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Background: Acute myocardial infarction (AMI), one of the most severe and

fatal cardiovascular diseases, is a major cause of morbidity and mortality

worldwide. Macrophages play a critical role in ventricular remodeling after

AMI. The regulatory mechanisms of the AMI progression remain unclear. This

study aimed to identify hub regulators of macrophage-related modules and

provide translational experiments with potential therapeutic targets.

Materials and methods: The GSE59867 dataset was downloaded from the

Gene Expression Omnibus (GEO) database for bioinformatics analysis. The

expression patterns of 22 types of immune cells were determined using

CIBERSORT. GEO2R was used to identify differentially expressed genes

(DEGs) through the limma package. Then, DEGs were clustered into different

modules, and relationships between modules and macrophage types were

analyzed using weighted gene correlation network analysis (WGCNA). Further

functional enrichment analysis was performed using significantly associated

modules. The module most significantly associated with M2 macrophages

(Mφ2) was chosen for subsequent analysis. Co-expressed DEGs of AMI were

identified in the GSE123342 and GSE97320 datasets and module candidate

hub genes. Additionally, hub gene identification was performed in GSE62646

dataset and clinical samples.

Results: A total of 8,760 DEGs were identified and clustered into ten modules

using WGCNA analysis. The blue and turquoise modules were significantly

related to Mφ2, and 482 hub genes were discerned from two hub modules

that conformed to module membership values > 0.8 and gene significance

values > 0.25. Subsequent analysis using a Venn diagram assessed 631

DEGs in GSE123342, 1457 DEGs in GSE97320, and module candidate hub

genes for their relationship with Mφ2 in the progression of AMI. Finally,

four hub genes (CSF2RB, colony stimulating factor 2 receptor subunit beta;

SIGLEC9, sialic acid-binding immunoglobulin-like lectin 9; LRRC25, leucine-

rich repeat containing 25; and CSF3R, colony-stimulating factor-3 receptor)
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were validated to be differentially expressed and to have high diagnostic value

in both GSE62646 and clinical samples.

Conclusion: Using comprehensive bioinformatics analysis, we identified four

novel genes that may play crucial roles in the pathophysiological mechanism

of AMI. This study provides novel insights into the impact of macrophages

on the progression of AMI and directions for Mφ2-targeted molecular

therapies for AMI.

KEYWORDS

acute myocardial infarction, CIBERSORT, weighted gene co-expression network
analysis, M2 macrophage, diagnostic biomarker genes, bioinformatics

Introduction

Acute myocardial infarction (AMI) is one of the most severe
manifestations of cardiovascular disease, affecting an estimated
7.29 million people in 2015 and remarkably aggravating
the global health burden (1, 2). However, the causes and
pathophysiology of AMI remain unclear. The greater the life
expectancy of the population, the more serious the need
for research aimed at studying the underlying molecular
mechanisms of AMI. Likewise, we should identify novel
diagnostic biomarkers and therapeutic targets to improve
the early diagnosis and treatment of AMI to improve the
survival rates and quality of life in patients. Numerous
studies have shown that immune cells play a crucial role in
the symptomatology and pathophysiology of cardiovascular
disease (3). Additionally, recent research has established that
neutrophils amplify granulopoiesis in myocardial infarction (4),
which suggests that recognizing changes in the peripheral blood
during AMI may provide a novel therapeutic approach for AMI.

Similarly, the polarization/distribution of pro-inflammatory
M1 macrophages (Mφ1) and anti-inflammatory/reparative
M2 macrophages (Mφ2) also plays a significant role in
the development of AMI (5). The microenvironment of
AMI can influence the polarization state of macrophages
(Mφs), with a significant increase in Mφ1 and a significant
reduction in Mφ2 in the beginning of AMI (5). An abnormal
increase and activation of Mφ2 can inhibit the aberrant
gene expression associated with the myocardial remodeling

