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Cardiac regeneration is one of the grand challenges in repairing injured

human hearts. Numerous studies of signaling pathways and metabolism on

cardiac development and disease pave the way for endogenous cardiomyocyte

regeneration. New drug delivery approaches, high-throughput screening, as well

as novel therapeutic compounds combined with gene editing will facilitate the

development of potential cell-free therapeutics. In parallel, progress has been made

in the field of cell-based therapies. Transplantation of human pluripotent stem

cell (hPSC)-derived cardiomyocytes (hPSC-CMs) can partially rescue the myocardial

defects caused by cardiomyocyte loss in large animals. In this review, we summarize

current cell-based and cell-free regenerative therapies, discuss the importance of

cardiomyocyte maturation in cardiac regenerative medicine, and envision new ways

of regeneration for the injured heart.

KEYWORDS

cardiac regeneration, cell-free therapies, cell-based therapies, hPSC-CMs, transplantation

Introduction

Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality globally.
As cardiac regeneration is limited in adults, damaged cardiac regions form compensatory
scars with very few functional cardiomyocytes, ultimately resulting in cardiac dysfunction and
chronic heart failure. Current clinical therapies have been shown to enhance cardiac function,
but none of them is designed to directly address the restoration of cardiomyocyte loss (1).
Heart transplantation represents a standard treatment for patients with end-stage heart failure,
however, the availability of organ donors is far from adequate to meet demand (2). It is therefore
paramount to develop cardiac regenerative medicines.

Over the past two decades, fundamental advances have been made to uncover the cellular
and molecular mechanisms of heart development (3, 4). The discovery of multiple signaling
pathways and metabolic regulation of cardiac growth and homeostasis has shed light on
potential endogenous mechanisms of cardiomyocyte regeneration. Novel drug delivery systems
such as the adeno-associated virus 9 (AAV9) system or heart-targeted nanoparticles and the
development of novel small molecules might allow for myocardial regeneration approaches in
clinical settings (5–7). Moreover, human pluripotent stem cells (hPSCs)-derived cardiomyocytes
(hPSC-CMs) have been extensively used for disease modeling and drug screening in CVD
(8, 9). With the advancement of hPSC-CM research and cardiac organoid engineering, it has
become possible to graft stem cell-derived-CMs into the injured heart, providing directions for
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optimizing these approaches. In this review, we list some candidates
for cell-free regenerative therapy, discuss the transplantation of adult
stem cells and hPSC-CMs in cell-based therapy, and envision new
regenerative approaches to repair damaged hearts.

Mechanisms underlying cardiac
regeneration

Although the adult heart has been shown to lack regenerative
capacity in mammals (10, 11), the heart can effectively regenerate
within the first week after birth. Studies of apical resection (12, 13)
and left anterior descending (LAD) coronary artery ligation (14–
16) in neonatal rodents have shown that murine, as well as rat
cardiomyocytes, have an intrinsic regenerative capacity within the
first 7 days after birth. Similarly, the neonatal porcine heart is capable
of regeneration after acute myocardial infarction (MI) during the
first 2 days after birth (17). Furthermore, we recently reported the
complete functional recovery after a massive MI in a human newborn
(18). Compared to the neonatal mammalian heart, adult mammalian
cardiomyocytes are highly differentiated and often contain more
than one nucleus and well-aligned sarcomeres to maintain cardiac
function (19); however, this in turn hinders myocardial regeneration
in the adult heart once the heart is damaged (Figure 1). Therefore,
inducing mature cardiomyocytes to re-enter the cell cycle from a
quiescent state is one of the strategies to repair damaged hearts.

To date, extensive studies of neonatal heart regeneration and
adult heart repair following injury in mammals have identified
fundamental mechanisms underlying cardiac regeneration,
providing directions for repair after myocardial injury. The
transcription factor GATA4 (20), for example, is known to play
an essential role in cardiomyocyte replication in neonatal mice.
Myocardial Erbb2 (21) and BMP (22, 23) signaling were found
to control cardiomyocyte proliferation. Inhibition of adrenergic
receptor (AR) and thyroid hormone (TH) pathways promoted
cardiomyocyte regeneration in mice after postnatal day 7 (24).
Activation of Neuregulin1/ErbB4 signaling (25) or overexpression of
a single transcription factor, namely Tbx20 (22), promoted the repair
of damaged adult cardiomyocytes after myocardial infarction in mice
and enhanced cardiomyocyte cell-cycle entry. Deletion of Salvador,
a component in the Hippo pathway, improved heart function
after myocardial infarction (26). Moreover, deletion of the hypoxia
response element Meis1 increased the number of cardiomyocytes,
especially mononucleated cardiomyocytes in adult mice (27).

