
TYPE Original Research

PUBLISHED 15 November 2022

DOI 10.3389/fcvm.2022.964355

OPEN ACCESS

EDITED BY

Christian Tesche,

Augustinum Klinik München, Germany

REVIEWED BY

Sebastian Haberkorn,

Heinrich Heine University of

Düsseldorf, Germany

Liang Zhong,

National Heart Centre Singapore,

Singapore

Verena Brandt,

Technical University Munich, Germany

*CORRESPONDENCE

Nils Hampe

n.hampe@amsterdamumc.nl

SPECIALTY SECTION

This article was submitted to

Cardiovascular Imaging,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 08 June 2022

ACCEPTED 17 October 2022

PUBLISHED 15 November 2022

CITATION

Hampe N, van Velzen SGM,

Planken RN, Henriques JPS, Collet C,

Aben J-P, Voskuil M, Leiner T and

Išgum I (2022) Deep learning-based

detection of functionally significant

stenosis in coronary CT angiography.

Front. Cardiovasc. Med. 9:964355.

doi: 10.3389/fcvm.2022.964355

COPYRIGHT

© 2022 Hampe, van Velzen, Planken,

Henriques, Collet, Aben, Voskuil,

Leiner and Išgum. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Deep learning-based detection
of functionally significant
stenosis in coronary CT
angiography

Nils Hampe1,2,3*, Sanne G. M. van Velzen1,2,3, R. Nils Planken4,

José P. S. Henriques5, Carlos Collet6, Jean-Paul Aben7,

Michiel Voskuil8, Tim Leiner9,10 and Ivana Išgum1,2,3,4

1Department of Biomedical Engineering and Physics, Amsterdam University Medical Center,

University of Amsterdam, Amsterdam, Netherlands, 2Amsterdam Cardiovascular Sciences, Heart

Failure and Arrhythmias, Amsterdam, Netherlands, 3Informatics Institute, University of Amsterdam,

Amsterdam, Netherlands, 4Department of Radiology and Nuclear Medicine, Amsterdam University

Medical Center, University of Amsterdam, Amsterdam, Netherlands, 5AMC Heart Center, Amsterdam

University Medical Center, University of Amsterdam, Amsterdam, Netherlands, 6Onze Lieve

Vrouwziekenhuis, Cardiovascular Center Aalst, Aalst, Belgium, 7Pie Medical Imaging BV, Maastricht,

Netherlands, 8Department of Cardiology, University Medical Centre Utrecht, Utrecht, Netherlands,
9Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands, 10Department

of Radiology, Mayo Clinic, Rochester, MN, United States

Patients with intermediate anatomical degree of coronary artery stenosis

require determination of its functional significance. Currently, the reference

standard for determining the functional significance of a stenosis is invasive

measurement of the fractional flow reserve (FFR), which is associated with

high cost and patient burden. To address these drawbacks, FFR can be

predicted non-invasively from a coronary CT angiography (CCTA) scan.

Hence, we propose a deep learning method for predicting the invasively

measured FFR of an artery using a CCTA scan. The study includes CCTA

scans of 569 patients from three hospitals. As reference for the functional

significance of stenosis, FFR was measured in 514 arteries in 369 patients,

and in the remaining 200 patients, obstructive coronary artery disease was

ruled out by Coronary Artery Disease-Reporting and Data System (CAD-

RADS) category 0 or 1. For prediction, the coronary tree is first extracted

and used to reconstruct an MPR for the artery at hand. Thereafter, the

coronary artery is characterized by its lumen, its attenuation and the area

of the coronary artery calcium in each artery cross-section extracted from

the MPR using a CNN. Additionally, characteristics indicating the presence of

bifurcations and information indicating whether the artery is a main branch

or a side-branch of a main artery are derived from the coronary artery tree.

All characteristics are fed to a second network that predicts the FFR value

and classifies the presence of functionally significant stenosis. The final result

is obtained by merging the two predictions. Performance of our method is

evaluated on held out test sets frommultiple centers and vendors. Themethod

achieves an area under the receiver operating characteristics curve (AUC)

of 0.78, outperforming other works that do not require manual correction

Frontiers inCardiovascularMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.964355
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.964355&domain=pdf&date_stamp=2022-11-15
mailto:n.hampe@amsterdamumc.nl
https://doi.org/10.3389/fcvm.2022.964355
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.964355/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Hampe et al. 10.3389/fcvm.2022.964355

of the segmentation of the artery. This demonstrates that our method

may reduce the number of patients that unnecessarily undergo invasive

measurements.
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convolutional neural networks, coronary computed tomography angiography,

fractional flow reserve, transformer, coronary artery tree

1. Introduction

Coronary artery disease (CAD) is the leading cause of

death worldwide (1, 2). CAD is characterized by a buildup

of atherosclerotic plaque in the coronary arteries, potentially

leading to a functionally significant stenosis, i.e., stenosis that

causes myocardial ischaemia. Currently, invasive fractional

flow reserve (FFR) measurements are considered the clinical

reference for determining the functional significance of a

stenosis. However, invasive FFR is associated with high costs

and it constitutes a burden for the patient (3, 4). Hence,

identifying patients with functionally significant stenosis prior

to the invasive measurements and treatment would be of high

value. While visual interpretation of coronary CT angiography

(CCTA) by clinical experts enables identification of the vast

majority of functionally significant stenoses (high sensitivity),

it suffers from a high number of false positives (low specificity)

(5, 6). As a consequence, 20–50% of invasive FFR measurements

are performed unnecessarily (6). Therefore, predicting FFR

non-invasively from CT angiography is a subject of intensive

investigations.

For non-invasive FFR prediction from CCTA, several

algorithms have been proposed. Currently, most accurate

methods are based on computational fluid dynamics (CFD)

(7–12). However, CFD-methods are computationally expensive,

hampering (real-time) implementation on clinical workstations.