Abbreviations: AMI, acute myocardial infarction; AUC, area under the
curve; CSF3R, colony-stimulating factor-3 receptor; CSF2RB, colony
stimulating factor 2 receptor subunit beta; DEG, differentially expressed
genes; GEO, Gene Expression Omnibus; GO, Gene Ontology; GS,
gene significance; KEGG, Kyoto Encyclopedia of Genes and Genomes;
LRRC25, leucine-rich repeat containing 25; ME, module eigengene;
analysis; Mφ, macrophage; ROC, receiver operating characteristic;
SCAD, stable coronary artery disease; SIGLEC9, sialic acid-binding
immunoglobulin-like lectin 9; WGCNA, weighted gene co-expression
network analysis.

(6). By secreting cytokines [e.g., interleukin (IL)-10, and
transforming growth factor-beta (TGF-β) family members],
Mφ2 inhibits inflammation and activates fibroblasts to affect
the balance between matrix metalloproteinases (MMPs) and
tissue inhibitors of metalloproteinases (TIMPs) (7). Because of
the insufficient regenerative capacity of the myocardium, this
process is crucial for preventing the rupture or overdistention
of the fragile and infarctional ventricular wall. Overall, the
composition of Mφ in heart tissue is heterogeneous in
homeostasis and highly dynamic after injury (8). Therefore,
identifying potential Mφ2 associated biomarkers can not only
help to establish their role in the immune system during the
progression of AMI, but also contribute to the management and
treatment of AMI patients.

In recent years, with the development and accessibility
of various online comprehensive bioinformatics tools, the
identification of distinct molecular markers and signaling
pathways for different diseases has become easier (9, 10).
Weighted gene co-expression network analysis (WGCNA), one
of the most valuable and extensively used tools, has been used to
establish a robust gene co-expression network and to identify
hub gene modules that drive key cellular signaling pathways
for diseases (11). Liu et al. identified specialized ferroptosis and
hypoxia-associated co-expression networks for AMI, and nine
hub genes were identified as potential prognostic biomarkers
using WGCNA (12). Niu et al. utilized WGCNA to identify
six co-expression modules in AMI and found that the BCL3,
PPIF, S100A9, HCK, PPIF, TBC1D9B, and SERPINA1 genes
were hub genes for heart failure development (13). Qi et al.
analyzed WGCNA to yield eight co-regulated gene clusters
in coronary artery disease (CAD), and three genes closely
related to CAD showed potential molecular mechanisms (14).
However, no robust Mφ-related gene co-expression network has
been established during AMI progression.

In this study, we chose the GSE59867 dataset, which
contains stable coronary artery disease (SCAD) and AMI-
related gene expression data downloaded from the Gene
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Expression Omnibus (GEO) database, to identify potential
Mφ-related biomarkers of AMI using WGCNA analysis.
Similarly, CIBERSORT, which has been widely applied to
estimate the infiltration of immune cells in various diseases,
was used to analyze different types of Mφ in AMI, identify
the most significant modules related to Mφ infiltration, and
further analyze and verify the diagnostic genes of these
modules. Using the WGCNA and CIBERSORT analyses,
we aimed to construct a gene co-expression network of
the Mφ traits and identify hub genes involved in the
progression of AMI.

Materials and methods

Data sources

Figure 1 presents the workflow of this study. The GSE59867,
GSE123342, GSE97320, and GSE62646 datasets were obtained
from the GEO database1. The GSE59867 dataset, obtained
at admission after AMI and containing the transcriptional
profile of peripheral blood mononuclear cells (PBMCs), was
selected for further analysis. The GPL6244 platform was
used for data sequencing [Affymetrix Human Gene 1.0 ST
Array, transcript (gene) version]. The GSE123342 dataset,
including 65 patients with AMI and 22 patients with stable
CAD, was created using the GPL17586 platform [Affymetrix
Human Transcriptome Array 2.0, transcript (gene) version].
The GSE97320 dataset, which included three patients with
AMI and three healthy individuals, was generated using
the GPL570 platform [Affymetrix U133A microarray]. The
GSE62646 dataset, which included 28 patients with myocardial
infarction on admission and 14 patients with SCAD, was
performed using the GPL6244 platform [Affymetrix Human
Gene 1.0 ST Array transcript (gene) version]. CIBERSORT,
which can estimate the relative expression of 22 immune cell
types (including three phenotypes of Mφs) as a bioinformatics
algorithm, was used to evaluate Mφ composition based on the
gene expression matrix (15).

