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Background: Although advanced surgical and interventional treatments are

available for advanced aortic valve calcification (AVC) with severe clinical

symptoms, early diagnosis, and intervention is critical in order to reduce

calcification progression and improve patient prognosis. The aim of this study

was to develop therapeutic targets for improving outcomes for patients with

AVC.

Materials and methods: We used the public expression profiles of individuals

with AVC (GSE12644 and GSE51472) to identify potential diagnostic markers.

First, the R software was used to identify differentially expressed genes

(DEGs) and perform functional enrichment analysis. Next, we combined

bioinformatics techniques with machine learning methodologies such as

random forest algorithms and support vector machines to screen for and

identify diagnostic markers of AVC. Subsequently, artificial neural networks

were employed to filter and model the diagnostic characteristics for

AVC incidence. The diagnostic values were determined using the receiver

operating characteristic (ROC) curves. Furthermore, CIBERSORT immune

infiltration analysis was used to determine the expression of different immune

cells in the AVC. Finally, the CMap database was used to predict candidate

small compounds as prospective AVC therapeutics.

Results: A total of 78 strong DEGs were identified. The leukocyte migration

and pid integrin 1 pathways were highly enriched for AVC-specific DEGs.

CXCL16, GPM6A, BEX2, S100A9, and SCARA5 genes were all regarded

diagnostic markers for AVC. The model was effectively constructed using

a molecular diagnostic score system with significant diagnostic value

(AUC = 0.987) and verified using the independent dataset GSE83453
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(AUC = 0.986). Immune cell infiltration research revealed that B cell naive,

B cell memory, plasma cells, NK cell activated, monocytes, and macrophage

M0 may be involved in the development of AVC. Additionally, all diagnostic

characteristics may have varying degrees of correlation with immune cells.

The most promising small molecule medicines for reversing AVC gene

expression are Doxazosin and Terfenadine.

Conclusion: It was identified that CXCL16, GPM6A, BEX2, S100A9, and

SCARA5 are potentially beneficial for diagnosing and treating AVC.

A diagnostic model was constructed based on a molecular prognostic score

system using machine learning. The aforementioned immune cell infiltration

may have a significant influence on the development and incidence of AVC.

KEYWORDS

aortic valve calcification, diagnostic model, machine learning, immune infiltration,
diagnostic marker

Introduction

Aortic valve calcification (AVC) is the most prevalent type
of valvular heart disease and a major cause of morbidity and
mortality (1, 2). It is an aggressive disease that begins with
changes in valve cell biology and proceeds to leaflet thickening,
neovascularization, and calcium deposition, eventually causing
calcific aortic stenosis (3–5). The most common cause of aortic
stenosis is calcific aortic valve disease, which affects one in every
four people over the age of 65 (6, 7). The burden of AVC is
predicted to grow from 2.5 million in 2000 to 4.5 million by
2030 with increased life expectancy and aging population (8),
imposing a considerable economic and health cost globally (9,
10). There is no effective treatment for symptomatic aortic valve
stenosis other than surgical or interventional valve replacement
because pharmaceutical therapies have not been proved to be
effective (11–13). Consequently, there is a clinical need for a
better understanding of the underlying processes of AVC, as well
as the identification of novel treatment targets for slowing its
development. Therefore, identifying critical genes, biomarkers,
and pathways is critical for early detection, prevention, and
precision therapy.

Aortic stenosis was once considered a degenerative disorder
caused by “wear and tear” on the valve, resulting in gradual
calcium buildup inside the valve. Although shear pressure and

Abbreviations: AVC, aortic valve calcification; DEGs, differentially
expressed genes; ROC, receiver operating characteristic; CXCL16,
C-X-C chemokine ligand 16; GPM6A, glycoprotein M6A; BEX2, brain
expressed X-linked 2; S100A9, S100 calcium-binding protein A9;
SCARA5, scavenger receptor class A member 5; GO, gene ontology;
KEGG, kyoto encyclopedia of genes and genomes; PCA, principal
component analysis; ANN, artificial neural networks; RF, random forest;
SVM-RFE, support vector machine recursive feature elimination; AUC,
area under the curve; BP, biological process; CC, cellular component;
MF, molecular function; IL, interleukin; TNF, tumor necrosis factor.

injury play a role in the development of aortic stenosis, new
evidence suggests that it is caused by an extremely complicated
and strictly regulated series of activities, each of which may
be conducive to medical intervention if detected in the early
stages (14). The progression of aortic valve stenosis can be
divided into two stages: the early stage, which is similar to
atherosclerosis and involves lipid deposition in the valve, as well
as injury and inflammation; the late stage, which involves the
appearance of pro-valvular calcification and bone-promoting
factors (15). The constricted aortic orifice hinders cardiac
output as valvular fibrosis and calcification progress, resulting
in angina, chest discomfort, and decreased exercise tolerance.
The ultimate outcome is to lead to left ventricular remodelling,
which necessitates aortic valve replacement or death. Surgery
and transcatheter aortic valve replacement (TAVR) are the most
effective treatment when AVC reaches the terminal stage with
severe clinical symptoms. However, the operation is costly,
and it is accompanied by risks associated with postoperative
valve and anticoagulation, such as reoperation of artificial valve
insufficiency, bleeding, and embolism (6).

Machine learning approaches such as random forest (RF),
support vector machine-recursive feature elimination (SVM-
RFE), and artificial neural networks (ANN) are effective in
identifying and researching biomarkers for a variety of diseases
(16, 17). With the advancement of machine learning, it is
now possible to choose and transform the most significant
differentially expressed genes (DEGs) into statistical models
that can assist clinicians in picking sensible and beneficial
treatment strategies (18). Therefore, it is critical to gain a better
understanding of the underlying processes of AVC and identify
potential treatment targets. In recent years, high-throughput
sequencing data generated using microarray technology have
aided in the identification of DEGs and their roles, as well as
the deciphering of the pathways via which they are linked to
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TABLE 1 The characteristic of three datasets.

