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Background: Heart failure (HF) is the end stage of various cardiovascular

diseases with a high mortality rate. Novel diagnostic and therapeutic

biomarkers for HF are urgently required. Our research aims to identify HF-

related hub genes and regulatory networks using bioinformatics and validation

assays.

Methods: Using four RNA-seq datasets in the Gene Expression Omnibus

(GEO) database, we screened differentially expressed genes (DEGs) of HF

using Removal of Unwanted Variation from RNA-seq data (RUVSeq) and the

robust rank aggregation (RRA) method. Then, hub genes were recognized

using the STRING database and Cytoscape software with cytoHubba plug-

in. Furthermore, reliable hub genes were validated by the GEO microarray

datasets and quantitative reverse transcription polymerase chain reaction

(qRT-PCR) using heart tissues from patients with HF and non-failing donors

(NFDs). In addition, R packages “clusterProfiler” and “GSVA” were utilized for

enrichment analysis. Moreover, the transcription factor (TF)–DEG regulatory

network was constructed by Cytoscape and verified in a microarray dataset.

Results: A total of 201 robust DEGs were identified in patients with HF

and NFDs. STRING and Cytoscape analysis recognized six hub genes,

among which ASPN, COL1A1, and FMOD were confirmed as reliable hub

genes through microarray datasets and qRT-PCR validation. Functional

analysis showed that the DEGs and hub genes were enriched in T-cell-

mediated immune response and myocardial glucose metabolism, which

were closely associated with myocardial fibrosis. In addition, the TF–DEG

regulatory network was constructed, and 13 significant TF–DEG pairs were

finally identified.
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Conclusion: Our study integrated different RNA-seq datasets using RUVSeq

and the RRA method and identified ASPN, COL1A1, and FMOD as potential

diagnostic biomarkers for HF. The results provide new insights into the

underlying mechanisms and effective treatments of HF.

KEYWORDS

heart failure, RNA-seq dataset, RUVSeq, robust rank aggregation, hub gene,
biomarker, functional enrichment analysis, transcription factor

Introduction

Heart failure (HF) is a complex clinical syndrome that
results from dysfunction of ventricular filling or ejection,
characterized by a variety of worsening symptoms and signs,
including dyspnea, fatigue, and fluid retention (1). The
occurrence of HF is predominantly caused by underlying
myocardial diseases, while cardiac lesions from valves,
vasculature, pericardium, heart rate/rhythm, or a combination
of cardiac abnormalities may also result in cardiac malfunction
(2). Despite the development of drug therapy and surgical
interventional therapy, the morbidity and mortality of HF
are increasing annually worldwide, which seriously threatens
human health and quality of life (3, 4). Therefore, to improve
the curative efficacy, it remains urgent to investigate the in-
depth underlying molecular mechanisms of HF to facilitate its
accurate diagnosis, early intervention, and precision therapy.

In recent years, the rapid progress of transcriptome
sequencing technology provides new directions for the
exploration of epigenetic changes and molecular mechanisms
in different diseases, including neoplastic and non-neoplastic
diseases (5, 6). Accordingly, an increasing volume of RNA
sequencing (RNA-seq) and microarray datasets of HF has
been uploaded in the Gene Expression Omnibus (GEO)
database, providing opportunities for bioinformatics data
mining of marker genes associated with HF (7). However, in
comparison to cancer-related surgery, the number of heart
transplantation surgeries is relatively small, which results
in the small sample size and large batch effects of RNA
sequencing or microarray datasets of HF. Therefore, to date, the
bioinformatics data mining of HF still faces great challenges,
especially regarding the integration and analysis of the RNA-seq
data (RUVSeq) related to HF.

The robust rank aggregation (RRA) method, first proposed
in 2012 by Kolde et al., is a rigorous approach using probabilistic
models to analyze the significant probability of all elements
in different sequencing or microarray datasets (8). Recently,
the RRA algorithm has been extensively used to integrate data
in different microarray platforms to screen the differentially
expressed genes (DEGs) in multiple diseases, including thyroid
carcinoma (9), prostate cancer (PCa) (10), and DCM (11). For
example, Song et al. utilized the RRA method to integrate 10
eligible PCa microarray datasets from the GEO and identify

four candidate biomarkers for prognosis of PCa (10). Ma
et al. integrated four eligible dilated cardiomyopathy (DCM)
microarray datasets from the GEO database and developed a 7-
gene signature predictive of DCM by utilizing the RRA method
(11). However, due to the greater difficulty in integrating
sequencing data, the application of the previous RRA algorithm
was limited to microarray data, and the RRA analysis of RUVSeq
was still rarely reported. Removal of Unwanted Variation from
RUVSeq, a Bioconductor package that generalizes a linear
model to regress variance estimated from the expression of
housekeeping genes, has been reported to be used to reduce
batch effects due to different sequencing conditions (12), which
provides a huge possibility for the combination of RUVSeq
and the RRA method in integrating different RUVSeq sets and
identifying HF-associated DEGs.