Data pre-processing

GEO2R, as a tool provided by the GEO database depending
on the limma package in R, was used to identify differentially
expressed genes (DEGs) in each dataset. Adjusted p-values
< 0.05 were used as cut-off criteria for screening out all
DEGs in GSE59867, and further analysis of 8,760 DEGs was
performed using WGCNA. Overexpressed DEGs in GES123342
and GES97320 were screened out, based on the cut-off criteria
of |log2FC| > 0.5 and adjusted p-values < 0.05.

1 http://www.ncbi.nlm.nih.gov/geo/

Construction of weighted gene
correlation network analysis

The WGCNA R package was used to perform the weighted
correlation network analysis (11). First, the similarity of co-
expression between genes m and n was defined as Smn = |cor(m,
n)|. The correlated adjacency of the genes was analyzed using
the power function: amn = power (Smn, β) = |Smn| β. A gradient
method was used to test the mean connectivity and scale
independence (the power values ranging from 1 to 20). A scale-
free network was obtained from an appropriate power value,
which was screened out by a degree of independence above
0.80 (11). Finally, a topological overlap matrix was transformed
from the adjacency matrix, and analysis of hierarchical average
linkage clustering was used to detect the modules in the gene
dendrogram. In addition, we extracted the genes that were most
closely related to each module for further analysis.

Selection of key modules
corresponding to macrophage
infiltration levels

After identification of the modules, we further summarized
the module eigengene (ME) using the module expression
levels of the first principal component and estimated the
relationships of module–Mφ infiltration levels. The key module
of the network was identified using two methods. In the first
method, we calculated the Pearson correlation coefficients,
which indicated the correlation between the MEs of each
module and the relative expression of macrophages identified
by the CIBERSORT, to permit the identification of modules that
were most significantly related to the infiltration levels of Mφ

(p < 0.05), which we identified as Mφ features. In the second
method, we calculated the mean absolute Pearson correlation
coefficients for all genes in the module, which indicated the
gene significance (GS) between the expression levels of each
gene and Mφ features (11). The correlation between the module
and the Mφ features was enhanced by an increase in the mean
absolute value. In the WGCNA, we selected the module with
the highest correlation coefficient as the key module for further
analysis (11).

Identification of candidate hub genes
in the key module

Hub genes, which are highly related to the nodes
of a module, have crucial functions. We measured the
interconnections between the genes and modules to screen hub
genes through the module membership (MM) determination
(11). For each gene, MM was defined as the correlation between
the profile of gene expression profile and ME of a given module.
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FIGURE 1

Workflow for identification of the novel M2 macrophage-related biomarkers through the CIBERSORT and weighted gene correlation network
analysis (WGCNA) algorithms (DEGs, differentially expressed genes; ROC curve, receiver operating characteristic curve).

For instance, the interconnection between hub gene i and the
ME of the blue module was measured as MMblue(i) = cor(xi,
Eblue), the higher the absolute value of MMblue(i), the greater
was the connection between gene i and the blue module.
Intramodular connectivity was highly correlated with MM
measurements (11). In this study, we screened out candidate
hub genes through the network screening function based on
GS > 0.25 and MM > 0.8 in the WGCNA package.

Functional enrichment analysis of hub
modules

Gene Ontology (GO) function and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses
were performed using the clusterProfiler R package (version:
4.1.3) to determine the biological functions and signaling
pathways of hub genes (16). The default parameters of the
clusterProfiler R package were used, and p < 0.05 was set as the
threshold for the recognition of the GO annotation and KEGG
pathways of hub genes.