Datasets AVC Normal Platform

Female Male Female Male

GSE12644 0 10 0 10 GPL570

GSE51472 5 10 GPL570

GSE83453 0 9 0 8 GPL10558

AVC, aortic valve calcification.

the advancement of many complex disorders (19). Secondary
data mining is enabled by a comprehensive bioinformatics
analysis of publicly available genetic data, which allows us to
identify biomarkers associated with illnesses (20). Accordingly,
the purpose of this work was to construct and test a machine
learning-based diagnostic model for AVC patients, as well as
to get thorough knowledge of the immunological processes
underlying AVC development and to screen potential small
molecule medicines.

Materials and methods

Downloading and processing data

In this study, the GSE12644 (21) and GSE51472 (22) were
retrieved from GEO1 (23) and both were derived from the
GPL570 platform of the 84 Affymetrix Human Genome U133
Plus 2.0 Aray. The GSE12644 dataset contains 10 AVC and 10
normal samples, which were collected from the aortic valve.
The GSE51472 dataset contains 10 AVC and 5 normal samples,
which were collected from the aortic valve. The probes in
each dataset were converted to gene symbols using the probe
annotation files provided by the researchers and the results
were analyzed. When several probes correspond to the same
gene symbol, we choose the average of the expression levels
of the genes. Expression values were log2 transformed for
the GSE51472 dataset. In addition, since both GSE12644 and
GSE51472 share a common platform, it was advantageous for
data merging. Using the “sva” package, the two datasets were
combined together to form a metadata dataset and normalized
for conducting integration studies (24). We used the ComBat
function to eliminate batch effects between the two datasets
(25). We used principal component analysis (PCA) (26) to
determine if batch effects had been eliminated. The AVC dataset
(GSE83453) (27) was also identified from the GEO database and
served as the validation cohort, including 9 AVC samples and 8
normal samples. Table 1 contains information of the GSE12644,
GSE51472, and GSE83453 datasets.

1 www.nci.nih.gov/geo

Differential expression analysis

The “limma” package (28) was used to filter the DEGs for the
combined dataset. The “ggplot2” package was used to visualize
differential expression of the DEGs using heat map and volcano
plot. The DEGs were deemed statistically significant in this
investigation when their P < 0.05 and |log2FC| > 0.585.

Functional and pathway enrichment
analysis of differentially expressed
genes

Metascape2 is used to analyze pathway enrichment
and annotate biological processes in order to completely
comprehend the information contained in each gene (29).
In this study, Metascape was used to conduct gene ontology
and pathway enrichment analyses on the DEGs from the
merged dataset to identify the most significant functional
biological terms and signaling pathways. Statistical significance
was determined based on the number of enriched genes ≥ 3
and P < 0.01. Then, all key terms were clustered based on
membership similarity and the term with the greatest degree
of enrichment was selected to represent the cluster. The
“clusterProfiler” package was used to assess gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment to reveal the functions and pathways of
distinctive genes. The q value < 0.05 and adjusted P-value < 0.05
were considered significantly enriched.

Key gene screening and diagnostic
effectiveness

RF (30) and SVM-RFE (31) were used to scan for unique
and critical AVC biomarkers. The “randomForest” package
was used to generate a random forest model for the DEGs.
First, the appropriate amounts of variables (mtry parameter, the
optimal number of variables used in the binary tree for a given
node) was established. The optimal number of trees was 500
in the random forest. Next, a random forest model was built,
and its dimensionality significance value was evaluated using
the decreasing accuracy approach (Gini coefficient method).
Disease-specific genes with a significance value > 2 were
selected. Support vector machine (SVM) is a classification and
regression technique that is often used in supervised machine
learning, and the RFE technology is used to choose the best
gene from the metadata queue in order to reduce overfitting.
Therefore, SVM-RFE was used to find the set of genes with
the greatest discriminative potential. Then, the intersecting

2 http://metascape.org
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genes from the two categorization models were chosen for
further investigation and represented using venn diagrams and
heat maps to show variations in normal and AVC samples
of the merged dataset. The validity of important biomarkers
was assessed using a validation dataset (GSE83453) and the
difference between normal and AVC samples was shown in box
plot graphs. The receiver operating characteristic (ROC) curves
and the area under the curve (AUC) were used to determine
the diagnostic capability of genes. Statistical significance was
established by a two-sided P < 0.05.

Aortic valve calcification diagnosis
using machine learning

Five markers were obtained by combining two machine
learning techniques. We first obtained the logFC values of the
five genes in all samples of the combined dataset of GSE12644
and GSE51472 datasets (15 normal and 20 AVC samples in total)
for the next analysis. Genes with logFC > 0 were upregulated
genes and genes with logFC < 0 were downregulated genes.
Subsequently, The expression values of the five markers were
translated into a score table named “Gene Score” by using
the “BiocManager” package (32). The specific conversion rules
were as follows: if the expression levels of an upregulated
gene in a sample were greater than the median expression
levels of the gene across all samples, the gene score of the
upregulated gene was transformed to 1, else it was transformed
to 0. If the expression levels of a downregulated gene in a
sample was greater than the median expression levels of the
gene across all samples, the gene score of the upregulated
gene transformed to 0, else it was transformed to 1. Generally,
the gene score was composed of 35 lines of samples and five
columns of DEGs. The results of gene score are described in
Table 2.

Finally, we used the R-based “NeuralNetTools” and
“neuralnet” packages to build the neural network diagnostic
model and set the seed = 12345678. The diagnosis features
of samples and the gene score for each of the five diagnostic
markers were denoted by y and x, respectively. The data for
building the model was gene score for all samples of the
combined dataset of GSE12644 and GSE51472 datasets. The
ANN consisted of three layers: an input layer, a hidden layer,

TABLE 2 Diagnostic efficacy of five genes.