Moreover, CFD-based methods rely on the accuracy of the

anatomical artery tree model, i.e., artery lumen segmentation

and boundary conditions describing aortic pressure and

peripheral resistances, which are challenging to obtain.

In addition to development of CFD-based FFR prediction

methods, approaches emerged that correlate quantitative indices

derived from CCTA with measured FFR value. These clinical

indices characterize a coronary artery through e.g., transluminal

attenuation gradient (TAG) (13, 14) or plaque volume (15, 16),

or describe specific lesions by quantifying degree of stenosis

(16, 17) or contrast density difference (CDD) (18, 19). While the

mathematical simplicity and intuitive design of the calculated

indices enables their interpretation, it limits their capability

to model the complex relationship between FFR and the

coronary artery characteristics on CCTA. Hence, to improve

FFR prediction with clinical indices, machine learning classifiers

were employed that combined multiple indices (11, 16, 20–24).

This led to a substantial performance increase compared to

the performance of a single index. Similarly, using clinical

indices describing the local geometry and plaque composition,

as well as global features describing the entire artery tree, Itu

et al. (21) trained a deep learning classifier for prediction of

the pressure gradient caused by each lesion. For training, the

authors leveraged hemodynamic simulations in 12,000 artificial

coronary anatomies. To enable learning of relationships between

lesions, Wang et al. (25) and Gao et al. (26) employed the same

features as input to a recursive neural network (RNN). However,

these index-based works share a drawback with CFD-based

methods: calculating the indices requires accurate segmentation

of the coronary artery lumen, which can be highly challenging,

especially in the presence of pathology (27). While these

methods typically use an automatic segmentation method as a

starting point, errors in the automatic segmentation regularly

necessitate substantial manual interaction.

To avoid lengthy assessment times, algorithms that apply

deep learning technology directly to the CCTA scan have

been investigated. Deep learning algorithms have shown the

ability to model complex relations of image characteristics in

a large number of medical task (28). However, these methods

often require a large amount of diverse training data, which

may be challenging to obtain in the medical domain. Hence,

previous deep learning-based works reduced the complexity

of the task by focusing analysis to a relevant region of

interest (29–32) or by training separate networks to extract

image characteristics (29, 31–33). Given that obstruction in

the coronary arteries is expected to lead to underperfusion of

the left ventricle (LV), Zreik et al. (29) focused analysis on

the LV myocardium by characterizing it using a convolutional

autoencoder (CAE). Subsequently, the authors predicted the

presence of a functionally significant stenosis using a support

vector machine (SVM), which can be strained with limited data

due to its small number of parameters. In a subsequent study,

Zreik et al. (31) characterized the coronary arteries by training a

CAE on multi planar reconstructions (MPRs) of the coronary

arteries. Related to this, Denzinger et al. (30) used a CNN

in combination with an RNN to classify MPRs. The authors

used the clinical revascularization decision as reference label,

obtained using functional tests including cardiac stress MRI
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or MIBI SPECT. To further improve performance, Zreik et al.

(32) combined the characterizations of the myocardium and the

coronary arteries using a deep learning-based multi instance

learning framework. As an alternative to focusing analysis to a

region of interest, Kumamaru et al. (33) enhanced lumen-related

image features using a difference image between the CCTA scan

and a non-contrast cardiac CT, synthesized from CCTA using

deep learning. Thereafter, authors trained a 3D ladder network

to extract relevant image characteristics. These deep learning-

based works were limited by their moderate performance.

Unlike other deep learning-based works that applied CNNs to

the CCTA scan, Li et al. (34) first used the artery segmentation to

extract a point cloud representing the coronary artery geometry.

The authors used this point cloud as input to a modified

version of the point-net (35), to predict the pressure in the

coronary artery tree. However, the authors used hemodynamic

simulations as reference labels in training and testing and hence,

the performance compared to invasive FFR measurements is

unknown.

In this work, we propose a method to non-invasively predict

the presence of a functionally significant stenosis in an artery

through deep learning-based analysis of CCTA scans. As in

previous deep learning works, we focus on a region of interest

by first extracting an MPR for the artery of interest. Given that

previous research demonstrated the importance of lumen area,

its attenuation and plaque volume for predicting FFR, we exploit

these characteristics. To circumvent the need for challenging

lumen segmentation, during testing, we use a convolutional

neural network (CNN) to directly extract these characteristics

from the MPR along the artery centerline. Additionally, we

extract characteristics directly from the coronary artery tree

that indicate per coronary artery centerline point whether it

is located in a main artery or side-branch and whether a

bifurcation is present at that location. Thereafter, using the

extracted characteristics we assess the functional significance

of FFR.

For this purpose, we train a second network to perform both

regression of the FFR value and classification of the functional

significance of an artery. In contrast to previous works that use

abstract, high dimensional features, extraction of our specific

characteristics is supervised, resulting in targeted information

distillation and lower dimensional features. While training of

previous deep learning-based works on the limited training

data requires compressing the high dimensional features along

the artery prior to training the stenosis classification (31, 32),

our targeted extraction of artery characteristics enables us to

directly use these characteristics along the artery as input

to our second network. This second network is designed

to exploit the spatial structure encoded in the extracted

characteristics through the use of convolutions and self-

attention. The so-learned representations are likely more

descriptive than unsupervised features characterizing the entire

artery. Additionally, using tangible characteristics, instead of the

abstract features employed in previous deep learning works (29,

31–33), enables interpretability of our method. We performed

experiments on a diverse data set from multiple centers and

vendors.

This paper is organized as follows. The data is described in

Section 2. Section 3 provides a description of the method, which

is followed by a description of our evaluation in Section 4 and by

experiments and results in Section 5. We discuss our findings in

Section 6 and describe our conclusions in Section 7.