In the present study, RUVSeq and RRA analysis were
performed for the first time based on four RNA-seq datasets
in the GEO database to identify robust DEGs in HF samples
and non-failing donor (NFD) samples, followed by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis for the DEGs. Moreover, three
reliable HF-related hub genes with differential expression and
excellent diagnostic efficiency, ASPN, COL1A1, and FMOD,
were selected and validated using microarray datasets and
human heart tissue assays. Gene set enrichment analysis (GSEA)
and gene set variation analysis (GSVA) were further utilized to
investigate potential functions of the hub genes. In addition,
the transcription factor (TF)–DEG regulatory network was
constructed based on the HF datasets and websites.

Materials and methods

Datasets search and inclusion criteria

The GEO database1 was searched to obtain the sequencing
datasets based on the search terms of “heart failure” or/and
“HF.” The search results and relevant datasets were filtered
according to the following inclusion criteria: (i) the organism
was filtered by “homo sapiens”; (ii) the study type was

1 www.ncbi.nlm.nih.gov/geo/
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set as “expression profiling by high throughput sequencing”;
(iii) RUVSeq for both HF samples and NFDs should be
included in the dataset; (iv) the total number of samples
should not be < 5; and (v) the raw data of the RNA-seq
should be provided for reanalysis. Datasets that did not meet
the aforementioned criteria were excluded. The selected HF
sequencing datasets from the NCBI Sequence Read Archive
(SRA)2 were downloaded as SRA files and converted to FASTQ
files via the SRA toolkit.

Compilation of gene expression
matrices

To obtain high-quality reads, raw data from the GEO dataset
were pre-processed using the fastp tool (13), and sample quality
was assessed by FastQC and MultiQC (14). The sequences
were then aligned against the human reference genome hg38
using STAR (15). Furthermore, the expression values (count
matrices) for either gene bodies or called peaks were generated
by featureCounts (16).

Identification of robust differentially
expressed genes by the RNA-seq data
and robust rank aggregation method

For RNA-seq expression analysis, batch effects were adjusted
using the R package RUVSeq, which applies a generalized linear
model to regress out the variation estimated from the expression
of the housekeeping gene. First, the initial DEGs were detected
using the edgeR program package within a single RNA-seq
dataset. Second, the RUVg function in RUVSeq was utilized to
remove additional sources of unwanted variation (parameter
k = 1) (17). The remaining non-DEGs were considered as
negative control genes and used as housekeeping genes to
correct for relative gene expression levels between different
samples. Third, based on the corrected gene expression matrix,
the corrected DEGs were further obtained by the edgeR package.
Fourth, the RRA method-based R package “RobustRankAggreg”
was used to integrate the results of RUVSeq analysis of each
RNA-seq dataset to identify the final DEGs in patients with
HF compared with NFDs. The threshold of DEGs was set as
|logFC| > 1, and the significance criterion was set as an adjusted
p-value < 0.05.

Functional enrichment analysis

To further investigate the possible functions of DEGs
identified by the RUVSeq and the RRA method, GO enrichment

2 https://www.ncbi.nlm.nih.gov/sra/

and KEGG pathway analyses were performed in the upregulated
and downregulated DEGs separately, using the R package
“clusterProfiler” (18). The GO term or KEGG pathway with
adjusted p < 0.05 was considered with significant enrichment.
The results were visualized by dot plots using the “dotplot”
function of the R package.

Identification of hub genes

The robust DEG list was uploaded to the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) database3

(19), and the significant protein interaction was determined
at the criterion of confidence (combined score) > 0.4. Next,
we used Cytoscape software4 and cytoHubba (20) plug-in to
investigate node composition and pick out hub nodes with a
high degree of connectivity in the network.

Validation of the hub genes using
microarray datasets

RNA-seq datasets for HF samples are limited due to a
small volume of heart transplant surgeries and the difficulty in
obtaining human heart samples. Therefore, in our study, the
four eligible HF sequencing datasets (GSE46224, GSE116250,
GSE133054, and GSE135055), including 95 HF and NFD
samples, were all used for the identification of DEGs, hub
genes, and functional enrichment analysis. To further validate
the analysis results, HF microarray datasets were acquired from
the GEO database. The inclusion criterion was identical to
the RUVSeq sources, except that the study type was set as
“expression profiling by array.” For the study, four microarray
datasets were finally included for the validation: GSE16499
(21), GSE26887 (22), GSE57338 (23), and GSE79962 (24). The
gene expression profiling was annotated using the annotation
document of corresponding platforms, and the gene expression
matrices were column-normalized by the R package “limma”
(25) and log-transformed, if necessary. Next, the differential
expression of the identified hub genes between patients with
HF and NFDs in the microarray datasets was validated and
visualized by column graphs.

Validation of the hub genes using
quantitative reverse transcription
polymerase chain reaction

For further validation, total RNAs of the heart tissues
from patients with HF and NFDs were extracted for the

3 https://string-db.org/

4 www.Cytoscape.org/
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qRT-PCR validation assay. Heart tissues from six patients
with HF and eight NFDs were obtained from the Specimen
Bank of Cardiovascular Surgery Laboratory and Department
of Pathology of Changhai Hospital, Shanghai, China. Written
informed consents were obtained from all patients or their

family members, and the study was approved by the Institute
Ethics Committee of Changhai Hospital.