Identification and recognition of real
hub genes in other datasets

We extracted the independent GSE123342 and GSE97320
datasets (see text footnote 1), and subsequent analysis identified
12 overlapping genes between DEGs (|log2FC| > 0.5 and

adjusted p-values < 0.05) in GSE123342 and GSE97320 and
candidate genes in hub modules using a Venn diagram
(Figure 7) as candidates for further analysis and validation.
Additionally, GSE62646 was used to verify the messenger
RNA (mRNA) expression of the hub genes. The GSE62646
dataset contained 98 blood samples, including 28 patients with
AMI and 14 patients with SCAD. Based on gene expression
levels, we calculated the area under the curve (AUC) of
the receiver operating characteristic (ROC); the AUC was
estimated using Wilcoxon-Mann–Whitney statistic, which is
the simplest non-parametric estimator for constructing AUC
confidence intervals (17). The real Mφ2-related hub genes
were defined as those with an AUC ≥ 0.80 (p < 0.05) in
the ROC curve analysis, which was regarded as effective for
distinguishing AMI and SCAD with remarkable specificity and
sensitivity. Normality tests were performed using the Shapiro-
Wilk and Kolmogorov−Smirnov tests. Normally distributed
data were analyzed using the t-test; otherwise, the evaluation
of DEGs between AMI and SCAD was performed using the
Mann−Whitney U test.

Verification of the clinical related
genes by real-time reverse
transcription PCR

All the protocols and the use of human bloods were
in accordance with the Declaration of Helsinki and were
approved by the Xiangya Hospital of Central South University
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Institutional Review Board. Five patients diagnosed with
AMI and five healthy controls were enrolled in this study.
The detailed characteristics of the patients are listed in
Supplementary Table 1. Peripheral blood mononuclear
cells were obtained from the AMI patients and healthy
controls via density gradient centrifugation using the Ficoll
reagents from Cytiva (America). According to manufacturer’s
instruction, RNA extraction was performed using RNAex
Pro reagent (Accurate, Changsha, China) and reverse
transcription was performed using the Evo M-MLV RT Mix
Kit (Accurate, Changsha, China), then, real-time quantitative
PCR (qPCR) was carried out using SYBR R© Green Premix
Pro Taq HS kit (Accurate, Changsha, China) on the ABI
QuantStudioTM 5 real-time PCR system. The primer sequences
are described in Supplementary Table 2. Normality tests were
performed using the Shapiro-Wilk and Kolmogorov−Smirnov
tests. Normally distributed data were analyzed using the
t-test; otherwise, the evaluation of DEGs between AMI
and controls was performed using the Mann−Whitney
U test.

Results

Data processing strategy and mRNA
expression profiles

The study protocol is illustrated in Figure 1. The
mRNA expression profiles of AMI and SCAD patients or
healthy controls in the GSE59867, GSE123342, GSE97320, and
GSE62646 datasets were obtained from the GEO database,
which was used to analyze DEGs separately in the following
analysis.

As shown in Supplementary Table 3, 8,760 DEGs were
identified between patients with AMI and SCAD, according
to an adjusted p-value < 0.05. Among these DEGs in AMI,
4,607 genes were up-regulated, while another 4,153 genes
were down-regulated. A volcano map of DEGs is shown
in Figure 2A. The heatmap of the top 20 up-regulated
DEGs and top 20 down-regulated DEGs were displayed in
Figure 2B, and the specific DEGs are shown in Supplementary
Table 4.

Estimation of the Mφ-infiltration level
in acute myocardial infarction

The abundance of the Mφ infiltration levels in all
samples was analyzed by the CIBERSORT algorithm
based on the gene expression matrix. Data of Mφ

features for WGCNA are composed of the clinical
diagnosis and composition of the three Mφ phenotypes
(Supplementary Table 5).