2. Data

2.1. Patients and imaging data

This study retrospectively included 657 patients who

underwent CCTA for suspected obstructive CAD. Scans were

acquired in three different hospitals: Scans of 263 patients

(age 47–79 years) were acquired in the Onze Lieve Vrouwe

Ziekenhuis, Aalst, Belgium (Site 1) with a Siemens Somatom

Definition Flash CT scanner; Scans of 152 patients (age 34–84

years) were acquired in the University Medical Center Utrecht,

the Netherlands (Site 2) with a Philips iCT 256 CT scanner;

Scans of 243 patients (age 48–85 years) were acquired in the

Amsterdam University Medical Centers—location University of

Amsterdam, the Netherlands (Site 3) with a Siemens Somatom

Force CT scanner. Patients were only included if all arteries were

in the field of view of the CCTA scan. This study was approved

(Site 1) or the need for informed consent was waived by the

respective institutional review boards (Site 2, Site 3).

During acquisition, contrast medium was injected with a

flow rate of 4 to 6 mL/s for a total of 30 to 92 mL iopromide

(Ultravist 300 mg I/mL, Bayer Healthcare, Berlin, Germany),

depending on the patient weight and test bolus images (29, 36).

The tube voltages ranged between 70 and 140 kVp and tube

currents between 71 and 901 mAs. All scans were reconstructed

to an in-plane resolution ranging from 0.22 to 0.83 mm2 with

0.3 to 0.5 mm slice increment and 0.5 to 1.0 mm slice thickness.

In total 85 out of 658 patients were excluded because the

quality of the CCTA scan was not sufficient due to e.g., severe

step-and-shoot artifacts (n = 22), severe cardiac motion artifacts

(n = 47) or artifacts caused by metal implants (n = 16; Table 1).

Furthermore, patients who underwent stenting or coronary

artery bypass grafting (CABG) prior to CCTA acquisition were

excluded (n = 4). After exclusions, 569 patients remained for

further analysis.

For development and validation of the method, 438

arteries with FFR measurements from 302 patients were used.

Additionally, for independent evaluation of the method, the

performance was evaluated with two held-out test sets. The

first set consisted of 76 arteries with FFR measurements in 67

patients randomly sampled from all three sites. It is referred to

as TestCath. The sets used for development and validation, as
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TABLE 1 Patients were excluded due to artifacts, i.e., severe step-and-shoot artifacts, severe cardiac motion artifacts or artifacts caused by metal

implants.

Artifacts Stenting/ Total

Step and shoot Motion Metal CABG excluded

Site 1 13 21 2 1 37

Site 2 8 15 11 3 37

Site 3 1 11 3 0 15

Total 22 47 16 4 89

well as TestCath, consist of patients with intermediate degree

of anatomical stenosis for which the cardiologist recommended

invasive FFR measurement to assess hemodynamic significance

of the stenosis. Therefore, these sets are representative of

the clinical population that undergoes FFR measurement for

suspicion of obstructive CAD in the catheterization laboratory,

which represents our primary target population. The second

test set consisted of 600 arteries of 200 patients, in which

instead of invasive FFR measurement obstructive CAD was

ruled out as they were assigned to category zero (absence of

stenosis or plaque in all coronary arteries) or one (low degree of

anatomical stenosis or plaque in all coronary arteries) according

to the Coronary Artery Disease-Reporting and Data System

(CAD-RADS) (37). Hence, arteries in this population have a

degree of stenosis < 25%. The chances of finding functionally

significant stenosis in these patients would be marginal (38). To

warrant that our algorithm classifies these arteries correctly, they

were used for testing by assuming FFR > 0.8, indicating the

absence of functionally significant stenosis. Thus, this second

test set is referred to as TestNoCath and it is used for evaluation

purposes only as no patient with little or no stenosis was sent for

invasive FFR measurement.

Analysis in this set was performed for the main arteries,

i.e., left anterior descending artery (LAD), left circumflex artery

(LCX) and right coronary artery (RCA). CAD-RADS scoring

was performed within 3 days of the acquisition of the CCTA

scan. Figure 1 and Table 2 show details regarding the data

selection.

2.2. FFR measurements

Among the 569 patients, 369 underwent invasive FFR

measurement in 514 arteries. To measure FFR, a coronary

pressure guidewire (Certus Pressure Wire, St. Jude Medical,

St. Paul, Minnesota or Pressure wire X, Abbott Vascular,

California) was inserted into the distal segment of the

coronary vessel, and maximal hyperemia was induced by

administration of intravenous adenosine through a central vein.

The lowest FFR value measured at the most distal location

was chosen for analysis. An FFR pullback was performed to

FIGURE 1

Data included in the study.

assess the presence of drift. If multiple FFR measurements

were available in one artery, the value measured at the

most distal location was chosen. The maximum time interval

between the acquisition of the CCTA scan and the FFR

measurement was 90 days for Site 1 and 1 year for Site 2 and

Site 3.

2.3. Reference artery characteristics

To train the network for extraction of artery characteristics,

reference annotations of the coronary artery lumen and

coronary calcium were required. Given the extensive manual

workload of the tasks, these were performed semi-automatically

in a subset of 56 arteries, randomly selected from the

development data set. First, automatic segmentations of the

lumen and calcium were generated in the original CT

image volumes using methods previously developed in our

group (39, 40). Thereafter, automatic segmentations were
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TABLE 2 Data set for training and validation (Development), and two

separate test sets, one with FFR measurements (TestCath) and one

without (TestNoCath).

Development TestCath TestNoCath

Patients 302 67 200

Arteries 438 76 600

Hospital

Site 1 249 58 0

Site 2 159 14 0

Site 3 30 4 600

Anatomical segment

LAD 221 50 200

LCX 81 9 200

RCA 72 10 200

LM 14 1 0

SB 50 6 0

FFR statistics

% positive 0.42 0.78 0.00

Mean FFR 0.82 0.70 -

Std FFR 0.11 0.16 -

In addition to the number of arteries and patients in each set, the table lists the

contribution of each site to each set, the anatomical segments in which the invasive

measurements were performed and statistics describing the distribution of FFR values.