In addition to directly inducing cardiomyocyte proliferation,
several studies have demonstrated that other cardiac cell types, such
as fibroblasts, can transdifferentiate into functional cardiomyocytes,
which may be a potential and viable approach to heart regeneration
in vivo. A classic combination of transcription factors Gata4, Mef2c,
and Tbx5 (GMT) enabled direct reprogramming of postnatal cardiac
or dermal fibroblasts into spontaneously contracting cardiomyocyte-
like cells with cardiac-specific markers and contracted spontaneously
(28). One study showed that blocking TGF-β and WNT signaling
increased the efficiency of reprogramming in GMT-overexpressing
cardiac fibroblasts. In vivo, mice treated with GMT, TGF-β
inhibitor SB431542, and WNT inhibitor XAV939 for 2 weeks after
myocardial infarction significantly improved reprogramming and
cardiac function compared to mice treated with GMT only (29).
In addition, the transcription factor Tead1 (Td) could efficiently

replace Tbx5 in the GMT cocktail, enhancing reprogramming
efficacy (30). Such reprogramming can also be achieved by
chemical induction alone. A combination of nine compounds
induced the transdifferentiation of fibroblasts into contracting
cardiomyocyte-like cells (31). Importantly, fibroblasts can be
directly reprogrammed to spontaneously contracting patches of
differentiated cardiomyocytes without a pluripotent intermediate
through transgenic expression of Oct4, Sox2, Klf4, and c-Myc (32).
Recent studies have shown that in addition to fibroblasts, endocardial
cells have the potential to generate cardiomyocytes (33). For example,
the deletion of the stem cell leukemia (SCL) gene induces the
expression of cardiac-specific proteins in endothelial cells (34).

Numerous studies have uncovered mechanisms that promote
cardiac regeneration, and artificially increasing or decreasing these
critical molecules in vivo may alleviate or even rescue the
pathogenesis heart disease process. Thus, the discovery of druggable
regenerative targets is vital to cell-free therapies.

Cell-free therapies

For cardiac repair, recombinant DNA, RNA-based, or
recombinant protein therapeutics have been used in regenerative
medicine. Here, we discuss some potential drug/molecule candidates
for cell-free therapies based on preclinical reports of cardiac
regeneration (Table 1).

In murine MI models, for example, injection of Neuregulin1
induced a sustained improvement in myocardial function and
attenuated compensatory hypertrophy following MI (25).
Adenoviral-based delivery of cyclin A2 increased myofilament
density at the border zone of the MI and improved cardiac
function (35). Moreover, cardiac-specific overexpression of FGF16
via AAV subtype 9 (AAV9) led to an upregulation of genes
associated with cell proliferation in Gata4-ablated mouse hearts (20).
Combined intramyocardial injection of CDK1/CCNB/CDK4/CCND
significantly improved ejection fraction (EF), stroke volume, cardiac
output, and markedly reduced the scar size (36). Down-regulation
of Lrp6, a Wnt co-receptor, promoted adult post-MI cardiac repair
by increasing cardiomyocyte proliferation (37). Delivery of IGF2BP3
through AAV9-Igf2bp3 into neonatal mouse hearts 3 days prior to
LAD ligation significantly improved heart function as determined at
3-weeks post-injury (38). Some RNAs are potential targets for cardiac
regeneration. For example, silencing miR-99/100 and Let-7 can
induce cardiomyocyte dedifferentiation and improve heart function
in adult LAD-treated mice (39). Knockdown of LncDACH1 using
LncDACH1 shRNA (Adv-shLncDACH1) reactivated cardiomyocyte
proliferation in adult mice and enhanced cardiac function in the
injured heart (40). Delivery of Pkm2 modified RNA (modRNA)
in mice hearts can increase cardiomyocyte cell proliferation and
improve cardiac function after myocardial infarction (41). Moreover,
one study showed chronic hypoxia-induced cardiac regeneration in
adult mice. Long-term low oxygen treatment induced cardiomyocyte
proliferation and angiogenesis in vivo, thereby reducing myocardial
fibrosis and improving left ventricular systolic function in mice
with myocardial infarction (42). In addition, induction of non-
cardiomyocyte transdifferentiation into cardiomyocytes in vivo
can also be achieved. Direct intramyocardial injection of GMT
transdifferentiated non-cardiomyocytes into new cardiomyocyte-like
cells, decreased infarct size, and attenuated cardiac dysfunction after
myocardial infarction in mice hearts (43).
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FIGURE 1