Construction of the co-expression
network and identification of hub
modules related to macrophages using
weighted gene correlation network
analysis

The WGCNA R package was used to construct a gene co-
expression network analysis of the 8,760 identified DEGs. We
established a mean connectivity network and scale-independent
topological network, with a soft-thresholding power of 14 and
scale-free R2 of 0.80 (Figure 3A). A hierarchical clustering
tree was constructed by splitting the dendrogram at correlative
transition points using dynamic hybrid cutting. The leaves of the
trees represented single genes, and branches of the dendrogram
tree represented multiple genes with analogous expression.
Branches were gene modules that included analogously
expressed genes.

ME, the first principal component of each module, was a
single value representing the highest percentage of expression
values among all genes. After obtaining the MEs of all
modules, we calculated the average distance and Pearson
correlation coefficient between the MEs of all modules. The
greater interconnection between modules was reflected by
the greater relationship between the MEs representing the
modules. Because of the average distance, average-linkage
hierarchical clustering was used to perform cluster analysis on
the recognized modules, and similar modules with a >0.75
correlation coefficient were merged to obtain 10 modules finally
(Figure 3B). As shown in Supplementary Table 6, there were
2,482, 2,642, 1,441, 345, 187, 45, 83, 211, and 443 genes in the
blue, turquoise, brown, green, black, magenta, pink, red, and
yellow modules, respectively. The gray module included genes
that were not clustered into a module, which was removed
from the subsequent analysis. Figure 3C shows the relationships
between the modules and samples. Figures 4A,B show the
relationships and cluster trees of the modules, respectively.

The analysis of the relationship between Mφ2 blood
infiltration levels and modules indicated that the turquoise
module (R = 0.33, p = 1e-04) was the most significantly
positively associated with Mφ2, whereas the blue module
(R = −0.37, p = 1e-05) was the most significantly negatively
associated with Mφ2 (Figure 4C). Moreover, the turquoise and
blue modules were most significantly associated with the clinical
diagnosis, which indicates that the two modules might play a
critical role in the development from SCAD to AMI and are
correlated with Mφ2. Therefore, the blue and turquoise modules
were treated as Mφ2-related modules for further analyses.
Figures 4D,E shows the MEs of the two modules. To ensure
the dependability of the identification results for the Mφ2-
related modules, we calculated the mean absolute GS value of
the Mφ2-related genes to identify these modules again. The
mean absolute GS values of the blue and turquoise modules
were the top two modules with the highest correlations with
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FIGURE 2

Expression profile of differentially expressed genes (DEGs). (A) Volcano map of gene expression levels. (B) Heatmap of top 20 up-regulated or
down-regulated DEGs based on p-value. (C) Clinical feature heatmap and hierarchical clustering dendrogram of AMI or SCAD samples. The
clinical characteristics heatmap represented by degree from dark red to white recognizes high to low levels of clinical characteristics, while gray
indicates unavailable data.

FIGURE 3

Construction of the co-expression network. (A) A scale-free co-expression network estimated by the soft-thresholding powers. (B) Ten
co-expression modules constructed by clustering dendrograms of all DEGs based on topological overlap and assigned in different module
colors (non-clustering DEGs shown in gray). (C) The relationships between modules and clinical samples.
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FIGURE 4

Consensus eigengene networks and their differential analysis. (A) Heatmap of the eigengene networks, red indicates positive correlation, and
blue indicates negative correlation, the absolute value means the degree of adjacency with other modules. (B) The clustering trees (also called
the dendrograms) of the consensus module eigengenes; (C) Relationship between consensus module and feature. Correlation analyses were
conducted between clinical features and eigengene values represented for each module. The numbers in the matrix cell indicate the correlation
coefficient and the related p-value. The blue module was most negatively related to Mφ2, and the turquoise module was most positively
correlated to Mφ2. (D,E) The expression level of all samples in genes of blue (D) and turquoise (E) modules. In the heatmap, green indicates the
low expression for samples, whereas red indicates the high expression, which means ME is strongly related with expression of genes in modules.

Mφ2 (Figure 5A). By applying the two different methods above,
we found that the turquoise and blue modules revealed the
strongest interconnection with Mφ2 infiltration. Taken together,
we identified the turquoise and blue modules as hub modules for
the identification of hub genes.