Genes Diagnostic efficacy (Area under curve)

Merged dataset GSE83453

CXCL16 0.953 0.861

GPM6A 0.897 0.944

BEX2 0.867 0.861

S100A9 0.897 0.875

SCARA5 0.887 0.931

and an output layer. We created five hidden nodes in the
hidden layer and used the rectified linear unit as an activation
function. In the output layer, we defined two nodes (normal
and AVC) and the activation function of each node was a
softmax function. The cross-entropy error was defined as a loss
function, and the “rprop+” algorithm was used to optimize the
weight values. After training, we choose the maximum weight
value for a particular marker in the hidden layer named “Gene
Weight” (33).

Development and validation of
diagnostic models

The model for diagnostic AVC patients was built. The
diagnostic model was successful in diagnosing responsiveness of
drugs and ulcerative colitis (34, 35). The GSE83453 dataset were
used to validate the effectiveness of the diagnostic model based
on the training dataset (the combined dataset of GSE12644 and
GSE51472). According to the conversion rules, we obtained
an updated “Gene Score” and calculated the summation of
“Gene Score” × “Gene Weight”. To determine the diagnostic
accuracy of this model, the area under the receiver operating
characteristic curve (ROC) was determined using the “ROC”
package. The distinction was considered good when the AUC
value was between 0.8 and 9, and exceptional when the AUC
value was > 0.9 (36).

A correlation analysis of 22 immune
cells associated with immune
infiltration

The CIBERSORT site was used to screen immune cell
matrices. To generate immunocell infiltration matrices, P < 0.05
was used. A PCA clustering analysis of the immune cell
infiltration matrix was performed using the “ggplot2” package,
whereas the “corrplot” package was used to generate a
correlation heat map to visualize the association between
22 infiltrating immune cells. Furthermore, the “ggplot2”
package was used to analyze and visualize the Spearman
correlation between distinctive diagnostic markers and immune
infiltration cells.

Small molecule screening

The profiles of the five marker genes were analyzed using the
CMap database3 to identify prospective medications that could
reverse the consequences of AVC. First, the five marker genes
were divided into two groups: upregulated and down-regulated.
Next, genes from both groups were uploaded into the CMAP

3 https://clue.io/
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database to identify potential small therapeutic compounds,
with a cut-off threshold of P < 0.05 regarded significant. After
gathering all the data, the enrichment scores (–1 to 1) were
computed to determine how closely genes and medications
matched. An enrichment score > 0 indicated the presence of
potential synergistic effects to AVC, a sign that the molecules
were able to mimic the biological status of AVC. An enrichment
score < 0 may be meant as a potential therapeutic drug.

Results

The procedures of our cohort research are shown in
Figure 1. The training datasets (GSE12644 and GSE51472) and
validation dataset (GSE83453) for AVC are described in Table 1.

Identification of differentially
expressed genes

The gene expression levels of combined GEO series that
were handled for batch effects were standardized, and the

findings of pre- and post-standardized experiments are shown
in Supplementary Figures 1A,B. A total of 21,654 genes
were recognized in the GSE12644 and GSE51472 datasets, and
differentially expressed genes (DEGs) associated with AVC were
verified. A total of 75 DEGs, including 48 upregulated genes
and 27 downregulated genes, were found in the AVC samples
compared to the normal samples (| log2 FC| > 0.585 and
P < 0.05) (Supplementary Table 1). Figures 2A,B depict a heat
map plot and a volcano plot of 75 DEGs that were included in
the subsequent studies.

Functional enrichment analysis of the
differentially expressed genes in the
training dataset

An enrichment analysis was conducted using Metascape to
identify the top 20 clusters with substantial DEGs enrichment
to gain a better understanding of the functional and metabolic
pathways associated with these DEGs (Figures 3A,B and
Supplementary Table 2). Leukocyte migration, the pid
integrin1 pathway, and extracellular matrix organization

FIGURE 1

Flow chart of the research process.
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FIGURE 2

Visualization of differential analysis. (A) Heat maps of DEGs in AVC and normal samples. Red represents AVC samples, and blue represents
normal samples. Blue indicates that the relative gene expression level is low, while red indicates that the relative gene expression level is high.
(B) The volcano map illustrates the distribution of DEGs in the combined data set. Red indicates a high level of DEGs expression, and green
indicates a low level of DEGs expression.
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FIGURE 3

Gene function enrichment analysis results. (A) The network of the top 20 enriched term clusters. The color indicates cluster identification, the
thickness of the edge indicates the similarity score, and terms with a similarity score > 0.3 are connected by an edge. (B) The top 20 clusters are
shown in a heat map. Color is used to indicate cluster identification; the lower the p-value, the darker the color.

were the most enriched gene ontology terms for biological
processes. Gene Ontology (GO) projects included biological
process (BP), cellular component (CC), and molecular
function (MF) (Figure 4A and Supplementary Table 3). The
major enrichments in BP were leukocyte chemotaxis, cell
chemotaxis, and extracellular matrix organization; the major
enrichments in CC were collagen-containing extracellular
matrix, complex of collagen trimers, and endoplasmic reticulum
lumen; and the major enrichments in MF were collagen
binding and extracellular matrix structural organization.
Additionally, KEGG enrichment analysis revealed considerable
enrichment in the extracellular matrix-receptor interaction,

focal adhesion, and chemokine signaling pathways (Figure 4B
and Supplementary Table 4). The inhibitors of the enriched
terms and pathways, which were more involved in AVC, may be
investigated as additional therapy options for AVC patients.