Anatomical segments were categorized into the main branches, i.e., LAD, left anterior

descending artery; LCX, left circumflex artery; RCA, right coronary artery; LM, left main;

SB, side-branch of the main arteries.

transferred to the MPR of the artery, visually inspected

and corrected when needed. Using the segmentations, the

reference lumen area and calcium area were generated by

summing up the pixels of the respective segmentation in

each cross-sectional slice of the MPR perpendicular to the

artery centerline. Note that MPRs for all arteries share the

same spacings and in-plane resolution. For the average lumen

attenuation, the average of the image pixels within the lumen

segmentation mask was calculated in each cross-sectional slice

of the MPR.

3. Methods

Our method assesses the functional significance of stenosis

in an artery from CCTA. First, we extract the coronary

artery centerline tree. To analyze the artery of interest, we

then reconstruct an MPR. Subsequently, we extract relevant

characteristics of the artery along its centerline using a 2D

CNN and the characteristics of the artery within the coronary

artery tree. Using these characteristics, we assess the presence

of a functionally significant stenosis with a dedicated CNN

(Figure 2).

3.1. Artery extraction

To localize the coronary arteries in the CCTA image, the

coronary artery centerline tree is extracted and anatomical

labels are assigned to the tree’s segments using our previously

developed method (41). Thereafter, the labeled centerline tree

is inspected and manually corrected if needed. This is the only

manual interaction that might be required for our method

at test time. Figure 3 illustrates the pre-processing steps. In

most cases this took 1 min, but could take up to at most 5

min when challenged by pathology. For each selected artery

centerline, an MPR with 0.1 mm in-plane voxel size and 0.5

mm distance betweenMPR slices is reconstructed using trilinear

interpolation. The in-plane shape of the MPR is 127 x 127 and

the number of slices is dependent on the artery length. Finally,

image intensities in the MPRs are normalized to zero mean and

unit variance across the data set, to ensure training stability of

the neural networks.

3.2. Artery characterization

3.2.1. Extraction of coronary artery
characteristics

To automatically characterize a coronary artery, we extract

the lumen area, its attenuation and the amount of coronary

artery calcium from the artery’s MPR. Specifically, for each point

of the coronary artery centerline, we predict the lumen area,

the average lumen attenuation and the calcium area in its cross-

section with a 2D CNN (Figure 4). The network analyzes stacks

of three cross-sectional slices and consists of four alternating

convolutional blocks and pooling operations. The convolutional

blocks are comprised of two convolutional layers (kernel size 3,

16 filters), each followed by batch normalization and the ReLU

activation function. Finally, three separate output heads regress

values for the lumen area, average attenuation in the lumen and

calcium area for the central slice of the input stack.

3.2.2. Extraction of coronary tree
characteristics

The coronary artery geometry has impact on the

characteristics of the blood flow and local appearance of

the artery. Therefore, for each point along the coronary artery

centerline, we extract two additional characteristics. The first

one indicates the presence of bifurcations at the artery centerline

point. The second one indicates whether a centerline point

belongs to a main branch (i.e., left main (LM), LAD, LCX,

RCA) or a side-branch. The locations of bifurcations and side-

branches follow from the tree topology and labels. Specifically,

for each MPR slice, information about bifurcations and side

branches was extracted from the coronary artery centerline

point of the tree at that location, i.e., by considering the amount
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FIGURE 2

Overview of our method for assessing the presence of a functionally significant stenosis in a coronary artery. From the CCTA scan, we extract a

coronary artery centerline tree. For each artery we generate an MPR that is further analyzed to predict the lumen area, its average attenuation

and the calcium area per centerline point. These characteristics, as well as characteristics indicating the presence of bifurcations and whether

the artery is a main branch or to a side branch of a main artery, are fed to the classification network to determine the presence of a functionally

significant stenosis in the artery.

of successive centerline points and the label, respectively. We

normalize all characteristics to zero mean and unit variance

across the training data set.

3.3. Stenosis assessment

To assess the presence of a functionally significant

stenosis, we analyze the extracted artery characteristics with

a 1D convolutional neural network (Figure 5). The network

performs both regression of the FFR value and classification

of functionally significant stenosis. To obtain a robust final

decision, we merge the predictions.

The network receives the 5 artery characteristics (lumen

area, average lumen attenuation, calcium area, bifurcations and

side-branches) as input. To focus on changes in lumen area and

its attenuation rather than their absolute values, we calculate

their percentage difference at each location in the artery with

respect to the previous location. Because the relevant features in

the lumen area and its attenuationmay be subtle andmay appear

in different locations along the artery (i.e., a stenosis is expected

to cause changes in the attenuation distal to the appearance in

the lumen area), these two characteristics are first separately

encoded. This is done using two non-shared convolutional

layers with the LeakyReLU activation function applied in

between the layers. Thereafter, the remaining characteristics are

concatenated with the encoded features from the lumen area and

its attenuation.

The information of all five extracted artery characteristics

is merged by a common encoder, consisting of convolutional

layers and a transformer layer, as follows: To increase the

receptive field and reduce the dimensionality, average pooling

with kernel size 4 is applied, followed by two convolutional

layers with dilation 1 and 2, respectively. Each convolutional
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FIGURE 3

Pre-processing steps.

layer is followed by the LeakyReLU activation function, instance

normalization and dropout. Subsequently, artery encodings are

concatenated with the original lumen area and its attenuation,

and fed to a transformer layer (42). Due to the global receptive

field, the transformer layer connects all artery points with one

another. This potentially enables modeling interaction between

multiple lesions, and proximal and distal section of the artery.

The network has two output heads that are each designed to

perform a separate task: one performs regression of the FFR

value and the other performs classification of the presence of

a functionally significant stenosis in the artery. Inspired by the

additive nature of sequential flow resistances, the regression

head is designed to predict pressure drops along the artery.