Identification of Mφ2-related MI hub
genes

Larger MM values can reflect a higher correlation between
genes and Mφ2. To recognized hub genes in the identified
modules, we calculated the MM value for each gene, and
then performed a correlation analysis between GS and MM
in each module to identify the close connection between the
MM value and Mφ2. The blue and turquoise modules showed
the two highest correlation coefficients (blue module = 0.63,
p-value = 1e-200; turquoise module = −0.47, p-value < 1e-200)
(Figures 5B,C).

In this study, hub genes were identified by the “network
screening” function, which was based on GS and MM. We
obtained 482 hub genes that were strongly correlated with Mφ2,
with MM > 0.8 and GS > 0.25 (Supplementary Table 7).

Functional enrichment analysis of
Mφ2-related hub genes

To reveal the potential biological functions of the genes
in the hub modules, we performed functional enrichment
analysis using the clusterProfiler R package (version: 4.1.3).
In GO functional enrichment analysis, the Mφ2-related terms
in AMI were the most enriched, including the regulation
of histone modification, cellular component disassembly, and
macroautophagy (Figure 6A). KEGG analysis revealed that the
lysosome, osteoclast differentiation, and tuberculosis pathways
were significantly enriched (Figure 6B).

Identification and validation of the
diagnostic values of the key genes

To identify novel AMI-related diagnostic biomarkers,
631 and 1457 DEGs, with |log2FC| > 0.5 and adjusted
p-values < 0.05, were screened in GSE123342 and GSE97320,
separately (Supplementary Table 8). Subsequent analysis of 631
DEGs in GSE123342, 1457 DEGs in GSE97320, and candidate
hub genes identified nine overlapping genes as potential key
genes using a Venn diagram (Figure 7).
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FIGURE 5

Network plots of module and eigengene. (A) Bar plots of mean GS in distinct modules. The higher value of mean GS indicates more significant
correlation between macrophages M2 and the module (B,C). Scatterplots in two hub modules with GS (y-axis) and MM (x-axis) separately.

Similarly, to validate their diagnostic and prognostic values
and their correlations with clinical features, expression and
ROC analyses were performed in GSE62646. Figure 8A
shows the differential expression of genes SIGLEC9 (sialic
acid-binding immunoglobulin-like lectin 9), RASGRP4 (Ras
guanine nucleotide-releasing protein-4), LRRC25 (leucine-rich
repeat containing 25), CTSD (Cathepsin D), CSF3R (colony-
stimulating factor-3 receptor), and CSF2RB (colony stimulating
factor 2 receptor subunit beta) between SCAD and AMI, with
p-values of <0.0001. All the six key genes were up-regulated in
AMI. Furthermore, based on the gene expression levels, ROC
curves identified their high diagnostic value as biomarkers for
AMI (Figure 8B), with SIGLEC9, RASGRP4, LRRC25, CTSD,
CSF3R, and CSF2RB having AUC values of 0.9,311, 0.9,515,
0.9,490, 0.9,872, 0.9,388, and 0.9,362, respectively.

In our cohort, DEGs were only confirmed in four
upregulated genes, SIGLEC9, LRRC25, CSF3R, and CSF2RB, but
not in RASGRP4 and CTSD (Figure 9A). Additionally, ROC

curves identified high diagnostic value for SIGLEC9, LRRC25,
CSF3R, and CSF2RB, with AUC values of 0.9,600, 1.0.000,
1.0,000, and 0.9,200, separately (Figure 9B). These results
indicated that the significantly upregulated genes SIGLEC9,
LRRC25, CSF3R, and CSF2RB could serve as the gene markers
to differentiate AMI and controls.