Total RNAs from the heart tissues were isolated using
TRIzol reagent (TRIzolTM Reagent, Invitrogen). RNAs were
then reverse-transcribed into cDNAs using a TOYOBO

FIGURE 1

Flowchart of data search, processing, analysis, and validation. HF, heart failure; RNA-seq, RNA sequencing; GEO, Gene Expression Omnibus;
PCA, principal component analysis; RRA, robust rank aggregation; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
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ReverTra Ace R© qRT-PCR RT Kit (TOYOBO, Japan).
SYBR

R©

GREEN (TOYOBO, Japan) was used for qRT-
PCR, and the primer sequences used are listed as follows:
asporin (ASPN) forward, 5′-GGGTGACGGTGTTCCATATC-
3′ and reverse, 5′-TTGGCACTGTTGGACAGAAG-3′;
collagen type I alpha 1 chain (COL1A1) forward, 5′-TCG
TGGAAATGATGGTGCTA-3′ and reverse, 5′-ACCAGGTT
CACCGCTGTTAC-3′; collagen type IX alpha 2 chain (COL9A2)
forward, 5′-AAGAGCAACTGGCAGAGGTC-3′ and reverse,
5′-GACCCTCGATCTCCATCCTT-3′; collagen type X
alpha 1 chain (COL10A1) forward, 5′-TGGGACCCCTC
TTGTTAGTG-3′ and reverse, 5′-GCCACACCTGGTCA
TTTTCT-3′; cartilage oligomeric matrix protein
(COMP) forward, 5′-CAGGACGACTTTGATGCAGA-
3′ and reverse, 5′-AAGCTGGAGCTGTCCTGGTA-3′; and
fibromodulin (FMOD) forward, 5′-AGAGAGCTCCAT
CTCGACCA-3′ and reverse, 5′-GCAGCTGGTTGT
AGGAGAGG-3′. The expression levels of mRNAs relative
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
detected using the 2−11Ct method.

Gene set enrichment analysis and gene
set variation analysis of the validated
hub genes

To further explore potential functions of the hub genes in
HF, we performed GSEA and GSVA in the microarray dataset
with the maximum HF sample size (GSE57338). The flow of
GSEA is as follows: First, correlation analyses were conducted
between hub genes and other genes in the gene expression
matrix of 54 patients with HF, and genes with the absolute
value of correlation coefficient > 0.5 and p-value < 0.05 were
defined as hub genes-related genes. Then, KEGG pathway
enrichment analysis was conducted on these hub genes-related
genes using the ClusterProfiler package. For GSVA, 54 patients
with HF in the GSE57338 dataset were divided into two
groups based on the median expression level of each hub
gene (high- and low-expression groups). Then, the “GSVA”
package was used to explore the pathways associated with the
hub genes. The annotated gene set “c2.cp.kegg.v7.4.entrez.gmt”
in the Molecular Signatures Database (MsigDB)5 was selected
as the reference.

Construction of the transcription
factor–differentially expressed gene
regulatory network

It has been reported that binding of TFs to the regulatory
regions of genes is a key transcriptional regulatory mechanism

5 http://www.gsea-msigdb.org/gsea/downloads.jsp

to control chromatin and transcription, forming a complex
system that guides expression of the genome (26). The TF–
DEG regulatory network is constructed by using the following
methods: First, the NetworkAnalyst database (27)6 and the
TF–gene interactions module from the JASPAR database (28)
were utilized to explore the possible TFs that could bind to
the RRA-identified DEGs. Second, a novel significant TF–DEG
regulatory pair was defined in our study according to the
following criteria: (i) both the TF and DEG were present in
the TF regulatory network constructed by the JASPAR database,
and there was predicted interaction between them; (ii) the
TF was differentially expressed in patients with HF and NFD
samples in the validation set GSE57338 (p < 0.05); and (iii)
there was a statistically significant relationship between the
expression level of TF and its target gene in the validation dataset
GSE57338 (the absolute value of correlation coefficient > 0.5
and p < 0.05). Third, the constructed TF–DEG regulatory
network was visualized using Cytoscape.

Statistical analysis

Independent two-sample t-tests were used to analyze
variables with homogeneous variance and normal distribution,
whereas Mann–Whitney non-parametric tests were used to
analyze variables without homogeneous variance and normal
distribution. P-values were adjusted for multiple testing by using
the Benjamini–Hochberg method. The DEG threshold was set as
|logFC| > 1, and the significance criterion was set as an adjusted
p-value < 0.05. The hypergeometric test was used to calculate
the statistical significance of enrichment analysis. An absolute
value of the correlation coefficient |r| > 0.3 (p < 0.05) indicates
a significant interaction relationship (29). All data analyses in
the present study were performed by using R (version 3.5.3)
and Rstudio (version 1.2.1335). Graphic representations were
generated by using GraphPad Prism 9.0 (GraphPad, San Diego,
CA, USA) and Cytoscape (Version 3.7.1).