First, two layers of convolutions are applied, each followed

by the LeakyReLU activation function, instance normalization

and dropout. Thereafter, a third convolutional layer with a

single output filter map is followed by a ReLU activation

function to enforce positivity of the pressure drops. Finally,

the predicted pressure drops are summed up along the artery

using a sum pooling layer and the resulting overall FFR drop

is transformed into the final FFR value by subtracting it from

1. The classification head predicts the presence of functionally

significant stenosis (FFR≤0.8). To explicitly relate proximal and

distal sections, first, adaptive sum pooling with 5 output features

is applied followed by 2 dense layers, each with LeakyReLU

activation and dropout. At last, a dense layer with a single output

filter map and sigmoid activation yields output probabilities for

functionally significant stenosis.

For all convolutions throughout the network for stenosis

assessment, a kernel size of 3 is employed in combination with

zero-padding to prevent shrinkage of the features. Furthermore,

for all convolutions as well as for the transformer, a relatively

small number of 16 filter maps is utilized, to balance the required

expressiveness and to prevent overfitting. For the same purpose,

all dropout probabilities are set to 0.5.

During training, the regression head is supervised using the

mean squared error with the reference FFR value. Since the

invasive reference FFR is often not measured at the most distal

location, predicted pressure drop contributions from anatomical

locations distal to the measurement location are masked during

training and testing. The measurement location is assumed

to be 10 mm distal to the annotated lesion location, in line

with measurement protocols from clinical practice. For the

TestNoCath data set, as no measurement was taken, the most

distal clinically relevant location (lumen area > 2 mm2) was

chosen as the measurement location. The classification task is

supervised using the binary cross entropy loss function.

To combine strengths of the classification and the regression

head, their outputs are merged into a single probability for

the presence of a functionally significant stenosis in the artery.

While the classification head directly predicts probabilities

for the positive and negative class, the regressed FFR values

are distributed around the threshold of 0.8. To allow their

merging, the predicted FFR values are first transformed into

pseudo-probabilities by linearly scaling a symmetric window

around 0.8, using the following formula:

ppseudo =

{

0.5−
(FFRregress−0.8)

0.4 for FFRregress ∈ [0.6, 1.0]

1.0 for FFRregress ∈ [0.0, 0.6)

(1)

Figure 6 shows the transformation function, with x values

corresponding to the predicted FFR (input) and y values to the

pseudo probabilities (transformations).

To obtain the final prediction result, the pseudo-

probabilities are averaged with the probabilities from the

classification head.

We developed our method performing randomized

10 fold cross-validation (i.e., training of 10 networks on

random 90% subsets of the development selection and

testing on the remaining 10%). To increase robustness of

the method and determine uncertainty of the prediction,

during testing we ensemble the 10 networks by averaging

the predicted probabilities and FFR values (43). For

the prediction of the uncertainty, we calculate the

standard deviation over the probabilities and the FFR

values (44).

4. Evaluation

We evaluate the performance of our method by computing

AUC, accuracy, sensitivity, and specificity using the invasively

measured FFR as reference. This is done for the final

prediction, obtained bymerging the classification and regression

results, and for the regressed FFR values and classification

probabilities separately. For evaluation, the regressed FFR

values and reference FFR values were dichotomized using

the threshold of 0.8 for significant stenosis. To test for
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FIGURE 4

Architecture of the network for extracting artery characteristics. Stacks of 3 cross-sectional artery slices are fed to a 2D CNN with 4 pooling

layers interleaved with convolutions. The network is trained to predict the lumen area, its average attenuation and the calcium area for the

central slice of the 3 input slices.

FIGURE 5

Architecture of the network used for stenosis assessment. The lumen area and its attenuation predicted by the characterization network are first

pre-encoded and subsequently concatenated with the calcium area, and with additional characteristics indicating bifurcations and whether the

analysis is performed in the main- or side-branch of the artery. The combined encodings are thereafter fed to the encoder. In the encoder, the

features are first pooled and thereafter, convolutions and a transformer layer are applied. For final classification, two separate output heads are

applied. In the regression head, two convolutional layers and the ReLU activation function are used. The resulting sequence is pooled along the

artery dimension and subtracted from 1 to yield a single FFR value. In the classification head, the features are pooled to a fixed length of 5 (2.5

mm). Thereafter, two dense layers are used in combination with the sigmoid activation function to yield output probabilities for the presence of

a functionally significant stenosis in the artery.

the statistical significance of the AUC differences between

models, we performed permutation testing (45) with 1,000

iterations and report p-values. To obtain a patient-level

prediction, the highest output value of all classified arteries

in a patient is used to assign the predicted class to the

patient. In the reference, patients were considered negative

if none of the measured arteries had an FFR ≤ 0.8, and

otherwise positive.

5. Experiments and results

5.1. Experimental settings

To account for possible overfitting during training of the

network for artery characterization, the 56 annotated arteries

were split into 42 arteries for training, 4 arteries for validation

and 10 arteries for quantitative testing. The network was trained
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FIGURE 6

Transformation from predicted FFR values to pseudo

probabilities.

utilizing the mean absolute error as loss function and the

ADAMW (46) optimizer with a learning rate of 10−5 and a

batch size of 512. Training was terminated after 800 epochs as

convergence was reached. Based on preliminary experiments,

the loss term of the lumen attenuation was scaled with a

factor 0.1, such that all loss terms are within the same order

of magnitude. After training, we applied the network to each

cross-section of the MPR to obtain the lumen area, its average

attenuation and the area of calcium along the length of the

artery.

The network for stenosis assessment was trained for 150

epochs using the ADAMW (46) optimizer with a linearly

scheduled cyclic learning rate. The cyclic learning rate varied

between 5e-4 and 1e-5 over a period of 40 epochs. Because

different artery lengths limit the network for stenosis assessment

to process only a single artery at a time, the loss was

accumulated over 8 training iterations before backpropagating,

corresponding to an effective batch size of 8. The loss terms of

the regression head and the classification head were weighted

equally, as both terms are of similar magnitude and as both tasks

are equally important.