Discussion

AMI, which is characterized by the sudden obstruction of
blood flow to the myocardium, remains a global burden, despite
reperfusion strategies and pharmacological treatments having
saved many lives (18). The progression of AMI is extremely
acute and usually results in delayed treatment periods. Coronary
angiography is the primary therapy for the diagnosis and
treatment of the disease. Without timely intervention, many
people may die. Multiple studies have reported the crucial role
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FIGURE 6

Enrichment analysis of GO function and KEGG pathway in M2-related module hub genes. (A) GO analysis. (B) KEGG analysis.

of the dys-regulation of distinct immune cells, especially Mφ, in
AMI progression (19–21).

In this study, we constructed distinct modules using
WGCNA by selecting 8,760 DEGs and different Mφ infiltration
levels in AMI and SCAD. Highly Mφ-related gene modules were
identified based on correlation coefficients. Hub genes, selected
when DEGs had MM values > 0.8 and GS values > 0.25 in
GSE59867, were closely related to immune-related genes in GO
and KEGG analyses. Twelve overlapping hub genes, identified
by Venn diagram analysis of the hub genes and DEGs in
GSE123342, and DEGs in GSE97320, were considered potential
key genes related to Mφ2 using GSE62646 as the validation
set. Compared with SCAD, only six hub genes (SIGLEC9,
RASGRP4, LRRC25, CTSD, CSF3R, and CSF2RB) had potential
diagnostic value and were deemed potential novel prognostic
biomarkers for AMI. In comparison with previous studies, our
study provides insights into the potential pathogenesis of AMI.

SIGLEC9, a cell surface trans-membrane receptor,
is expressed predominantly on myeloid cells, including
monocytes, macrophages, and dendritic cells. By regulating
endocytosis of Toll-like receptor 4, SIGLEC9 participates
in macrophage polarization, and inhibits the capacity of
neutrophils during infections (22). Aberrant glycosylation
during tumor progression is a key hallmark of cancer,
resulting in increased sialylation and modulation of the tumor
immunological microenvironment (23). SIGLEC-E represents
the mouse ortholog of human SIGLEC9 and has been reported
to interact with the scavenger receptor CD36, which is involved
in modified LDL uptake by suppressing downstream VAV
signaling (24). However, the roles of SIGLEC9 in AMI has not
yet been explored.

CSF3R, known as the receptor for granulocyte colony–
stimulating factor, mainly participates in the regulation
of inflammation. CSF3R/CSF3 are linked to neutrophil

development in vivo. Several researchers have explored
its involvement in the progression of other diseases,
including chronic neutrophilic leukemia, asthma, and
fatty liver disease (25–27). However, its role in AMI
progression remains unknown.

LRRC25, a member of the leucine-rich repeat (LRR)-
containing protein family, is a trans-membrane protein related
to autophagy. It acts as a vital negative regulator of the type
I interferon (IFN) (28) and nuclear factor kappa-B (NF-κB)
(29) signaling pathways, inhibits the generation of inflammatory
cytokines, and regulates the response to viral infections.
Similar results were shown in LRRC25-knockout mice; an
LRRC25 deficiency significantly accelerates pathological cardiac
hypertrophy in mice by increasing the NF-κB and TGF-
β1 activation signaling pathway to increase inflammation
(30). However, LRRC25 is mainly expressed in monocytes,
dendritic cells, granulocytes, and T lymphocytes, and its role in
macrophages associated with AMI remains unknown.

CSF2RB is also known as a receptor for granulocyte-
macrophage colony-stimulating factor. CSF2 is significantly
secreted in response to distinct types of injuries, such as AMI,
suggesting a significant role in AMI progression (31, 32). As
an endogenous cytokine, CSF2 activation of cardiac-resident
Ly6CLo Mφ is important for the myocardial adaptive response
to pressure overload (33). A recent study revealed that irisin
upregulates CSF2RB expression to induce cardiac homing of
adipocyte-derived stem cells, delivered intravenously (34).

