AUTHOR=Bagate François , Coppens Alexandre , Masi Paul , de Prost Nicolas , Carteaux Guillaume , Razazi Keyvan , Mekontso Dessap Armand TITLE=Cardiac and vascular effects of low-dose steroids during the early phase of septic shock: An echocardiographic study JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.948231 DOI=10.3389/fcvm.2022.948231 ISSN=2297-055X ABSTRACT=Background

Low-dose steroids are known to increase arterial pressure during septic shock through restoration of vasopressor response to norepinephrine. However, their effects on cardiac performance and ventriculo-arterial coupling (VAC) have never been scrutinized during human septic shock. The aim of this study was to perform a comprehensive description of the cardiovascular effects of low-dose steroids using modern echocardiographic tools (including speckle tracking imaging).

Methods

This prospective study was conducted in the intensive care unit (ICU) of a university hospital in France. Consecutive adult patients admitted for septic shock and requiring low-dose steroid therapy were prospectively enrolled within 24 h of septic shock onset. We recorded hemodynamic and echocardiographic data to explore left ventricle (LV) contractility, loading conditions and VAC just before the initiation of low-dose steroids (50 mg intravenous hydrocortisone plus 50 μg enteral fludrocortisone) and 2–4 h after.

Results

Fifty patients [65 (55–73) years; 33 men] were enrolled. Arterial pressure, heart rate, almost all LV afterload parameters, and most cardiac contractility parameters significantly improved after steroids. VAC improved with steroid therapy and less patients had uncoupled VAC (> 1.36) after (24%) than before (44%) treatment.

Conclusion

In this comprehensive echocardiographic study, we confirmed an improvement of LV afterload after initiation of low-dose steroids. We also observed an increase in LV contractility with improved cardiovascular efficiency (less uncoupling with decreased VAC).