5.2. Stenosis assessment

We evaluated the performance of our method on the two

held out test sets, using the ensemble of 10 trained networks

(Table 3). The method achieved an AUC of 0.78 on TestCath
for predicting the presence of functionally significant stenosis

in an artery when merging the regression and the classification.

In addition, we evaluated the FFR regression and stenosis

classification separately. For the TestCath data the results

demonstrate that regression outperforms classification and the

merged prediction, with an AUC of 0.83. On the patient level,

our method achieved an AUC of 0.75 and an accuracy of 0.80.

TABLE 3 Performance of our method.

Algorithm Selection AUC Accuracy Sensitivity Specificity

Merged
TestCath 0.78 0.79 0.84 0.61

TestNoCath - 0.86 - -

Classification
TestCath 0.68 0.55 0.53 0.61

TestNoCath - 0.90 - -

Regression
TestCath 0.83 0.89 0.95 0.67

TestNoCath - 0.59 - -

The table lists the obtained AUC, accuracy, sensitivity and specificity. Rows correspond

to the classification, regression and merged outputs. To obtain binary predictions, for

probabilities a threshold of 0.5 was used and for regressed FFR values a threshold of 0.8.

TABLE 4 Performance of our method on TestCath per site.

Data set Arteries AUC Accuracy Sensitivity Specificity

All 76 0.78 0.79 0.84 0.61

Site 1 58 0.84 0.84 0.85 0.78

Site 2 14 0.73 0.71 0.88 0.50

Site 3 4 (0.00) (0.25) (0.00) (0.33)

Results demonstrate best performance on the data from Site 1. Only 4 arteries in TestCath
were acquired at Site 3 (Table 2). As this may not be sufficient to obtain a representative

per-site performance, the respective numbers are presented in brackets.

To investigate the performance of our method on CCTA

scans without or with low degree of anatomical coronary artery

stenosis, we applied the method to the TestNoCath data set.

Given that no scan contains functionally significant stenosis, we

evaluated the performance in terms of accuracy. When merging

classification and regression, the method achieved an accuracy

of 0.86. The results demonstrate that for detection of arteries

with little or no stenosis in the TestNoCath data set, stenosis

classification outperforms the FFR regression.

To assess whether the method is robust to the differences

in scanner types and acquisition parameters, we investigated

the performance per acquisition site on the TestCath data set

(Table 4). The best performance was measured for Site 1. Note

that the majority of training scans originated from this site

(Table 2).

Figure 7 shows the invasivelymeasured reference FFR versus

the merged prediction, the classification probability and the

regressed FFR. The method tends to be more uncertain in

incorrectly classified or regressed arteries. Furthermore, Figure 7

depicts MPRs and predicted characteristics for two arteries.

To evaluate the added value of the uncertainty measure

provided by our method, we simulated a semi-automatic setting

in which cases with high uncertainty are referred for invasive

FFRmeasurement. This was done by assigning the reference FFR

to the 5, 10, or 20% of cases in the TestCath data set with the

highest uncertainty (Table 5). The results show that by referring
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FIGURE 7

Top: Scatter plots relating the invasively measured FFR with the predictions for each artery from the TestCath data set. The graph on the left-hand

side corresponds to the merged output probability, in the graph in the middle the output probability from the classification head is shown and in

the graph on the right-hand side the regressed FFR value is depicted. Points are colored in red according to their prediction uncertainty.

Background colors indicate in which arteries the functional significance was assessed correctly (white) or incorrectly (gray). Whereas, for

probabilities (left and middle), high values correspond to the positive class, for regression (right), low output values correspond to the positive

class. Black lines show the linear fit to the data. Bottom: MPRs and predicted characteristics for two arteries (positions in scatter plots indicated

by blue circles). The location of the annotated lesion is plotted in green. Whereas the merged probability assigned to the artery on the left

corresponds to the correct class, for the artery on the right, output of the classification head was strongly negative (low probability for

functionally significant stenosis), which when combined with the regressed FFR caused the merged probability to yield the incorrect class.

Incorrect output of the classification head may be related to a visually minor step-and-shot artifact causing a low intensity section in the MPR

on the right (indicated by arrow).

20% of the cases, a sensitivity of 0.92 with a specificity of 0.78

was reached.

5.3. Contribution of artery characteristics

To determine the specific importance of each regressed

characteristic, we trained and evaluated models that each only

get a single characteristic as input. Additionally, the tree

characteristics (bifurcation and the side-branch) were used in

each network. In Table 6, the obtained performances for the

TestCath data set are compared with the proposed method.

The model with lumen as input performed best among the

networks using only a single characteristic and the proposed

method outperformed all tested models. Excluding the tree

characteristics yielded a slight performance decrease.

5.4. Comparison with previous work

Table 7 compares the performance of our method with

performances of previous methods determining presence of

functionally significant coronary artery stenosis, as reported

in the original works. However, note that these algorithms

are not publicly available, and that all of the methods were

trained and tested with different proprietary data sets. Hence, the
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TABLE 5 Performance of our method on TestCath when a percentage

of cases with the highest uncertainty is excluded or corrected to the

reference FFR.

AUC Accuracy Sensitivity Specificity

All arteries 0.78 0.79 0.84 0.61

Excluded 5 % 0.79 0.81 0.86 0.61

10% 0.81 0.83 0.89 0.63

20% 0.84 0.86 0.90 0.69

Corrected 5% 0.80 0.81 0.87 0.61

10% 0.85 0.85 0.90 0.67

20% 0.91 0.89 0.92 0.78

TABLE 6 Contribution of individual characteristics.