CTSD (cathepsin D), is a lysosomal aspartic protease,
involved in the regulation of lysosomal proteolytic activity.
Numerous studies on CTSD have shown its importance in
the pathogenic mechanism of ischemic heart disease (ICD)
(35, 36); the up-regulated expression of CTSD in ischemic
cardiac muscle accelerates autophagic flux and inhibits cardiac
remodeling and further heart failure. The expression of the

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.974353
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-974353 November 8, 2022 Time: 6:18 # 10

Zhou et al. 10.3389/fcvm.2022.974353

FIGURE 7

The overlapped hub genes from different databases. Twelve overlapping genes were identified as potential key genes through using a Venn
diagram between DEGs (p < 0.05 and |log2FC| > 0.5) in GSE123342, DEGs (p < 0.05 and |log2FC| > 0.5) in GSE97320 and hub genes.

precursor form of CTSD was significantly increased in failing
human hearts with ICD.

RASGRP4, an activator of the Ras protein, is a receptor
associated with the guanine nucleotide exchange factor,
diacylglycerol/phorbol ester, and evolutionarily conserved
calcium-regulation. RASGRP4 promotes the renal inflammatory
injury mediated by peripheral blood mononuclear cells in
diabetes; thus, it plays a significant role in regulating immune
activation and the inflammatory response (37). Accumulating
evidence on RASGRP4 has revealed its underlying role in
the regulation of leukemia and autoimmune diseases (38–40).
However, the role of RASGRP4 in AMI has not been explored.

Nevertheless, SIGLEC9, RASGRP4, LRRC25, and CSF3R
have not been previously reported to be associated with AMI.

In our study, the associations of hub modules with Mφ0
are in reverse with Mφ2, which indicates that the module
genes may play a part in the macrophage polarization from
the unpolarized Mφ0 to polarized Mφ2. Based on our results
and those of previous studies, we hypothesized that SIGLEC9,
RASGRP4, LRRC25, and CSF3R can influence Mφ2 polarization
of the myocardium in the pathological progression of AMI.
However, further research on the characteristics of SIGLEC9,
RASGRP4, LRRC25, and CSF3R is required to verify their
correlation with AMI.

Generally, an AUC of 0.5 represents no discrimination;
0.7–0.8 represents acceptable; 0.8–0.9 represents excellent; and
>0.9 is considered outstanding (41). All AUCs of SIGLEC9,
RASGRP4, LRRC25, CTSD, CSF3R, and CSF2R were identified
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FIGURE 8

Validation of real hub genes in GSE62646. (A) Relative mRNA expression level of six hub genes in SCAD vs. AMI samples. (∗∗∗∗p < 0.0001).
(B) ROC curve for six hub genes.

FIGURE 9

qPCR validation of the expression pattern and evaluation of diagnostic efficacy of six clinical correlated genes in a patient cohort. (A) Relative
mRNA expression level of six hub genes in healthy controls vs. AMI samples. (∗p < 0.05, ∗∗p < 0.01). (B) ROC curve for six hub genes.

as outstanding, indicating the powerful capacity to distinguish
between AMI and SCAD. However, in our patient cohort,
compared to healthy controls, only four genes (SIGLEC9,
LRRC25, CSF3R, and CSF2RB) were significantly overexpressed
with high diagnostic value. A large sample size is required
to verify the effectiveness of SIGLEC9, CSF2RB, LRRC25, and
CSF3R as biomarkers for AMI in the future.

Conclusion

Immune cells infiltration analysis indicated a complex
network of regulation in cardiovascular disease, whereas Mφ

plays a significant role in the immune regulation network in
myocardial infarction. This is our first attempt to identify novel
Mφ2-related biomarkers in the progression of AMI by applying
the CIBERSORT and WGCNA algorithms. SIGLEC9, LRRC25,
CSF3R, and CSF2RB, identified through various validations,
were all up-regulated in AMI. Additionally, Mφ2 was negatively
correlated with six potential diagnostic biomarkers. It may
be of great significance to study the mechanism between Mφ

and key genes involved in the occurrence and progression
of AMI. Our findings provide novel insights into AMI at
the Mφ and molecular levels; however, further in vivo or
in vitro experiments on these key genes are needed to validate
their effects on AMI.
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