Schematic of approaches for cardiac regenerative medicine using cell-free therapies. Mammals have the intrinsic capability to structurally and
functionally regenerate their hearts shortly after birth, a capacity that is subsequently lost. Approaches to cardiac regeneration involve the re-entry of
cardiomyocytes into the cell cycle and/or transdifferentiation of other resident cell types into cardiomyocytes. Recombinant proteins, RNA-based drugs,
PROTAC, or small molecules could serve as viable strategies for cardiac repair. High-throughput screening of drug candidates can be performed in
hPSC-CMs or, at lower throughput, cardiac organoids prior to clinical application. Created with BioRender.com.

In swine MI models, cardiomyocyte hypertrophy and fibrosis
following chronic MI were reduced when IGF-1/HGF was
intramyocardially delivered into the injured area (44). Subcutaneous
injection of a daily dose of growth hormone-releasing hormone
agonist (GHRH-A) into pigs with a LAD ligation showed left
ventricular structural and functional improvements, whereas
cardiomyocyte proliferation was not significantly altered (45). In
addition, the cardiomyogenic factor Follistatin Like 1 (FSTL1),
produced by the epicardium, can stimulate recovery of contractile
function within 2 weeks and limit fibrosis 4 weeks after MI injury,
suggesting that FSTL1 has therapeutic efficacy in a large animal MI
I/R swine model (46).

Although there many targets for cardiac regeneration have been
identified and validated in animal models, the drugs currently
available for clinical application are limited. The development of
human cardiomyocytes from pluripotent stem cells will undoubtedly
help test delivery systems and screen novel drugs for cardiac
regeneration in a human “background” since hPSC-CMs from
patients can also be used for preclinical tests for drug toxicity,
thus enabling more precise and personalized treatments (47,
48). For example, one study designed an engineered bivalent
neuregulin-1β that attenuates doxorubicin-induced double-strand
DNA breaks in hPSC-CMs, with the vision to utilize such treatment

to protect the heart from doxorubicin cardiotoxicity (49). hPSC-
CMs from Arg663His-mutated patients can be treated with the
L-type Ca2+ channel blocker verapamil to avoid the development
of the hypertrophic cardiomyopathy phenotype in vitro. Therefore,
verapamil might be a potential drug for patients with Arg663His-
mutated hypertrophic cardiomyopathy (50). Compared with 2D
hPSC-CMs, human cardiac organoids generated from human
pluripotent stem cells through cell self-assembly (51) and 3D printing
(52) are more similar in the structure and function of the human
heart. Combined with gene editing, these 3D tissues can now be
used to model various cardiovascular diseases such as myocardial
infarction (51) and thus can ultimately be used as models for
screening a collection of drug candidates (Figure 1).

Cell-based therapies for cardiac
regeneration

Heart transplantation is currently the only restorative therapy
for end-stage heart failure patients. Although the development of
new drugs and surgical as well as improved storage techniques
have led to an increase in successful heart transplantations, heart
transplantation is still a high-risk medical procedure, and there
remains an insufficient amount of donor hearts. In addition,
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TABLE 1 Potential targets and candidates for cardiac regenerative cell-free therapies.

