balance between reconstruction and latent space

quality and enable effective cardiac anatomy modeling. In

our experiments, prioritizing reconstruction quality and using

a monotonic annealing schedule resulted in the best overall

performance which is in line with previous applications of the

β-VAE framework to 3D shape modeling (36, 55). In addition,

the mesh VAE is also highly flexible and can work with a variety

of different input modalities and reconstruction pipelines, as

long as vertex correspondence between meshes in the dataset

is ensured. Its architecture also allows for the easy integration

of other network components (e.g., as a separate encoder or

decoder branch) and multiple different objectives (e.g., cardiac

disease classification) in a multi-task learning setting without

loss of interpretability. This is akin to grid-based VAEs and

therefore creates the possibility of further improvements in

similar use cases (27–34).

4.6. Limitations

The proposed shape modeling approach also comes with

some limitations. All meshes in the input dataset need to exhibit

vertex-to-vertex correspondence between each other. As this

needs to be established in the preprocessing steps, it limits the

method’s flexibility and increases its complexity. While this is

a common requirement for most shape modeling approaches,

including PCA, it is in contrast to voxelgrid-based (28) and

point cloud-based shape modeling approaches (36), where such

point correspondence is not strictly needed. As a deep learning

approach, the mesh VAE requires 2–3 h of CPU training time in

our current setup before the population-wide shape variability

is accurately captured and follow-up tasks can be performed.

This is contrasted with traditional machine learning approaches

for the same purpose, such as PCA, which are typically faster

in determining their respective data transformation parameters.

However, as mentioned in Section 4.5, the mesh VAE still

compares favorably in terms of memory footprint and training

time to other deep learning approaches based on voxelgrid or

point cloud processing.

Furthermore, we have only investigated shape variability in

the left ventricle and at the ED and ES phases in this work.

In addition, we have trained separate models for ED and ES

data which likely results in limited per-subject correspondence

between ED and ES meshes in the generated populations.

However, we believe that the presented approach can be

extended to other cardiac chambers and to other phases of the

cardiac cycle, including a combined multi-temporal modeling

setup, which we plan to explore in future work. This could

be achieved by introducing conditional inputs into various

parts of the current architecture that control the cardiac phases

to be modeled. Alternatively, separate phase-specific encoder-

decoder blocks could be used with a shared latent space to

capture multiple cardiac phases at once. This would then likely

enable the shape analysis and virtual population generation

of paired ED and ES heart meshes. We also note that errors

introduced in the preprocessing steps (e.g., MRI segmentation,

3D surface reconstruction) of our shape modeling pipeline

affect the results of both the mesh VAE and its follow-up tasks

presented in this work. In particular, the reconstruction step

does not take into account the information of long-axis slices

of the cine MRI acquisition, leading to possible inaccuracies

in the basal and apical areas of the 3D heart mesh. While

the 3D surface reconstruction step explicitly tries to correct

for slice misalignment due to respiratory motion during image

acquisition, there are likely still some smaller errors present

in the resulting meshes. However, we find that the mesh VAE

can successfully process such cases and is often even able to

remove unnatural curvatures of the anatomical surface in its

reconstructed outputs.

We have also only evaluated the mesh VAE on post-

MI subjects and not on a purely healthy cohort. Specifically

regarding the MACE classification experiment, we did not

consider any patient metadata that would likely help to

further improve the results (e.g., sex, age). However, we

note that the objective of this work was not to achieve the

best possible performance in a single one of the presented

tasks but rather to showcase the versatility and applicability

of the mesh VAE as a novel approach to 3D cardiac

anatomy modeling.
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5. Conclusion

To conclude, we have presented the mesh VAE as a novel

approach to 3D cardiac anatomy modeling that can be directly

applied to surface meshes of the heart in an efficient manner.

We have demonstrated its ability to accurately capture complex

3D cardiac shapes at both ends of the cardiac cycle while

using low-dimensional and easily interpretable latent space

representations. The mesh VAE also compares favorably to

voxelgrid-based deep learning approaches in terms of both

accuracy and memory requirements. Furthermore, we have

shown its utility for two exemplary applications, namely the

generation of realistic virtual population cohorts of 3D cardiac

anatomies and the prediction of MACE outcomes in post-

MI patients.
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