Screening and diagnostic efficacy of
key genes

In this study, the SVM-RFE technique was used to identify
22 genes as relevant biomarkers for DEGs (Figure 5A and
Supplementary Table 5). Furthermore, the RF algorithm
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FIGURE 4

Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis results. (A) The top 10 items from the GO
pathway enrichment studies are shown in the form of a bar plot. Statistical significance was defined as a P-value < 0.05. BP denotes biological
processes; CC denotes cellular components, and MF denotes molecular function. (B) The top eight terms from the KEGG pathway enrichment
studies are shown in the form of a circle plot. A p-value < 0.05 was considered statistically significant.
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FIGURE 5

Screening for diagnostic markers using a comprehensive technique and five markers were heat mapped in AVC and normal samples.
(A) Random forest (RF) algorithm to screen for diagnostic markers. (B) Support vector machine-recursive feature elimination (SVM-RFE)
algorithm to screen for diagnostic markers. (C) Venn diagram illustrating the intersection of diagnostic markers acquired using two methods.
(D) Each row corresponds to a single sample, whereas each column corresponds to a particular gene. The red color denotes AVC samples,
while the blue hue denotes normal samples. The color scale indicates the relative degree of gene expression in a particular slide: Blue denotes
low levels of relative expression, while red shows high levels of relative expression.
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FIGURE 6

Gene expression of five markers is visualized using a box plot in the test set. (A) Box plot of BEX2 expression in the test set. (B) Box plot of
CXCL16 expression in the test set. (C) Box plot of GPM6A expression in the test set. (D) Box plot of S100A9 expression in the test set. (E) Box plot
of SCARA5 expression in the test set.
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FIGURE 7

The diagnostic effect of five markers in the training set. (A) The diagnostic effect of BEX2 in the training set. (B) The diagnostic effect of CXCL16
in the training set. (C) The diagnostic effect of GPM6A in the training set. (D) The diagnostic effect of S100A9 in the training set. (E) The
diagnostic effect of SCARA5 in the training set. The points marked on the ROC curve are the optimal threshold points, and the values in
parentheses represent sensitivity and specificity. The AUC value is the area under the ROC curve.
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FIGURE 8

The diagnostic effect of five markers in the test set. (A) The diagnostic effect of BEX2 in the test set. (B) The diagnostic effect of CXCL16 in the
test set. (C) The diagnostic effect of GPM6A in the test set. (D) The diagnostic effect of S100A9 in the test set. (E) The diagnostic effect of
SCARA5 in the test set. The points marked on the ROC curve are the optimal threshold points, and the values in parentheses represent
sensitivity and specificity. The AUC value is the area under the ROC curve.
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TABLE 3 Results of gene scores for all samples of the combined
dataset of GSE12644 and GSE51472.

Samples CXCL16 S100A9 GPM6A BEX2 SCARA5

GSM317342_Normal 0 1 0 0 0

GSM317343_Normal 0 0 0 0 0

GSM317344_Normal 0 0 0 0 0

GSM317345_Normal 0 0 0 0 0

GSM317346_Normal 0 0 0 0 0

GSM377368_Normal 0 0 0 0 0

GSM377369_Normal 1 0 0 0 0

GSM377370_Normal 0 0 0 0 0

GSM377371_Normal 0 0 0 0 1

GSM377372_Normal 0 0 0 0 1

GSM1246204_Normal 0 0 1 0 0

GSM1246205_Normal 0 0 0 0 0

GSM1246206_Normal 0 0 0 1 0

GSM1246207_Normal 0 0 0 0 0

GSM1246208_Normal 0 0 1 0 0

GSM317347_AVC 1 1 1 1 0

GSM317348_AVC 1 1 1 1 1

GSM317349_AVC 1 1 1 1 1

GSM317350_AVC 1 1 1 1 1

GSM317351_AVC 1 1 1 1 1

GSM377373_AVC 1 1 0 1 1

GSM377374_AVC 1 1 1 1 1

GSM377375_AVC 1 1 0 1 1

GSM377376_AVC 1 1 1 1 1

GSM377377_AVC 1 0 1 1 1

GSM1246209_AVC 0 0 1 1 0

GSM1246210_AVC 0 0 0 1 1

GSM1246211_AVC 0 0 0 0 0

GSM1246212_AVC 0 1 1 1 0

GSM1246213_AVC 1 1 1 1 1

GSM1246214_AVC 1 1 1 0 1

GSM1246215_AVC 1 1 1 0 1

GSM1246216_AVC 1 1 1 1 1

GSM1246217_AVC 1 1 1 1 1

GSM1246218_AVC 1 1 1 1 1

AVC, aortic valve calcification.

identified eight genes as significant biomarkers (Figure 5B
and Supplementary Table 6). Five genes, including CXCL16,
GPM6A, BEX2, S100A9, and SCARA5, overlapped across the
two methods (Figure 5C), with two (CXCL16 and S100A9)
being upregulated and three (GPM6A, BEX2, and SCARA5)
being downregulated (Figure 5D). The validation set was used
to determine the expression levels of the five biomarkers. Genes
BEX2, GPM6A, and SCARA5 were considerably downregulated
in AVC samples compared to normal samples (P < 0.05),
whereas CXCL16 and S100A9 were significantly upregulated
(Figures 6A–E), demonstrating that the findings were consistent
and reliable. Additional analyses were conducted in the training

and validation sets to establish the diagnostic effectiveness of the
five markers. Table 2 for CXCL16, GPM6A, BEX2, S100A9, and
SCARA5 in the merged dataset indicated that their probability
of being useful biomarkers was 0.953, 0.897, 0.867, 0.897, and
0.887, respectively (Figures 7A–E), showing each biomarker
had a high diagnostic value accuracy. In the GSE83453 dataset,
Table 2 for CXCL16, GPM6A, BEX2, S100A9, and SCARA5 had
probability of 0.861, 0.944, 0.861, 0.875, and 0.931, respectively,
indicating that the five biomarkers had a high diagnostic
accuracy (Figures 8A–E).