Characteristics AUC Accuracy Sensitivity Specificity p

All 0.78 0.79 0.84 0.61 -

No lumen 0.72 0.71 0.76 0.56 0.039

No calcium 0.73 0.54 0.52 0.61 0.152

No attenuation 0.76 0.76 0.81 0.61 0.191

No tree 0.76 0.74 0.79 0.56 0.380

Rows correspond to the proposed approach, networks trained on artery characteristic

[with the characteristics from the artery tree (bifurcation and side-branch)], and a

network trained on all characteristics apart from the tree characteristics (no tree). Among

the separate artery characteristics, the network trained on the lumen area performed

best. Including all characteristics in the proposed approach lead to the best performance.

Excluding the tree characteristics resulted in a slight decrease in performance. p-

values indicate the statistical significance of AUC improvements of the model using all

characteristics over the model using the respective characteristic.

differences in the reported performance can only be seen as an

indication. For each method, we indicate whether it requires the

segmentation of the coronary artery at test time. The comparison

shows that methods that use the artery segmentation at test

time attain higher performances. However, artery segmentation

is a highly challenging task and results from potentially used

automatic methods require manual correction. This manual

correction is a time consuming process, leading to excessive

analysis times. Our method outperforms the methods that like

the proposed method do not use the artery segmentation at test

time.

6. Discussion

We presented a deep learning method that assesses the

presence of functionally significant stenosis in an artery from

CCTA. The method first extracts relevant characteristics from

the artery’s MPR by regressing the lumen area, its attenuation

and the amount of calcifications, and extracting characteristics

of the artery within the coronary artery tree. Subsequently, using

the extracted characteristics, regression of the FFR value and

classification of the presence of a functionally significant stenosis

in the artery are performed and thereafter merged to obtain the

final result.

The primary target population consisted of patients

with an intermediate or high anatomical degree of stenosis

(TestCath), since these patients typically undergo invasive FFR

measurement. Additionally, we investigated the performance

of our method in patients with no or low degree of stenosis

according to the clinically determined CAD-RADS score

(TestNoCath). In order to make analysis in a large set feasible,

we restricted evaluation to the main coronary arteries.

Results demonstrate that regression performs better in

the population with intermediate or high anatomical degree

of stenosis (TestCath), while classification performs better in

the population with low degree of anatomical stenosis or

without stenosis (TestNoCath). To combine the strengths of both

approaches and obtain robust overall performance, in this work

the outputs were merged. However, in a clinical setting, the

classification or regression output could be used depending on

the target population. The accuracy attained on this set was

higher than on TestCath, demonstrating that arteries with FFR

distributed around the threshold of 0.8, i.e., arteries from our

primary target population, are more difficult to assess than

arteries with little or no stenosis.

Literature shows that methods for predicting the presence

of functionally significant stenosis from CCTA that require

coronary artery segmentation achieve high performance (8,

10, 22, 24, 25, 47). However, since the performance is

heavily dependent on the quality of the coronary artery

segmentation, these approaches typically require manual

correction of the segmentation, leading to extensive analysis

times. Therefore, methods have been developed that omit the

highly challenging segmentation task, leading to fast analysis.

In a first investigation, Denzinger et al. (30) showed promising

results for end-to-end prediction of the revascularization

decision based on functional tests different from FFR in a

predominantly negative population. Apart from this, methods

that predict FFR without using the artery segmentation typically

extract features in an unsupervised manner (31–33). These

methods have not been shown to reach the same level of

performance as the methods that exploit coronary artery

segmentation. Hence, to incorporate information that has been

shown to be important for FFR prediction (16, 20–22, 24, 26)

while retaining fast analysis, we extract information directly

from the MPR in a supervised manner. To do this, a limited

number of artery segmentations is used to obtain reference

characteristics for training a network to directly predict features

characterizing the arteries at test time. During inference, our

method does not require the artery segmentation and therefore,

the method remains fast at inference.

While previous works used unsupervised feature extraction

to describe the arteries, these features were not directly

optimized to determine the FFR value (31, 32). As in previous

RNN-based works (25, 26, 30), in this work extraction of
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TABLE 7 Comparison of the performance on the TestCath data set with previous work.

Algorithm Artery

segmentation

Analysis

level

Analysis

time

Samples

train

Samples

test

AUC Accuracy

Proposed ML no Arteries < 5 min 438 76 0.78 0.79

Proposed ML no Patients < 5 min 67 0.75 0.80

Denzinger et al.

(30) ‡

ML no Arteries 345 * 0.88 0.87

Zreik et al. (31) ML no Arteries 192 * 0.62

Kumamaru et al.

(33)

ML no Patients 131 * 0.69 0.71

Zreik et al. (32) ML no Patients 126 * 0.74 0.70

Nørgaard et al. (8) CFD yes Arteries 1–4 h - 254 0.90 0.81

Itu et al. (21) ML yes Arteries simulations 125 0.90 0.83

Dey et al. (22) ML yes Arteries 254 * 0.84

Tesche et al. (10) CFD yes Arteries 43 min - 85 0.91

Tesche et al. (10) ML yes Arteries 41 min Simulations 85 0.91

Coenen et al. (11) CFD yes Arteries >30–60 min Simulations 525 0.84

Coenen et al. (11) ML yes Arteries >30–60 min Simulations 525 0.84

Ko et al. (47) CFD yes Arteries - 96 0.89 0.84

von

Knebel Doeberitz

et al. (23)

ML yes Arteries Simulations 84 0.83

von

Knebel Doeberitz

et al. (23)

ML + CFD yes Arteries Simulations 84 0.93

Wang et al. (25) ML yes Arteries Simulations 71 0.93 0.89

Gao et al. (26) ML yes Arteries Simulations 180 0.93

Yang et al. (24) ML yes Arteries 1,013 † 0.80

*Cross-validation experiments.

†Bootstrap experiments.

‡Predicted FFR is compared to revascularization decision instead of invasive FFR.