Candidates Regulation Application Outcome References

Tbx20 Up Transgenic mice Mice Promotes cardiomyocyte proliferation (22)

mir302-367 Up Systemic delivery of miRNA LAD mice Induces cardiomyocyte proliferation and promotes
cardiac regeneration post MI

(128)

miR-31a-5p Up miR-31a-5p antagomir Neonatal rat Promotes postnatal cardiomyocyte proliferation (129)

NRG1 Up Injection of NRG1 protein LAD mice Induces cardiomyocyte proliferation and promotes
myocardial regeneration following MI

(25)

Jagged1 Up – – Notch activation promotes immature cardiac
myocyte proliferation and expansion at early time
points in neonatal rats

(130)

GATA4 Up – – GATA4 directly interacts with Cyclin D2 and Cdk4
promoters in cardiac myocytes from mice

(131)

CDK1, CDK4,
Cyclin B1 and Cyclin
D1

Up Delivery of recombinant
CDK1, CDK4, cyclin B1 and
cyclin D1

LAD mice Enhances cardiac function in mice after acute or
sub-acute MI

(36)

Cyclin A2 Up Adenoviral vector delivery LAD rat Induces cardiomyocyte mitotic activity and
improves ventricular function after ischemic injury

(35)

IGF-1, HGF Up Administration of
recombinant IGF-1/HGF

Intracoronary balloon
occlusion in pigs

Improves cardiac function following MI (44)

FGF16 Up AAV9 delivery Neonatal Gata4fl/fl mice
with Cryoinjury

Rescues cryoinjury-induced cardiac hypertrophy
and improved heart function after injury

(20)

Pkm2 Up Delivery of Pkm2 modRNA LAD mice Increases cardiomyocyte cell division and improves
cardiac function following MI

(41)

Agrin Up Recombinant Agrin LAD mice Stimulates cardiomyocyte proliferation in primary
cardiac culture and is involved in cardiac
regeneration in neonatal mice

(132)

PPARδ Up PPARδ agonist LAD mice Improves heart function in mice after myocardial
infarction

(133)

hsa-miR-590,
hsa-miR-199a

Up AAV9-miRNA Neonatal rat Promotes cardiomyocyte proliferation in adult mice
and improves cardiac function following MI

(134)

Hypoxia Up Hypoxia condition LAD mice Induces cell cycle re-entry of adult cardiomyocytes
and improves functional recovery following MI in
adult mice

(42)

ERBB2 Up Transgenic mice Erbb2-cKO mice Transient induction of ERBB2 in adult mice is
sufficient to reactivate CMs to proliferative and
induce their regenerative potentials after ischaemic
injury

(21)

FSTL1 Up Patch with FSTL1 to the
epicardium

LAD mice and pig Stimulates cell cycle entry of CMs and improves
cardiac function and survival in mouse and swine
models of myocardial infarction

(46)

Yap1 Activated – – Stimulates proliferation of postnatal
cardiomyocytes in mice and in cultured rat
cardiomyocytes

(135)

Gata4, Mef2c and
Tbx5 (GMT)

Up Injection of GMT-encoding
retrovirus

LAD mice Enhances cardiac reprogramming and cardiac
function

(29, 43)

miR-99/100, Let-7a/c Down AAVs encoding for
anti-miR-99/100 and
anti-Let-7a/c

LAD mice Adult cardiomyocyte dedifferentiation, enhances
cardiomyocyte proliferation, and facilitates heart
regeneration

(39)

LncDACH1 Down Adv-LncDACH1, or
Adv-shLncDACH1

LAD mice Stimulates cardiac regenerative potential and
enhanced cardiac function in the injured heart

(40)

LrP6 Down AAV9-miRNAi-Lrp6 delivery LAD mice Reduces scar size in the infarcted hearts of mice and
stimulates cardiomyocyte proliferation in the
infarct border zone

(37)

Meis1 Down Deletion of meis1 in mice Adult mice Induces cell cycle re-entry in mice (27)

(Continued)
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TABLE 1 (Continued)

Candidates Regulation Application Outcome References

FGF1, p38 MAP
kinase

Down FGF1/p38 inhibitor LAD rat Induces cardiomyocyte proliferation and rescue
cardiac function following MI

(136)

Dag1 Down – TAC mice The dystrophin– glycoprotein complex component
dystroglycan 1 (Dag1) directly binds to the Hippo
pathway effector Yap to inhibit cardiomyocyte
proliferation in mice

(137)