Building an artificial neural network

After converting the expression data of the five markers to
Gene score (Supplementary Figures 2A,B and Table 3). The
gene weights given to each gene are listed in Table 4. The gene
score of all markers was multiplied by the gene weight, and the
results were used to calculate diagnostic value (Table 5). Then,
we set the diagnostic value of 35 samples as predicted values and
set the diagnosis of AVC as true values. Diagnostic results are
depicted in Table 6. Using the ROC package, the AUC of our
model was evaluated to be 0.987 (95% confidence interval [CI]:
0.953–1.000), suggesting that the model has a strong diagnostic
capability (Figure 9A).

Validation of diagnostic models

A different dataset (GSE83453) was used to test the capacity
of the model to detect AVC. Furthermore, we used five markers
from the screened validation set that were identical to those
in the training set, proving the scalability and resilience of the
scientific algorithm. GSE83453 dataset was then used in the
same method as the diagnostic value with serving as the test
set. Gene score was described in Table 3. The gene weights
were described in Table 4. Diagnostic value was described
in Table 5; Diagnostic results are depicted in Table 6. The
AUC for the validation model was 0.986 (95% CI: 0.917–
1.000), demonstrating the accuracy and durability of the model
(Figure 9B).

Immune cell infiltration results

CIBERSORT revealed distinctions in 22 subpopulations
of infiltrating immune cells between 15 normal and 20
AVC samples (Supplementary Table 7). The PCA revealed
differential group-bias clustering and individual differences in
proportions of immune cells in AVC and normal samples
(Figure 10A and Supplementary Table 8). The proportion of 22
immune cells in normal and AVC samples was readily apparent
(Figure 10C), and we discovered that macrophages constituted
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TABLE 4 Gene weights of five markers for all samples of the combined dataset of GSE12644 and GSE51472.

The weight of genes in the hidden layer The weight of genes in the output layer

Hidden Hidden Hidden Hidden Hidden Output layer 1 Output layer 2
layer 1 layer 2 layer 3 layer 4 layer 5

CXCL16 1.4422024 0.8067851 −1.2517474 0.81237475 −1.06361 0.1194611 −0.82155472

S100A9 −0.1110034 −0.4236217 0.4201573 −0.02445162 1.550808 0.2818231 0.29068938

GPM6A −0.3588348 2.3986261 0.848421 −1.39610883 10.063427 1.0300879 −0.63177691

BEX2 1.0788502 0.6817263 −0.4659392 0.52948785 9.040834 0.5961824 0.66712552

SCARA5 −1.0053437 −0.3655945 1.1181273 −0.65628306 9.616735 −1.1183066 1.10673166

the majority of the immune cells. The outcomes of the immune
cell infiltration are illustrated in Supplementary Table 5.
The correlation results among immune cells are shown in
Figure 10B. The patterns of changes in the various immune
cell showed that AVC patients had higher infiltration of
macrophages M0 (P = 0.011), memory B cells (P = 0.035), and
plasma cells (P = 0.017) than normal samples, but B cells naive
(P = 0.013), NK cells activated (P = 0.006), and monocytes
(P = 0.035) were lower (Figure 10D).

Correlation analysis of five markers
with infiltration immune cells

CXCL16 and S100A9 were positively correlated with
macrophages M0, mast cells activated, plasma cells, B cells
memory, but negatively correlated with mast cells resting
(P < 0.05; Figures 11A,C and Supplementary Figures 3A–I,
5A–I). GPM6A and SCARA5 were positively correlated with
macrophages M2, NK activated cells, mast resting cells, and B
naive cells, but negatively correlated with mast activated cells,
plasma cells and macrophages M0 (P < 0.05; Figures 11B,D and
Supplementary Figures 4A–I, 6A–H). Interestingly, BEX2 had
no significant correlation with immune cells. The above results
are shown in Supplementary Table 9.

Small molecule drug screening

To screen for prospective small molecule medicines that
target AVC gene expression, all diagnostic markers were
classified as upregulated or downregulated and submitted
to the CMap database. The top ten most significant small
molecule medications were identified (Table 7). Doxazosin
(enrichment score = –0.873) and Terfenadine (enrichment
score = –0.809) had a strong negative connection and
may reverse the AVC condition. The newly identified small
molecule medicines with an enrichment score of 0 were
capable of reversing abnormal gene expression and may be
used to treat AVC. Doxazosin, Terfenadine, Levcycloserine,

Tyloxapol, Dexpropranolol, and Levocabastine all had matching
molecular structures in Figures 12A–G, whereas, Prestwick-
1084, STOCK1N-28457, and SC-560 did not.

Discussion

Calcific aortic valve disease is the most prevalent valve
disease in developed countries, and its incidence is likely
to increase further in the future decades as life expectancy
continues to rise (8). Due to this common and insidious
condition, the progressive increase in the degree of AVC
leads to a large proportion of patients being unsuitable for
surgical treatment (37). Consequently, there has been a surge
in interest in the development of novel pharmacological targets
or treatment techniques that may be used early in the early
stages of the disease. Therefore, identifying specific therapeutic
targets and investigating immune cell infiltration patterns
associated with AVC are critical for improving the prognosis
of AVC patients.

Earlier studies on AVC patients reported that five genes
(CXCL16, GPM6A, BEX2, S100A9, and SCARA5) are potential
biomarkers of AVC, similar to the present findings (38). To
date, however, comprehensive, strong, and reliable clinical
decision-making approaches are lacking. Machine learning
has emerged as a useful tool in bioinformatics for sifting
through mountains of data to find valuable information.
Machine learning algorithms analyze training data in order
to discover hidden patterns, create models, and then make
predictions based on the most accurate of these. In reality,
popular techniques (such SVM and RF) have been applied to
problems in genomics, proteomics, systems biology, and other
areas (39). Conventional methods of machine learning rely
heavily on data representations known as features for maximum
performance. However, it remains challenging to determine
which features are better suitable for a particular project
throughout the application process. Deep learning is a relatively
new subfield of machine learning based on enormous amounts
of data, the capacity of parallel and distributed computers, and
complex algorithms. In addition, deep learning is responsible
for substantial breakthroughs in other fields where artificial
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TABLE 5 Diagnostic value for all samples of the combined dataset of
GSE12644 and GSE51472.