Methods are categorized into using machine learning (ML) or computational fluid dynamics (CFD). Methods that use the artery segmentation at test time occasionally require manual

interaction. Analysis times include the time needed for manual interaction.

features characterizing arteries and classification of the arteries

are optimized together in an end-to-end fashion. However,

unlike Wang et al. (25) and Gao et al. (26), we do not use pre-

designed high level input features like the degree of stenosis

or the lesion length. Instead, we use convolutions to locally

encode the low level artery characteristics, enabling the model

to learn high level features itself. Moreover, to model the

interaction between proximal and distal artery segments, we

include a transformer layer that enables learning global features.

Furthermore, to regress the FFR value, sequential vascular

resistance was modeled by adding up local pressure drops.

Incorporating these inductive biases into the network enables

targeted feature extraction for prediction, thereby reducing the

amount of irrelevant parameters in the model. Together with

a small number of descriptive characteristics per centerline

point, this targeted model design mitigates the risk of potential

overfitting and hence, enables end-to-end learning of high and

low level features with limited training data. These features

are learned using the predicted characteristics as input, which

in some locations inhibit noise (see Supplementary materials).

Therefore, our automatically learned features might be more

robust to potential noise in the predicted characteristics than the

pre-designed features used by Wang et al. (25) and Gao et al.

(26). Nevertheless, training the characterization network with a

larger data set of manually segmented lumen and calcium might

improve the performance of our method.

To investigate the role of each characteristic, we trained

additional models only on single artery characteristics. The

results showed that the models using all characteristics but one

reach reasonable performance and only omitting the lumen area

lead to a statistically significant drop in performance (p < 0.05,

Table 6). This is in line with previous research that underlines the

importance of clinical indices derived from these characteristics

for FFR prediction (14, 16). Including all characteristics in the
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proposed method yielded the highest performance, indicating

that the extracted artery characteristics contain complementary

information. Nevertheless, the proposed method is not limited

to the used characteristics. Future work should investigate

whether using additional characteristics, like the amount of

non-calcified plaque, plaque composition, luminal diameter and

artery remodeling (16, 22, 24), would further improve the

performance. Furthermore, using unsupervised features (32) in

addition to the targeted characteristics may be valuable as it may

additionally enable extracting information that has not yet been

discovered to be clinically relevant.

To identify possible causes of errors in the detection, arteries

from TestCath with the largest difference between the regressed

and invasively measured FFR were inspected. We found that

in these arteries errors in the extraction of their characteristics

were made. They frequently corresponded to overestimation of

the calcium area and accordingly, underestimation of the lumen

area. This indicates that although the proposed method does

not model lesions explicitly, it is sensitive to errors in the artery

characterizations that resemble lesions. Therefore, to further

improve the performance, future work could focus on improving

the artery characterizations.

By employing multiple networks in an ensemble, the

robustness of our method was increased and the uncertainty of

the predictions was determined (43). The uncertainty measure

may be valuable in clinical practice where the method could

be employed in a semi-automatic setting. In particular, patients

with arteries in which the method indicates high prediction

uncertainty could be referred for invasive measurements.

Separate evaluation of the method on the data from each

site showed that the best performance was attained for patients

scanned at Site 1. This may be caused by the fact that the

training set contained most (57%) of arteries from that site.

Lower performance for underrepresented sites (Site 2 and Site

3), might have been caused by differences in scanner types

and acquisition parameters. Furthermore, for patients from

Site 2 and Site 3, the typical time interval between the CCTA

acquisition and the FFR measurement was larger compared to

Site 1, which may have introduced additional noise. Another

reason for performance differences between sites may relate

to differences in the protocol for measuring FFR. To only

account for proximal measurement positions, pressure drop

contributions distal to the estimatedmeasurement position were

masked. However, the measurement location may vary between

the experts and this may have caused noise in the data which

may have negatively impacted performance. Using a larger, more

diverse data set will likely enable improved performance for the

currently underrepresented sites.

Results in this work show that when the decision

threshold is optimized for high sensitivity, our method enables

sparing unnecessary FFR measurement in 44% of patients

with intermediate degree of stenosis while detecting 95%

of functionally significant stenoses (Supplementary materials).

Alternatively, combining the proposed method with expert

CCTA reading may improve the performance of non-invasive

detection of significant stenosis from CCTA (48). While visual

assessment of CCTA by an expert radiologist has been reported

to have consistently high sensitivity for detection of obstructive

CAD (5, 6), it suffers from limited specificity for indicating the

functional significance of a stenosis. By specifically optimizing

the decision threshold, the proposed method can potentially

complement the high sensitivity of expert CCTA reading with

high specificity. Future work could evaluate the clinical value

of automatic stenosis assessment using the proposed method in

combination with expert CCTA reading.

This study has several limitations. First, a relatively

small number of scans with corresponding invasive FFR

measurements was retrospectively included. While data

was acquired in multiple hospitals, the hospitals were not

represented equally in the data set. Future work should

investigate potential improvements of our method when

trained on a larger dataset, equally distributed across hospitals.

To avoid biases in the test data, a large-scale (prospective)

study in multiple centers is required to confirm the findings.

Second, 13% of patients were excluded due to lacking image

quality. This may have introduced a selection bias toward

patients with preferable externalities, i.e., sinus rhythm and low

body-mass-index, which may have caused exclusion of patients

at higher risk of significant stenosis. Third, comparison of our

method with previous work can only be seen as an indication,

as each method was developed and tested on different data sets.

At last, we tested our trained method on arteries with no or

low degree of stenosis according to the clinically determined

CAD-RADS score assuming an FFR > 0.8. However, it can not

be fully excluded that despite the clinical stenosis assessment

a small number of these arteries have FFR ≤ 0.8, e.g., due to

diffuse CAD. Nevertheless, given the high sensitivity of visual

assessment of CCTA for detection of CAD (5, 6), we expect this

effect to be marginal.

7. Conclusion

We presented a deep learning approach for assessment of the

functional significance of coronary artery stenosis from CCTA.

Results demonstrate that the proposed approach outperforms

previous works that do not require the artery segmentation as

input. This indicates that the method may reduce the number of

patients that unnecessarily undergo invasive measurements.
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