α-catenins Down Gene depletion αE- and αT-Catenin
double KO mice

Leads to nuclear accumulation of Yap and induction
of cardiomyocyte proliferation in mice

(138)

GSK-3β Down Gene depletion GSK-3β conditional KO
mice

Protects against post-MI remodeling and promotes
cardiomyocyte proliferation in adult mice

(139)

GHRH-A Down Injection of a
hormone-releasing hormone
agonist (GHRH-A)

LAD pig Reduces infarct size and improve cardiac function
in pigs with subacute ischemic cardiomyopathy

(45)

Adrenergic receptor
(AR), thyroid
hormone (TH)

Down AR and TH inhibitors Neonatal mice Extends postnatal cardiac regenerative capacity in
part by promoting cardiomyocyte cell division

(24)

immunosuppression is required after heart transplantation, which is
a risk factor for complications. In recent years, cell-based therapies
have been proposed as a promising approach for treating advanced
heart failure and repairing damaged myocardial tissue.

Adult stem cells transplantations

Early evidence suggested that adult stem cells such as bone
marrow cells (BMCs), bone marrow-purified haematopoietic stem
cells (HSCs), and bone marrow-purified mesenchymal stem cells
(MSCs) can differentiate into cardiomyocytes. A 2001 study showed
that 9 days after transplantation of c-kit+ BMCs in a LAD mouse
model, newly formed myocytes occupied 68% of the infarcted region
in the ventricle leading to an overall improvement in cardiac function
(53). Then, one report claimed that the grafts of c-Kit+, stem cell
antigen-1 positive (Sca-1+) BMCs migrated to ischemic areas where
they differentiated into cardiomyocytes and endothelial cells (54).
C-kit+ cells (55) and Sca-1+ cells (56, 57)were hence considered
as adult cardiac stem/progenitor cells (CPCs). However, multiple
follow-up studies showed negative results (58, 59). One study found
that transplantation of HSCs into adult mouse hearts did not result
in any detectable transdifferentiation into cardiomyocytes, nor was
there a significant increase in cardiomyocytes in the HSCs-treated
hearts (58). Likewise, multiple laboratories have demonstrated that
the transplantation of c-kit+ cells into infarcted adult mouse hearts
did not result in the differentiation of cardiomyocytes (60, 61).
Additional studies further showed that Sca-1+ cells do not generate
new cardiomyocytes (62–64), but are rather precursors of endothelial
cells (62). Moreover, lineage-tracing techniques have confirmed
that both c-kit+ and Sca1+ adult stem cells in transplanted mice
cannot differentiate into cardiomyocytes in vivo (62–67). Thus,
the concept of adult cardiac stem cells, as well as the idea that
adult stem/progenitor cells can promote cardiac remuscularization,
have been rejected.

Nonetheless, numerous clinical trials of bone marrow-derived
adult stem cell transplantation have been conducted [reviewed in
(68–70)]. As expected from foundational research, the overall clinical
benefit was not significant. To date, there is growing evidence that

the minute benefits of adult stem cell therapy could be attributed to
the effects of secreted factors acting on neighboring cells through a
paracrine mechanism (69, 70). Several key secreted growth factors
have been identified, such as VEGF, HGF, IGF-1, and TGF-β,
mediators that stimulate angiogenesis, inhibit apoptosis or modulate
inflammatory pathways (71, 72). In addition, exosomes might be
one of the reasons for the improvement of cardiac function after
such adult stem cell transplantation. Treating the infarcted area
with exosomes secreted by cardiac mesenchymal stem cells can
enhance cardiac angiogenesis, promote cardiomyocyte proliferation,
and maintain cardiac function in mouse hearts (73). In addition,
one study found that both live and dead adult stem cells induced
macrophage accumulation in the infarcted area of hearts, improving
the heart function after I/R injury, which also occurred after the
direct induction of innate immune response. Thus, the recovery of
the infarcted area of the heart following adult stem cell therapy may
attribute to an acute inflammatory wound-healing response through
the accumulation of regional macrophages (74).