Samples Diagnostic value of Diagnostic value
normal samples of AVC samples

GSM317342_Normal 0.94618326 0.056753254

GSM317343_Normal 0.904296846 0.097606317

GSM317344_Normal 0.904296846 0.097606317

GSM317345_Normal 0.904296846 0.097606317

GSM317346_Normal 0.904296846 0.097606317

GSM377368_Normal 0.904296846 0.097606317

GSM377369_Normal 0.973335408 0.029453828

GSM377370_Normal 0.904296846 0.097606317

GSM377371_Normal 0.982576352 0.001961258

GSM377372_Normal 0.982576352 0.001961258

GSM1246204_Normal 0.993381143 0.002593156

GSM1246205_Normal 0.904296846 0.097606317

GSM1246206_Normal 0.98247582 0.024367009

GSM1246207_Normal 0.904296846 0.097606317

GSM1246208_Normal 0.993381143 0.002593156

GSM317347_AVC 0.019810466 1.001116247

GSM317348_AVC 0.004836848 0.995356568

GSM317349_AVC 0.004836848 0.995356568

GSM317350_AVC 0.004836848 0.995356568

GSM317351_AVC 0.004836848 0.995356568

GSM377373_AVC −0.007721178 0.994428405

GSM377374_AVC 0.004836848 0.995356568

GSM377375_AVC −0.007721178 0.994428405

GSM377376_AVC 0.004836848 0.995356568

GSM377377_AVC −0.050916168 1.037641252

GSM1246209_AVC −0.001847649 0.995498191

GSM1246210_AVC 0.010441263 1.007113243

GSM1246211_AVC 0.904296846 0.097606317

GSM1246212_AVC −0.004724825 1.005070695

GSM1246213_AVC 0.004836848 0.995356568

GSM1246214_AVC −0.003228033 1.003823674

GSM1246215_AVC −0.003228033 1.003823674

GSM1246216_AVC 0.004836848 0.995356568

GSM1246217_AVC 0.004836848 0.995356568

GSM1246218_AVC 0.004836848 0.995356568

AVC, aortic valve calcification.

TABLE 6 Diagnostic accuracy for all samples of the combined dataset
of GSE12644 and GSE51472.

Group Normal AVC Diagnostic accuracy

Normal 15 0 1

AVC 1 19 0.95

AVC, aortic valve calcification.

intelligence has struggled for decades (40). In bioinformatics
research, splice junctions may be identified from DNA
sequences, finger joints can be identified from X-ray images,

FIGURE 9

A plot of the results of AUC verification. (A) AUC verification in
the training dataset. (B) AUC verification in the test dataset. The
ROC curve illustrates the suitable threshold points, while the
values in parenthesis represent the sensitivity and specificity. The
AUC value represents the area under the ROC curve.

and lapses can be identified from electroencephalography
data, among other notable advancements. In their respective
reviews, Yu et al. (41) and Mamoshina et al. (42) emphasize
the successful application of deep learning in bioinformatics
research. In bioinformatics, where traditional machine learning
has made significant strides, it is therefore anticipated that
deep learning would produce positive outcomes. In this study,
we take advantage of machine learning and artificial neural
networks to not only improve the statistical strength of our
diagnostic model, but also transfer the theoretical diagnostic
genome for application in common clinical practice. The
random forest model (RF), a non-parametric technique used for
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FIGURE 10

Immune cell infiltrates are evaluated and illustrated. (A) Cluster plot of immune cell infiltration between AVC and normal samples using PCA.
(B) Heatmap demonstrating correlations between 22 distinct types of immune cells. The size of the colored squares indicates the connection’s
strength; red indicates a positive correlation, while blue indicates a negative correlation. A darker hue indicates a stronger connection.
(C) Relative percentages of 22 immune cell subpopulations in 35 samples from the GSE12644 and GSE51472 datasets. (D) A violin diagram
illustrating the relative proportions of 22 different kinds of immune cells. The red marks depict the infiltration difference between the two sets of
samples.
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FIGURE 11

Correlation between diagnostic markers and infiltrating immune cells. (A) Correlation between CXCL16 and infiltrating immune cells.
(B) Correlation between GPM6A and infiltrating immune cells. (C) Correlation between S100A9 and infiltrating immune cells. (D) Correlation
between SCARA5 and infiltrating immune cells. The size of the dots indicates the degree to which genes and immune cells are correlated.
Correlation strength is proportional to the size of the dots. The color of the dots indicates the p-value; a yellower hue indicates a lower p-value,
while a greener color indicates a higher p-value. p-value < 0.05 was considered statistically significant.

classification under supervision (43), covers respective decision
trees originating from subdivided data sets. In the current study,
we trained and analyzed a single RF classification model in order
to discover descriptors capable of discriminating AVC from
a general sample. SVM-RFE is a machine learning technique
that is widely applied to not only rank features but also select
the most important ones for classification (44). On the other
hand, ANN has several advantages, including significant defect
and failure tolerance, scalability, and the capacity for consistent
generalization, all which contribute to the model’s stability and
reliability (45).