Results

Characteristics of the screened heart
failure RNA-seq datasets

Figure 1 depicts the flow diagram of our study. After
screening and exclusion according to the aforementioned
criteria, six datasets from the GEO database were finally
included in this analysis: GSE46224 (30), GSE48166, GSE116250
(31), GSE120852 (32), GSE133054 (33), and GSE135055 (34).
The characteristics of these six datasets are summarized in

6 https://www.networkanalyst.ca/
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Supplementary Table 1, including the GSE accession number,
study country, number of patients with HF and NFDs, and
sequencing platform.

Pre-processing of RNA-seq data

After the quality-filtering using the fastp tool, the reads
with a base quality < 20 or the sequence length ≤ 36 nt were
discarded. Then, FastQC was used to assess the sequence quality
of the dataset. The final all-in-one quality control report of each
dataset was generated using MultiQC. The per base sequence
quality and per sequence GC content across all samples of 6
RNA-seq datasets are demonstrated in Figure 2.

Determination of the selected datasets

Reads were mapped to the human genome (UCSC, hg38)
using STAR, and the unique alignments were filtered and
presented in Supplementary Table 2. Samples from each dataset
were characterized by principal component analysis (PCA)
after normalization and adjustment for batch effects using
the RUVSeq package. 2D plots of PCA distribution showed
that complete separation between samples of patients with HF
and NFD samples was observed in five datasets (GSE46224,
GSE116250, GSE120852, GSE133054, and GSE135055), except
GSE48166 (Figure 3). Hence, dataset GSE48166 was excluded
from subsequent analysis. Next, the expression difference and
diagnostic efficacy of the four cardiac function markers, namely,
natriuretic peptide A (NPPA), natriuretic peptide B (NPPB),
myosin heavy chain 6 (MYH6), and myosin heavy chain 7
(MYH7), were examined between samples of patients with HF
and NFD samples in the five sequencing databases. As shown
in Figure 4, the markers showed no differential expression and
poor diagnostic performance between the two groups in dataset
GSE120852, which was also eliminated from further analysis.

Identification of robust differentially
expressed genes by RNA-seq data and
robust rank aggregation method

Using the RUVSeq package, DEGs (patients with HF vs.
NFDs) were screened for adjusted p < 0.05 and |logFC| > 1
in the four identified datasets, respectively, which were
visualized by volcano plots (Figures 5A–D). Furthermore,
an integrated analysis was performed using the R package
“RobustRankAggreg” to generate the differentially expressed
ranked gene list. A total of 201 highly ranked DEGs
were identified in patients with HF vs. NFD samples, and
Supplementary Table 3 exhibits the top 50 upregulated and the
top 50 downregulated DEGs. The top 20 upregulated and the

20 most downregulated genes consistently expressed across all
datasets were visualized by heatmap, as shown in Figure 5E.

Functional enrichment analysis of
differentially expressed genes

To explore the potential biological functions of these
DEGs, GO term enrichment and KEGG pathway analyses
were performed. The upregulated genes were significantly
enriched in extracellular structure organization, skeletal
system development, extracellular matrix organization, T-cell
activation, and connective tissue development in the biological
process (BP) term; the extracellular matrix, collagen-containing
extracellular matrix, endoplasmic reticulum lumen, basement
membrane, and collagen trimer in the cellular component
(CC) term; and extracellular matrix structural constituent,
glycosaminoglycan binding, heparin binding, growth factor
activity, and extracellular matrix structural constituent
conferring tensile strength in the molecular function (MF)
term (Figure 6A). For the downregulated genes, the enriched
GO functions included purine ribonucleotide metabolic
process, coenzyme metabolic process, energy derivation by
oxidation of organic compounds, cellular respiration, and
citrate metabolic process in the BP category; organelle inner
membrane, mitochondrial inner membrane, mitochondrial
matrix, mitochondrial protein complex, and mitochondrial
membrane part in the CC category; and cofactor binding,
coenzyme binding, and NAD binding in the MF category
(Figure 6B).

Regarding KEGG pathway analysis, the MAPK signaling
pathway, TGF-β signaling pathway, T-cell receptor signaling
pathway, Th17 cell differentiation, and ECM–receptor
interaction were mostly associated with the upregulated
genes (Figure 6C), while the downregulated genes were most
enriched in the calcium signaling pathway, carbon metabolism,
valine, leucine and isoleucine degradation, citrate cycle, and
propanoate metabolism (Figure 6D).

Hub gene determination

The PPI network of the 201 DEGs in patients with HF was
constructed by using the STRING database (Figure 7A). Next,
the PPI network was loaded into Cytoscape to screen hub genes
by degree using the cytoHubba plug-in. As shown in Figure 7B,
genes in the inner concentric circles have higher degrees, while
genes in the outer concentric circles have relatively lower
degrees. Therefore, hub genes were the six genes with the highest
degree of connectivity (degree≥ 10) in the innermost concentric
circle: COL1A1, COMP, ASPN, COL10A1, FMOD, and COL9A2.