Pluripotent stem cell-based therapies
for cardiac regeneration

Human embryonic stem cells (ESCs) have the ability to
differentiate into multiple cell types and thus have great therapeutic
potential in regenerative medicine. However, because human ESCs
are extracted from blastocysts, both scientific research and clinical
applications of human ESCs face ethical issues (75). In 2006,
Takahashi and Yamanaka successfully induced pluripotent stem
cells (iPSCs) from fibroblasts by the introduction of four factors,
Oct3/4, Sox2, c-Myc and Klf4. The self-renewal and differentiation
capacity of pluripotent stem cells is largely comparable to that of
embryonic stem cells but avoids ethical issues (76). In recent years,
many laboratories have reported the development of cardiomyocytes
from ESCs (77, 78) and iPSCs (79–84). ESC-derived cardiomyocytes
(ESC-CMs) and iPSC-derived cardiomyocytes (iPSC-CMs), here
collectively referred to as hPSC-CMs, express molecular markers
and exhibit subcellular structures and electrophysiology resembling
primary, albeit immature cardiomyocytes.
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TABLE 2 Preclinical and clinical studies of hPSC-CMs transplantations for treatment of cardiac disease.

Species Disease
model

Cell types Delivery method Heart
function

Side effect References

Mice LAD hiPSC-CMs Intramyocardial injection Enhance No major side effects
reported

(85, 87)

Rat I/R hESC-CMs Intramyocardial injection (90)

LAD hiPSC-CMs Intramyocardial injection (86)

LAD hiPSC-CMs and rat
microvessels

Intramyocardial injection (111)

Guinea-pig Cryoinjury Partly matured hESC-CMs Intramyocardial injection Arrhythmia but reduced (99)

Pig Ameroid ring
placement

hiPSC-CMs Cell sheet Arrhythmia (88)

LAD hESC-CMs Direct image-guided
transendocardial injection

(95)

Cryoinjury hiPSC-cardiac spheroids Intramyocardial injection (110)

Monkey I/R hESC-CMs Intramyocardial injection (93)

LAD hESC-CMs (97)

LAD mPSC-CMs (94)

Human Patients hiPSC-CMs Injection Not yet reported Not yet reported (120)

hiPSC-CMs Patches Clinical symptoms
improved

No adverse events (114)

Several groups have transplanted hPSC-CM in experimental
cardiovascular disease models in vivo (85–93), providing
experimental feasibility studies for future clinical applications
(Table 2). Studies have confirmed that hPSC-CMs can engraft,
survive, and electrically couple with host myocardial tissue in vivo
and improve contractile function after infarction. For example,
in both acute myocardial infarction and chronic post-infarction
heart disease in rats, transplanted hPSC-CMs can survive and form
viable tissue containing striated cardiomyocytes. These hPSC-CM
injections attenuated ventricular dilatation and preserved systolic
function after acute myocardial infarction but are insufficient to
alter adverse remodeling of chronic myocardial infarction rats
(90, 91). In addition, transplanted hPSC-CMs could remuscularize
cryoinjured guinea-pig hearts, thereby preserving cardiac function
(92). Intramyocardial delivery of one billion hPSC-CMs into
Macaques suffering an ischemia/reperfusion injury also resulted in
the remuscularization of substantial areas of the infarcted monkey
heart (93). The hPSC-CM engraftment is indeed promising as a
cell-based therapy. However, there are key issues that remain to be
solved.

Arrhythmias are considered the most critical side effect of
engraftment, as they can be lethal, especially in pigs and primates.
In ischemia/reperfusion-injured macaques, ventricular arrhythmias
were observed despite remuscularization (93). Similar results were
found in myocardial-infarcted cynomolgus monkeys. Ventricular
tachycardias happened following the transplantation of monkey
iPSC-derived cardiomyocytes (mPSC-CMs) (94). Studies in infarcted
hearts of rats and pigs also showed the development of arrhythmias
and tachyarrhythmias following injection of immature hPSC-
CMs (95, 96). In infarcted hPSC-CM recipient pigs, frequent
and fatal ventricular tachyarrhythmias were observed during the
first few days of post-transplantation, and normal sinus rhythm
was observed 28 days after transplantation (95). Such graft-
related ventricular arrhythmias most likely originate from an