Here, we adopted two separate algorithms, each with its
own set of intrinsic properties. Finally, we identified important

genes and subsequently constructed diagnostic models with
precise outcomes. Overall, our diagnostics revealed that the
integration method is feasible. Moreover, previous studies have
shown that the scoring method is simple, cost-efficient, and very
successful in identifying heterogeneity across disease subtypes
(33). Particularly, it converts complicated gene expression data
to simple clinical scores, thereby enabling physicians to further
screen for aortic valve calcification during physical exams of
patients. This consequently allows for both early detection
and treatment, thereby effectively delaying disease progression.
A previous study showed that CXCL16 binds to oxidized low-
density lipoprotein, suggesting it’s linked to atherosclerosis
(46). Additionally, CXCL16 may influence AVC development
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by generating a strong chemotactic response and calcium
mobilization (47). A recent study showed that catechin intake
not only mediated a significant reduction in the extent of
atherosclerotic lesions but also downregulated levels of SCARA5
expression (48). Zhao et al. (49) showed that platelet-derived
growth factor increased SCARA5 in human aortic smooth
muscle cells, suggesting it may be crucial during atherosclerosis
progression. Additionally, downregulating SCARA5 reduced
aortic lipid buildup, consistent with a previous study (50). In
the present study, SCARA5 was significantly down-regulated
in normal tissues, indicating that this gene plays a similar
function in the AVC process. S100A9, a candidate for human
cardiovascular risk indicators (51), promotes atherosclerosis
in a mouse model (52). This suggests that S100A9 may
be both a biomarker for and regulator of atherosclerosis.
S100A9 levels are raised in autoimmune and pro-inflammatory
diseases including rheumatoid arthritis (53) and obesity (54),
which increases the risk of cardiovascular disease. S100A9-
deficient animals display pro-inflammatory characteristics in
sepsis (55) and pancreatitis (56). Since S100A9 is involved
in regulation of vascular inflammation, early targeting of this
factor may be a potential therapy for treatment of different
types of vascular damage. S100A9 levels in plasma are also
used to predict cardiovascular disease risk and to detect acute
cardiovascular events, such as atherosclerotic plaque rupture
and thrombosis (51, 57, 58). In summary, CXCL16, S100A9
and SCARA5 may influence AVC progression and serve as
diagnostic markers. However, the mechanisms of GPM6A and
BEX2 in the cardiovascular domain remain unclear. Therefore,
the diagnostic significance of GPM6A and BEX2 needs to be
further validated by numerous studies.

Previous research evidences have suggested that the
pathological processes of AVC and atherosclerosis are similar
(7). Particularly, numerous studies have shown that AVC
is characterized by an inflammatory response (59). This is
consistent with our pathway analysis results from GO, KEGG,
and metascape. Several studies have reported an amount of
B cells inside severe aortic valve stenosis patient’s valves,

TABLE 7 The top 10 small molecule drug screening based on CMap
(the smallest enrichment score).

Drugs Mean Enrichment P

Doxazosin −0.811 −0.873 0.00056

Terfenadine −0.809 −0.858 0.00563

Prestwick-1084 −0.821 −0.843 0.00107

STOCK1N-28457 −0.785 −0.812 0.01326

Levcycloserine −0.792 −0.799 0.0032

Tyloxapol −0.845 −0.791 0.00392

SC-560 −0.718 −0.754 0.03031

Dexpropranolol −0.779 −0.751 0.03165

Levocabastine −0.741 −0.742 0.00875

Capsaicin −0.767 −0.741 0.00891

implying that increasing B cell counts may exacerbate aortic
valve failure (60–62). Interestingly, this may occur even in
cases without clinically severe atherosclerosis and B cell
buildup inside the aortic valve and their interaction with
macrophages may contribute to the aortic valve’s gradual
thickening and calcification. Therefore, depletion of mature B
cells has shown promise as a potential therapeutic modality.
Furthermore, Kaden et al. (63) demonstrated that very few
macrophages accumulated in normal human aorta, but excised
calcified human aortic valves contained a dense infiltration
of both leukocytes and macrophages. Results of the present
study revealed significant elevation of macrophage M0 in
the calcified valves, which was consistent with the findings
of a previous study (64). Additional research evidences have
shown that the quantity of fibrin and the degree of valve
calcification are correlated with the number of alternatively
activated macrophages recruited to the valve leaflets (65). In
fact, macrophages are not only responsible for directing pro-
inflammatory immune response, but their numbers are also
elevated in AVC. Functionally, macrophages release interleukin
6 (IL-6) and tumor necrosis factor alpha (TNF-α) as part of this
pro-inflammatory response, both which induce calcification of
aortic valve interstitial cells (66). Additionally, previous studies
have shown that the mechanical strain encountered by the valve
during circulation increases both macrophage activation and
inflammation, implying that mechanical tension may promote
the two processes in the valve (67). Further studies show
evidence of lymphocyte, phagocytic, histiocyte, and mast cell
infiltration in calcific aortic stenosis (61). On the other hand, NK
cell aggregation in the valve and circulation have been detected
in AVC patients, with this phenomenon closely associated with
increased pressure gradient in the valve (68). Results from
our correlation analysis demonstrated the relationship between
immune cells and diagnostic markers. Particularly, CXCL16
and S100A9 expression had significant positive correlation with
Macrophages M0, B memory cells, Mast activated cells and
Plasma cells. Collectively, multiple studies have reported the
ability of CXCL16 (69–72) and S100A9 (73, 74) stimulate
the infiltration of macrophages in atherosclerosis, promoting
disease progression, suggesting that they also may be playing a
synergistic role in promoting AVC progression.