Furthermore, the relative expression of the identified hub
genes in patients with HF and NFD samples was assessed in the
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FIGURE 2

Quality assessment and GC count evaluation of the data from six RNA sequencing datasets. (A–F) Per base sequence quality across all samples
of GSE46224 (A), GSE48166 (B), GSE116250 (C), GSE120852 (D), GSE133054 (E), and GSE135055 (F). (G–L) Per sequence GC content across all
samples of GSE46224 (G), GSE48166 (H), GSE116250 (I), GSE120852 (J), GSE133054 (K), and GSE135055 (L).
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FIGURE 3

PCA plots of the six RNA-seq datasets in GEO database. PCA distribution plots showed that complete separation between patients with HF and
NFD samples was observed in five datasets after RUVSeq correction, except GSE48166 (C,D), namely, GSE46224 (A,B), GSE116250 (E,F),
GSE120852 (G,H), GSE133054 (I,J), and GSE135055 (K,L). PCA, principal component analysis; GEO, Gene Expression Omnibus; HF, heart failure;
NFD, non-failing donor.

four RNA-seq datasets. The results showed that COL1A1, ASPN,
and FMOD were consistently upregulated in the HF samples of
the four datasets (Figures 7C–F). In addition, univariate ROC
analysis was performed to determine the diagnostic accuracy
of independent hub genes, suggesting that COL1A1, ASPN, and
FMOD had a good diagnostic value in HF (Figures 7G–J).

Hub gene validation

After normalization, four microarray datasets (GSE16499,
GSE26887, GSE57338, and GSE79962) containing human left
ventricular samples of HF and NFDs were used to validate the
expression of these hub genes (Supplementary Table 4 and
Supplementary Figure 1). As shown in Figures 8A–D, the
expression of ASPN or FMOD in HF samples was significantly
higher than that in the NFD samples in all four datasets, and
COL1A1 or COMP showed the similar upregulation in three
datasets. However, the expression of COL9A2 or COL10A1
was not statistically different in the HF and NFD samples in
these datasets. Consistently, the diagnostic values of the hub
genes suggested by the ROC curves revealed the same trend
(Figures 8E–H).

In addition to the microarray datasets, the expression of
hub genes was further validated by qRT-PCR experiments

using 14 heart tissues from patients with HF or NFDs. As
described in Figure 9, ASPN, COL1A1, and FMOD were
significantly upregulated in the six heart tissues of patients
with HF compared with NFDs. Taken together, these validation
results confirmed the differential expression and diagnostic
value of ASPN, COL1A1, and FMOD as reliable hub genes in HF
development.

Gene set enrichment analysis and gene
set variation analysis reveal a close
relationship between hub genes and
glucose metabolism-related pathways

To reveal the underlying mechanism of the three reliable
hub genes (ASPN, COL1A1, and FMOD) involved in HF,
GSEA was conducted to explore significantly enriched pathways
associated with the hub genes in the validation dataset
GSE57338. As shown in Figures 10A–C, the top three
signaling pathways enriched by the DEGs between subgroups
were identified, among which citrate cycle (TCA cycle) and
propanoate metabolism pathways were significantly enriched
in the subgroups of all the three hub genes. In addition, the
enrichment in glucose metabolism-related pathways was further
confirmed by GSVA (Figures 10D–F).
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FIGURE 4

Expression level and diagnostic value of NPPA, NPPB, MYH6, and MYH7 in the five HF-related RNA-seq datasets. The expression level of NPPA,
NPPB, MYH6, and MYH7 in GSE46224 (A), GSE116250 (B), GSE120852 (C), GSE133054 (D), and GSE135055 (E), respectively. ns, not significant
vs. the NFD group; *p < 0.05 vs. the NFD group; **p < 0.01 vs. the NFD group; ****p < 0.0001 vs. the NFD group. The diagnostic values of
NPPA, NPPB, MYH6, and MYH7 in GSE46224 (F), GSE116250 (G), GSE120852 (H), GSE133054 (I), and GSE135055 (J), respectively, as determined
by ROC curves. NPPA, natriuretic peptide A; NPPB, natriuretic peptide B; MYH6, myosin heavy chain 6; MYH7, myosin heavy chain 7; HF, heart
failure; NFD, non-failing donor; ROC, receiver operating characteristic.

Identification of signatures of
transcription factor–differentially
expressed gene regulatory network

To determine the potential roles of TFs in regulating
the transcriptional expression of DEGs, the specific TF–gene

regulatory network was established based on the top 20
upregulated and the 20 most downregulated integrated DEGs
(Figure 11A). As demonstrated in Figures 11B,C, several TFs,
including CEBPB, MEF2A, PPARG, BRCA1, TEAD1, TFAP2A,
TP63, SREBF1, and PDX1, showed significant correlation with
multiple DEGs and were differentially expressed in patients
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FIGURE 5

Identification of DEGs by RUVSeq and the RRA method. (A–D) Using RUVSeq package, DEGs (patients with HF vs. NFDs) were screened in the
four selected RNA-seq datasets GSE46224 (A), GSE116250 (B), GSE133054 (C), and GSE135055 (D), as visualized by volcano plots. Adjusted
p < 0.05 and |logFC| > 1. (E) Heatmap of the top 20 upregulated and the 20 most downregulated DEGs screened from the four selected
RNA-seq datasets using RRA analysis. DEGs, differentially expressed genes; RRA, robust rank aggregation; HF, heart failure; NFD, non-failing
donor; FC, fold change.
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FIGURE 6