ectopic pacemaker formed by the transplanted hPSC-CMs (97).
To eliminate such arrhythmic events, several strategies have been
considered. Pharmacologic treatment is one of the solutions to
engraftment arrhythmia. One study showed that a combination of
amiodarone and ivabradine could effectively suppress arrhythmia
in infarcted hPSC-CM recipient pigs (98). In addition, the
engraftment of more mature cardiomyocytes was beneficial in
reducing arrhythmia events (99). This study showed that hPSC-
CMs cultured on polydimethylsiloxane (PDMS) substrates exhibited
increased expression of cardiac maturation markers and improved
structural and functional properties of more mature cardiomyocytes
in vitro. They then found that transplantation of this PDMS-
treated hPSC-CMs in an infarcted guinea pig enhanced post-
transplant structure and alignment, host-graft electromechanical
integration, and importantly, reduced proarrhythmic behavior (99).
To engraft matured hPSC-CMs, several studies have attempted to
induce cardiomyocyte maturation in vitro. For example, using 3–
6 months long-term cultures, hPSC-CMs exhibited an adult-like
phenotype, including increased cell size or greater myofibril density
and alignment (100, 101). In addition, electric pacing and mechanical
stimulation were shown to promote hPSC-CMs maturation in vitro
(102, 103). hPSCs-CMs treated with a maturation medium including
a peroxisome proliferator-activated nuclear receptors alpha (PPARa)
agonist, palmitate, dexamethasone, and Tri-iodo-l-thyronine (T3)
(104) in the presence of low glucose resulted in hPSC-CMs
with increased the expression of genes associated with fatty acid
oxidation (FAO), mitochondrial respiration, and muscle function
(105). In addition, insulin-like growth factor-1 (IGF-1) or low
glucose in culture media was shown to promote cardiomyocyte
maturation (106, 107). In contrast to monolayer cardiomyocyte
cultures, hPSCs-CMs grown in 3D in vitro appear to be more
mature and thereby better mimic bona fide cardiomyocytes (108).
In particular, self-organizing cardiac organoids, as compared to
2D-grown hPSC-CMs, exhibit increased expression of cardiac ion
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FIGURE 2

Cell-based approaches to cardiac regenerative medicine. Delivery methods such as intracardiac injection and cell patches can be used for cell-based
therapies. Though controversial, transplanting bone marrow-derived adult stem cells could promote cardiac function via secreted factors. Human
pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) can repair damaged hearts through tissue replacement of lost cardiomyocytes and help
promote cardiac function by secreting growth factors such as VEGF. However, preclinical models and clinical trials must carefully address
post-transplant arrhythmias and other side effects. The increased maturity of hPSC-CMs might reduce unwanted and potentially lethal arrhythmic
events. Co-delivery of multiple cell types, including endothelial cells or other cardiac cell types, might improve hPSC-CMs retention and thereby
promote the repair of injured hearts. Created with BioRender.com.

channels (KCNH2), structural proteins (TNNI1, TTN, and MYH6),
cardiac transcriptional factors (TBX5 and MEF2C), or sarcoplasmic
reticulum proteins (RYR2 and ATP2A2), indicating improved
maturity (108).

During the transplantation of exogenous hPSC-CMs, the
nutrient-deprived and hypoxic environment in the infarcted area is
a major challenge (109). Although studies demonstrated that hPSC-
CMs could be engrafted in monkey hearts and survive up to 3 months
(93, 94, 97), another report found that the engrafted hPSC-CMs were
massively reduced in numbers after 8 weeks post-transplantation
in pig hearts (110). Therefore, the addition of support cells may
be beneficial for hPSC-CMs integration and survival. Indeed, co-
transplantation of microvessels and hPSC-CMs into the ischemic area
of the LAD-treated rats promoted the survival of hPSC-CMs in vivo
and improved cardiac function compared with the transplantation of
hPSC-CMs alone (111). Although the mechanisms involved in the
functional integration and survival of hPSC-CMs in host tissues are
not fully understood, studies have found vascularization occurs after
hPSC-CMs transplantation and may be related to cytokines such as
VEGF secreted by the grafted cells (109, 112). Therefore, the addition
of VEGF (113) or other pro-angiogenic factors before transplantation
may also contribute to the improvement of hPSC-CMs survival and
subsequent enhanced cardiac function.