We identified a series of small-molecule drugs that
may prevent AVC progression. Doxazosin and Terfenadine
demonstrated a negative connection and may treat AVC.
Doxazosin, an ana1-adrenergic antihypertensive medication,
successfully lowers blood pressure, plasma cholesterol,
triglyceride levels and density lipoprotein, while raising high–
density lipoprotein (75–78). Decreased oxidized low-density
lipoprotein cholesterol may not fully explain Doxazosin’s
anti-atherogenic effect, but it may be one of its supplementary
weapons for avoiding atherosclerosis in addition to blood
pressure and lipid reduction. Additionally, terfenadine is an
anti-allergic H1 receptor antagonist that is highly selective
and specific. The medicine prevents allergic conjunctivitis,
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FIGURE 12

The structure of small molecule drugs screened based on CMap. (A) Capsaicin’s 2D and 3D structure. (B) Dexpropranolol’s 2D and 3D structure.
(C) Doxazosin’s 2D and 3D structure. (D) L-Cycloserine’s 2D and 3D structure. (E) Levocabastine’s 2D and 3D structure. (F) Terfenadine’s 2D and
3D structure. (G) Tyloxapol’s 2D and 3D structure.
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cutaneous, nasal, and bronchial reactions (79). Additionally,
Terfenadine decreases histamine’s H1 activity, inflammatory
infiltration (eosinophils, neutrophils), and mast cell mediator
release (80). Therefore, it also contributes to the delay in
the progression of AVC. With the availability of these small
molecule drugs, additional research into their possible effects
on AVC is critical and will aid in the development of novel AVC
treatment therapies.

The present research has several limitations. To begin,
despite the effectiveness of our diagnostic model on both
the training and validation datasets, the sample size used to
construct and test the diagnostic model was modest. Second,
a GEO dataset was used to validate the model. Additional
experimental validation should be performed to verify the
biomarkers’ expression. Due to the difficulty of obtaining
normal aortic valve samples, this study cannot be effectively
verified by experiments. We will continue to collect samples for
further research. Thirdly, the approach we developed is limited
to the detection of AVC. Additional validation is required to
see whether the model can be used to diagnose AVC patients.
Finally, the lack of clinical information on gender in this analysis
may lead to biased results, and subsequent clinical validation
should be performed using gender-based grouping.

Conclusion

We developed a diagnostic model for the detection of
aortic valve calcification in patients using machine learning
and ANN model. The diagnostic model was validated using
an independent cohort drawn from the GEO database. Our
findings present doctors with a novel treatment strategy that
may help them in making more informed therapeutic decisions
and potentially delay the progression of AVC. The predicted
genes and pathways identified in this model should be further
investigated to gain a better understanding of the biological
processes influencing patient response to AVC. Finally, small
molecule drugs capable of reversing the AVC state such as
Doxazosin and Terfenadine were identified.
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SUPPLEMENTARY FIGURE 1

Principal component analysis (PCA) analysis of gene expression matrix.
(A) Before removing the batch effects. (B) After removing the batch
effect. The scatter plots depict samples using the top two principal
components (PC1 and PC2) of gene expression profiles. The colors
correspond to samples from two distinct datasets.

SUPPLEMENTARY FIGURE 2

Results of neural network visualization. (A) Visualization of the neural
network process. (B) Visualization of gene weight in a neural network.

SUPPLEMENTARY FIGURE 3

Visualization of correlation between markers and immune cells. (A–I)
CXCL16 is positively correlated with Macrophages M0 (P < 0.001), B
memory cells (P < 0.001), Mast activated cells (P = 0.003) and Plasma
cells (P = 0.004), as well as negatively correlated with Mast cells resting
(P = 0.048), T cells CD4 memory resting (P = 0.046), Macrophages M2
(P = 0.004), B cells naive (P = 0.002), and NK cells activated (P < 0.001).

SUPPLEMENTARY FIGURE 4

(A–I) GPM6A is positively correlated with Macrophages M2 (P = 0.010),
NK activated cells (P = 0.014), Mast resting cells (P = 0.020), and B naive
cells (P = 0.047), as well as negatively correlated with T cells gamma
delta (P = 0.034), Mast activated cells (P = 0.028), Plasma cells
(P = 0.002), CD4 memory activated T Cells (P = 0.002), and
Macrophages M0 (P < 0.001).

SUPPLEMENTARY FIGURE 5

(A–I) S100A9 is positively correlated with Macrophages M0 (P < 0.001),
Mast cells activated (P < 0.001), Plasma cells (P = 0.002), B cells
memory (P = 0.015), as well as is negatively correlated with Monocytes
(P = 0.045), Mast cells resting (P = 0.003), NK cells activated (P = 0.003),
Macrophages M2 (P = 0.003), and B cells naive (P = 0.001).

SUPPLEMENTARY FIGURE 6

(A–H) SCARA5 is positively correlated with NK cells activated
(P < 0.001), Macrophages M2 (P = 0.001), Mast cells resting (P = 0.004),
and B cells naive (P = 0.007), as well as negatively correlated with B cells
memory (P = 0.014), Plasma cells (P = 0.010), Mast cells activated
(P < 0.001), and Macrophages M0 (P < 0.001).

SUPPLEMENTARY TABLE 1

Differentially expressed genes (DEGs) of merged data sets of
GSE12644 and GSE51472.

SUPPLEMENTARY TABLE 2

Metascape analysis results of DEGs of merged data sets of
GSE12644 and GSE51472.

SUPPLEMENTARY TABLE 3

Gene ontology (GO) analysis results of differentially expressed genes
(DEGs) of merged data sets of GSE12644 and GSE51472.

SUPPLEMENTARY TABLE 4

Kyoto encyclopedia of genes and genomes (KEGG) analysis results of
differentially expressed genes (DEGs) of merged data sets of
GSE12644 and GSE51472.

SUPPLEMENTARY TABLE 5

Identification of key genes of differentially expressed genes (DEGs) of
merged data sets of GSE12644 and GSE51472 by SVM-RFE technique.

SUPPLEMENTARY TABLE 6

Identification of key genes of differentially expressed genes (DEGs) of
merged data sets of GSE12644 and GSE51472 by random forest (RF)
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