Functional enrichment analysis of the robust HF-related DEGs. (A) Top five enriched GO functions of the upregulated genes regarding BP, CC,
and MF terms, as visualized by bubble plots. (B) Top five enriched GO functions of the downregulated genes regarding BP, CC, and MF terms, as
visualized by bubble plots. (C) Top eight enriched KEGG pathways of the upregulated genes, as visualized by bubble plots. (D) Top eight
enriched KEGG pathways of the downregulated genes, as visualized by bubble plots. HF, heart failure; DEGs, differentially expressed genes; GO,
gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

with HF and NFDs in GSE57338 (p < 0.05). According to the
defining criteria of the significant TF–DEG regulation pair, we
identified TP63-SERTM1/SYTL5/UNC80, PPARG-XG, BRCA1-
NRG1, MEF2A-LSAMP, SREBF1-NPPA/HOOK1/CENPA,
TEAD1-CA14/MYH6/PENK, and PDX1-SEC14L5 as significant
TF–DEG pairs (Figure 11D).

Discussion

In the present study, four HF RNA-seq GEO datasets
(GSE46224, GSE116250, GSE133054, and GSE135055) were
finally included, involving a total of 100 patients with HF and
38 NFDs. In total, 201 robust HF-related DEGs were obtained
utilizing RUVSeq and RRA method, and ASPN, COL1A1,
COL9A2, COL10A1, COMP, and FMOD were identified as
hub genes with the highest degree of connectivity using
STRING database and cytoHubba plug-in. Among them, ASPN,
COL1A1, and FMOD exhibited differential expressions and
excellent diagnostic efficiency in all four RNA-seq datasets,
which were further validated using data from the four screened

HF microarray datasets (GSE16499, GSE26887, GSE57338, and
GSE79962). Moreover, the significant upregulation of ASPN,
COL1A1, and FMOD was experimentally confirmed by qRT-
PCR using the heart tissues of patients with HF and NFD
samples. In addition, functional enrichment analysis showed
that myocardial fibrosis-related pathways resulted from T-cell-
mediated immune response and myocardial glucose metabolism
were closely associated with the onset and progression of
HF. In addition to this, the TF–DEG regulatory network was
established, and 13 significant TF–DEG pairs were identified.

Despite the great advancement in HF medical treatment,
it remains the major and growing public health problem that
leads to considerable morbidity and mortality (35). Robust
biomarkers for early diagnosis of HF are the key for novel
targeted pharmacological approaches and for improving the
prognosis of patients (36). Consistently, serum type B natriuretic
peptide (BNP) has been recognized as a well-established
biomarker for the diagnosis of HF. However, a recent study
reported that a subset (4.9%) of hospitalized patients with
confirmed HF had unexpectedly low BNP levels (<50 pg/ml),
and a small proportion (0.1–1.1%) had BNP levels even below
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FIGURE 7

Identification of HF-related hub genes from the four selected RNA-seq datasets. (A) PPI network of the 201 DEGs in patients with HF was
constructed by using the STRING database. The nodes represent proteins, and the edges represent the interactions. (B) Robust hub genes were
screened by degree using the cytoHubba plug-in in Cytoscape. The inner the concentric circles, the larger the degree values of the genes.
(C–F) Relative expression of the six identified hub genes in GSE46224 (C), GSE116250 (D), GSE133054 (E), and GSE135055 (F), respectively. ns,
not significant vs. the NFD group; *p < 0.05 vs. the NFD group; **p < 0.01 vs. the NFD group; ***p < 0.001 vs. the NFD group; ****p < 0.0001
vs. the NFD group. (G–J) Diagnostic values of the six identified hub genes in GSE46224 (G), GSE116250 (H), GSE133054 (I), and GSE135055 (J),
respectively, as determined by ROC curves. HF, heart failure; RNA-seq, RNA sequencing; PPI, protein–protein interaction; DEGs, differentially
expressed genes; STRING, search tool for the retrieval of interacting genes; NFD, non-failing donor; ROC, receiver operating characteristic.

detection limits (37). Therefore, it remains urgent to explore
novel molecules with potentially new mechanisms for the
development of HF.

Recently, gene mining using microarrays or RNA-seq
datasets has been widely used to generate the transcriptomic
profiles of HF development. Zhang et al. identified six hub
genes (BCL3, HCK, PPIF, S100A9, SERPINA1, and TBC1D9B)
as potential biomarkers of HF by using the weighted gene co-
expression network analysis (WGCNA) method through three
HF datasets, namely, GSE59867, GSE1869, and GSE42955 (38).
Tian et al. constructed a random forest algorithm and artificial
neural network and detected six hub genes by mining of two
HF datasets (GSE57345 and GSE141910) (39). However, the

aforementioned studies were based on the integration of DEGs,
rather than raw data from different datasets. To date, the
inconsistency between different platforms and datasets remains
the major hurdle blocking the bioinformatics mining of HF-
related genes, especially for RNA-seq datasets.