Besides cardiomyocyte maturation and vascularization, the mode
of delivery might be critical. Intracardiac injection is the current
delivery method, but grafts may be eluted with the circulatory
system. To enhance hPSC-CMs survival, a multicomponent pro-
survival cocktail was developed, and its co-injection with hPSC-CMs
improved graft residency in vivo (90, 91). Bioengineering methods
such as cell patches (114, 115) and cell sheets (116, 117) have also
been devised to improve cell engraftment rates, however, integrating
cells in biomaterials with host myocardium is a big challenge. For
example, transplantation of hPSC-CMs sheets improved cardiac
systolic function not attributable to graft integration into the
host myocardium but most likely due to neovascularization (118).
Recently microneedle patches were developed to be inserted into the
myocardium, improving the connection between the graft and the
host myocardium (119).

So far, there have been two clinical trials engrafting hPSC-CMs
for heart disease. Two patients in China underwent an experimental
treatment for heart disease based on hPSC-CMs, though the clinical
outcomes have not yet been published (120). In Japan, one male
patient who suffered from severe heart failure due to ischemic
cardiomyopathy was treated with clinical-grade hPSC-CMs patches.
The clinical symptoms apparently improved 6 months after surgery,
without any major adverse events or changes in the cardiac wall
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motion at the site of the transplant. However, more details need
to be disclosed (114). Regardless, these first human clinical trials
hold promises for the use of hPSC-CMs to repair cardiac damage
(Figure 2).

Future directions and conclusion

The field of cardiac regeneration has made remarkable progress
in recent years. Both cell-free and cell-based methods are vigorously
researched and developed to promote and improve cardiac
regeneration for clinical applications. Along the way, numerous
molecular mechanisms and key factors involving cardiomyocyte’s
re-entry into the cell cycle or trans-differentiation of non-
cardiomyocytes into cardiomyocytes were discovered and are now
being translated to drug development. Although some molecules,
such as recombinant proteins, small molecule inhibitors, or RNA-
based therapies, are being developed, more effective drugs need to
be discovered. Moreover, Proteolysis Targeting chimera (PROTAC)
technologies might provide viable modes of drug delivery for targeted
and time-resolved degradation of candidate drug targets (121, 122).

For cardiac repair using cell-based systems, hPSC-CMs
have the potential to form functional tissue containing striated
cardiomyocytes in vivo. To achieve clinical use, hPSC-CMs will
be required to be mass-produced with strict quality standards.
Therefore, allogeneic, off-the-shelf hPSCs-CMs must be developed.
In addition to pharmacological immunosuppression, including new-
generation drugs with fewer side effects, gene-edited hypoimmune
hPSC-CM have been generated to overcome the rejection from
the host (123). Another obstacle is the maturity of transplanted
hPSC-CMs, in particular, addressing and reducing arrhythmic
events triggered by the transplanted cardiomyocytes that have
to be functionally integrated into the electrically coupled cardiac
tissue. Compared to monolayer cultures, 3D hPSCs-CMs appeared
to express more maturation markers and functionally mimic
more mature cardiomyocytes, including the formation of tight
junctions between cardiomyocytes. Thus, transplantation of hPSC-
CM aggregates rather than loose single cardiomyocytes may
contribute to graft survival, improve functionality and reduce
arrhythmias. However, several studies suggest that the optimal
timing of transplantation depends on the developmental stage of
hPSC-CMs (124, 125). Moreover, the mode of delivery of such
cell-based therapies will be critical. Balancing hPSC-CMs maturity,
effective delivery, and transplantation timing must be the focus of
future research.

Besides cardiomyocytes, the heart contains multiple other cell
types, such as endothelial cells, fibroblasts, smooth muscle cells,

or different types of immune cells, that might affect graft survival
and improve the function of damaged hearts (126). As more hPSC-
derived cell types can be faithfully generated, co-transplantation
of multiple cell types might therefore greatly improve cell-based
therapies for cardiac diseases. For instance, our group developed
stem cell-derived self-organizing 3D blood vessel organoids (BVOs)
that form bona fide and functionally perfused vascular trees
containing arterioles, capillaries, and venules when transplanted into
immunodeficient mice (127). Such BVOs and other approaches to
generate human endothelial cells and blood vessels, such as 3D
printing, could be utilized to enhance and maintain the engraftment
of stem cell-derived cardiomyocytes.
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