The RRA method, a recently emerging analysis method, has
been widely used to integrate different datasets and produce a
ranked list of the DEGs (40). For example, Ma et al. utilized the
RRA method to integrate four eligible DCM microarray datasets
from the GEO and developed a 7-gene signature predictive
model of DCM (11). While in the present study, using RUVSeq
to substantially decrease batch effects, we integrated, for the first
time, the different RNA-seq datasets of the GEO database to
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FIGURE 8

Validation of the six hub genes using four normalized HF-related microarray datasets from the GEO database. (A–D) Relative expression of the
six hub genes in GSE16499 (A), GSE26887 (B), GSE57338 (C), and GSE79962 (D), respectively. ns, not significant vs. the NFD group; *p < 0.05 vs.
the NFD group; **p < 0.01 vs. the NFD group; ***p < 0.001 vs. the NFD group; ****p < 0.0001 vs. the NFD group. (E–H) Diagnostic values of
the six identified hub genes in GSE16499 (E), GSE26887 (F), GSE57338 (G), and GSE79962 (H), respectively, as determined by ROC curves. HF,
heart failure; GEO, Gene Expression Omnibus; NFD, non-failing donor; ROC, receiver operating characteristic.

Frontiers in Cardiovascular Medicine 13 frontiersin.org

https://doi.org/10.3389/fcvm.2022.916429
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-916429 October 22, 2022 Time: 14:25 # 14

Tu et al. 10.3389/fcvm.2022.916429

FIGURE 9

Validation of the six hub genes by qRT-PCR using human heart tissues from patients with HF and NFDs. The expression level of ASPN (A),
COL1A1 (B), FMOD (C), COMP (D), COL9A2 (E), and COL10A1 (F) in heart tissues from HF patients and NFDs, as determined by qRT-PCR. Data
are presented with mean ± SD. ****p < 0.0001 vs. the NFD group. QRT-PCR, quantitative real-time reverse transcription PCR; HF, heart failure;
NFD, non-failing donor; SD, standard deviation.

explore DEGs and hub genes associated with HF by using the
RRA method. Through internal RNA-seq dataset and external
microarray dataset validation, ASPN, COL1A1, and FMOD were
finally identified as real hub genes of HF, which were further
confirmed by qRT-PCR using the heart tissues from patients
with HF and NFDs.

Interestingly, the identified hub genes ASPN (41), COL1A1
(42), and FMOD (43), all belong to the type I collagen members
in the extracellular matrix (ECM) composition and have been
reported to play important roles in the development and
progression of various diseases, especially malignant tumors.
For example, ASPN was reported to enhance tumor invasion
and cancer-associated fibroblasts via activation of the CD44-
Rac1 pathway in gastric cancer (41). Ma et al. highlighted
the role of COL1A1 as a potential diagnostic biomarker
and therapeutic target in early development and metastasis
of hepatocellular carcinoma (42). Ao et al. revealed that
FMOD could promote tumor angiogenesis by upregulating the
expression of angiogenic factors in human small-cell lung cancer

(43). Regarding the function of hub genes in HF development,
a multi-level transcriptomic study conducted by Hua et al.
suggested that COL1A1 might be a plasma biomarker of HF
and associated with HF progression, especially to predict the
1-year survival from HF onset to transplantation. A COL1A1
content ≥ 256.5ng/ml in plasma was found to be associated
with poor survival within 1 year of heart transplantation from
HF (34). In the study conducted by Andenæs et al., FMOD
was found 3–10-fold upregulated in hearts of patients with
HF and mice, and FMOD-KO mice showed a relatively mild
hypertrophic phenotype (44). However, to the best of our
knowledge, there are no experimental studies focusing on the
role of ASPN in HF. Therefore, our multi-dataset RRA analysis,
followed by microarray dataset and experimental validation,
provides more robust and comprehensive evidence for the value
of the three ECM-related genes, namely, COL1A1, FMOD, and
ASPN, in HF development.

Recent advances have highlighted the crucial role of immune
activation in the development and progression of HF. A study
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FIGURE 10

GSEA and GSVA of ASPN, COL1A1, and FMOD in the selected microarray dataset GSE57338. (A–C) GSEA-enriched pathways of DEGs related to
ASPN (A), COL1A1 (B), or FMOD (C) expression in the GSE57338 dataset. (D–F) GSVA-derived clustering heatmaps showing the enriched
pathways of DEGs related to ASPN (D), COL1A1 (E), or FMOD (F) expression in GSE57338 dataset. GSEA, gene set enrichment analysis; GSVA,
gene set variation analysis.

by Aghajanian et al. demonstrated that adoptive transfer of T
cells that express a chimeric antigen receptor against fibroblast
activation protein can inhibit myocardial fibrosis and improve
cardiac function in mice (45). Consistently, according to the
GO term analysis in our study, the upregulated HF-related
DEGs were enriched in T-cell activation of the “BP” term, the
extracellular matrix of “CC” terms, and the extracellular matrix
structural constituent of “MF” terms. Moreover, regarding
the KEGG pathway analysis, the T-cell receptor signaling
pathway and ECM–receptor interaction were identified as

the significantly enriched pathways of the upregulated DEGs.
Considering that all the three hub genes—ASPN, COL1A1,
and FMOD—are closely associated with the ECM, we thus
speculate a potentially key pathway in the development of HF,
that is, T-cell-mediated immune responses lead to the imbalance
in ECM anabolism and catabolism, ultimately resulting in
myocardial fibrosis and HF.

To further explore the potential mechanism of ASPN,
COL1A1, and FMOD in HF, we performed GSEA and GSVA
on the validation dataset of GSE57338. Results showed that
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FIGURE 11

Construction of the TF–DEGs regulatory network in HF. (A) TF–DEG regulatory network was established based on the top 20 upregulated and
the 20 most downregulated DEGs. (B) Correlation matrix between the identified TFs and DEGs. An absolute value of correlation coefficient
|r| > 0.3 and p < 0.05 indicates a statistically significant relationship. (C) Relative expression of the identified TFs in the validation microarray
dataset GSE57338. ns, not significant vs. the NFD group; *p < 0.05 vs. the NFD group; **p < 0.01 vs. the NFD group; ****p < 0.0001 vs. the NFD
group. (D) Identified significant TF–DEG regulation pairs according to the criteria. TFs, transcription factors; DEGs, differentially expressed
genes; HF, heart failure; NFD, non-failing donor.

ASPN-, COL1A1-, or FMOD-related DEGs were enriched
in the “citric acid cycle (TCA cycle)” and “propionic acid
metabolism” pathways, both of which are closely associated
with glucose metabolism (46, 47). Notably, targeting cardiac

glucose metabolism has been recognized as a promising
therapeutic strategy for HF treatment. Liu et al. reported
that dichloroacetate, a pyruvate dehydrogenase kinase
inhibitor, could alter glucose metabolism in cardiomyocytes by
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stimulating the activity of pyruvate dehydrogenase complex,
thereby improving cardiac efficiency (48). In addition, inhibitors
of fatty acid oxidation such as trimetazidine (49), perhexiline
(50), and etomoxir (51) can improve cardiac function in patients
with HF by increasing glucose oxidation.

Aberrant regulation of TFs is strongly associated with the
onset and progression of HF (52). Therefore, in our research,
we further investigated the TF–gene interactions to detect
the transcriptional regulators of the robust DEGs. Among
the seven identified significant TFs, MEF2A (53) and PPARG
(54) have been reported to play a role in cardiac remodeling
and water retention in HF, respectively. Liu et al. found that
suppressing expression of TEAD1, the Hippo signaling effector,
could activate the necroptotic pathway and induce massive
cardiomyocyte necroptosis, ultimately leading to impaired
cardiac function (55). Moreover, loss of BRCA1 in mouse
cardiomyocytes resulted in adverse cardiac remodeling and
poor ventricular function (56). Although the functions of
these TFs in HF have been partially reported, the regulatory
relationship of the TF–DEG pairs and the in-depth molecular
mechanisms remain to be further validated through HF-related
experimental studies.

Our study has several limitations. First, the sample size of
patients with HF is relatively small, although we have included
as many datasets that met the criteria as possible. Future
studies with larger sample sizes are needed to confirm these
findings. Second, this study is mainly based on bioinformatics
analysis and qRT-PCR validation of hub gene expression.
Further experimental research is needed to clarify the in-
depth mechanism of the hub gene-related HF regulation.
Third, information about disease grades, treatment methods,
and prognosis of patients with HF is not available in the
database, leading to the failure to analyze correlation between
hub genes and clinical characteristics or prognosis of HF.
Fourth, the etiology of HF is complex, involving multiple
environmental factors in addition to genetic factors (57), such
as behavioral factors, socioeconomic and psychosocial factors,
air quality, and meteorological factors (58–60). Horton et al.
reported that the influence of modifiable lifestyle factors cannot
be ignored in the development of direct-to-consumer (DTC)
genetic tests (61). In recent years, emerging evidence has
shown that gene–environment interactions play an important
role in complex disease progression. Bentley et al. revealed
that the genetic associations with lipids could be modified by
smoking (62). Therefore, future research needs to further focus
on the role of environmental factors and gene–environment
interactions in HF.

Conclusion

In conclusion, the present study integrated, for the first
time, the different RNA-seq datasets of HF from the GEO

database and identified robust HF-related DEGs utilizing
RUVSeq and the RRA method. Furthermore, three reliable
hub genes—ASPN, COL1A1, and FMOD—were screened and
validated by bioinformatics and experimental assays. Functional
enrichment analysis showed that DEGs and hub genes were
associated with T-cell-mediated immune response and the
glucose metabolism signaling pathway. In addition, significant
TF–DEG regulatory network of HF was further established.
However, high-quality basic or clinical research is required to
deeply investigate the mechanisms by which these hub genes are
involved in HF and to confirm their values as biomarker for HF
diagnosis and treatment.
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