
TYPE Review

PUBLISHED 26 October 2022

DOI 10.3389/fcvm.2022.906350

OPEN ACCESS

EDITED BY

Xiaofeng Yang,

Temple University, United States

REVIEWED BY

Tauseef Akhtar,

Johns Hopkins University,

United States

Wuqiang Zhu,

Mayo Clinic Arizona, United States

*CORRESPONDENCE

Yongjun Qian

qianyongjun@scu.edu.cn

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Cardiovascular Therapeutics,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 01 April 2022

ACCEPTED 08 August 2022

PUBLISHED 26 October 2022

CITATION

Wang Z, Tong Q, Li T and Qian Y

(2022) Nano drugs delivery system: A

novel promise for the treatment of

atrial fibrillation.

Front. Cardiovasc. Med. 9:906350.

doi: 10.3389/fcvm.2022.906350

COPYRIGHT

© 2022 Wang, Tong, Li and Qian. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Nano drugs delivery system: A
novel promise for the treatment
of atrial fibrillation

Zhengjie Wang†, Qi Tong†, Tao Li and Yongjun Qian*

Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China

Hospital, Sichuan University, Chengdu, China

Atrial fibrillation (AF) is one of the most common sustained tachyarrhythmias

worldwide, and its prevalence is positively correlated with aging. AF not

only significantly reduces the quality of life of patients but also causes a

series of complications, such as thromboembolism, stroke, and heart failure,

increases the average number of hospitalizations of patients, and places a

huge economic burden on patients and society. Traditional drug therapy and

ablation have unsatisfactory success rates, high recurrence rates, and the risk

of serious complications. Surgical treatment is highly traumatic. The nano

drug delivery system has unique physical and chemical properties, and in

the application of AF treatment, whether it is used to assist in enhancing the

ablation e�ect or for targeted therapy, it provides a safer, more e�ective and

more economical treatment strategy.
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Introduction

Since the birth of nanotechnology, it’s application in the medical field has brought

appreciable enhancements in the accuracy of diagnosis and treatment of various

diseases (1). Currently, more than 50 nanoparticle-based therapies are used for various

indications, including infections, tumors, neurological diseases, ocular diseases, and

cardiovascular diseases (2). In recent years, the application of nano drug delivery systems

in the treatment of AF has also attracted much attention.

AF is a common persistent tachyarrhythmia. The global prevalence of AF currently

ranges from 2% to 4%, and if screening of long-lived individuals and undiagnosed AF

in the general population is expanded, the prevalence is expected to increase by a factor

of 2.3 (3). There were approximately 37.6 million cases of AF worldwide in 2017 (4).

As the incidence of AF increases with age, the absolute burden of AF is estimated to

increase by more than 60% by 2050 as the global population ages (5). In principle, AF

itself is not fatal, but this does not mean it is a benign disease; instead, AF has been

reported to be associated with an increased risk of death in men (OR, 1.5 [95% CI,

1.2–1.8]) and women (OR, 1.9 [95% CI, 1.5–2.2]), (6) as it is a major factor in increasing

the risk of fatal complications such as stroke, coronary heart disease, heart failure
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and thromboembolism, especially in advanced age (7, 8). The

medical expenditures associated with the treatment of AF and

its complications are estimated to exceed 28 billion dollars

annually, placing a huge economic burden on society (9).

However, the current treatment strategies for AF are still

intravenous drugs (e.g., diltiazem, metoprolol, and venakaran)

and long-term oral drugs (e.g., flecainide, propafenone, and

amiodarone) (10–13). In addition to poor efficacy and a high

recurrence rate, there are often unavoidable toxic side effects.

Furthermore, the long-term outcomes of surgery and catheter

ablation are unsatisfactory. Therefore, it has become a major

research focus in the field of AF treatment to find a therapeutic

measure with good curative effects, few side effects and less

recurrence.

This review aims to summarize some technologies based

on nano drug delivery systems for the treatment of AF. From

three main aspects, the main mechanism of AF and its treatment

status, the introduction of nano drug delivery systems, and

the application examples of nano drug delivery systems in the

treatment of AF.

Mainstream mechanisms in
occurrence and maintenance of AF

The mechanism of AF occurrence is complex and

controversial, and the dominant mechanism varies among

different individuals. The current core mechanisms (Figure 1)

indicate that AF occurs when a series of rapid, disordered

ectopic electrical activities replace the regular electrical activity

of the sinus node. This ectopic electrical activity usually

originates from the ectopic pacing focus of the pulmonary vein

myocardial sleeve (PVs), where abnormal cardiomyocytes are

structurally and electrophysiologically distinct from normal

cardiomyocytes (14–16).

More than two-thirds of patients with recently diagnosed

AF have a paroxysmal pattern, but between 5 and 10% per year

progress to persistent AF. During 10 years of follow-up, more

than half of patients with an initial diagnosis of paroxysmal AF

converted to persistent AF or died (15).

The transformation of AF from paroxysmal to persistent

or even permanent requires persistent ectopic activity or

reentry. The occurrence of reentry requires the support of

two conditions: the “triggering” activity (including early

postdepolarization and delayed postdepolarization) and the

“substrate” (persistent changes in structure, electrophysiological

parameters, and innervation that contribute to the maintenance

of AF) (14, 16–18). Atrial remodeling promotes the formation

of this AF-prone substrate, which includes electrical remodeling

characterized by long-term changes in atrial electrophysiological

parameters, changes in current ion density of various ion

channels, and changes in channel dynamics; structural

remodeling characterized by atrial dilation, hypertrophy of

FIGURE 1

Di�erent forms of atrial fibrillation result from ectopic activity

and/or reentry. The formation of reentrants requires triggering

activity and a matrix that is susceptible to reentrant formation.

“Triggering” is a series of ectopic activities with abnormal

autonomy (including early postdepolarization and delayed

postdepolarization). Atrial dilation, inflammation, myocardial

ischemia, fibrosis, etc., can form substrates that facilitate the

formation of reentry. “Substrate” refers to persistent changes in

structure, electrophysiological parameters, and innervation.

Atrial remodeling, including electrical, structural, and neural

remodeling, promotes the formation of this AF-prone substrate

and the development of ectopic activity (Created with

BioRender.com).

atrial myocytes, changes in various organelles, and atrial fibrosis

due to accumulation of collagen fibers; neural remodeling

characterized by altered autonomic nervous system activity,

increased sympathetic/parasympathetic fiber density, and

altered numbers of muscarinic receptors (19, 20).

These remodeling processes promote each other and

together form a substrate that is conducive to the maintenance

of AF. Studies have shown that the mechanism behind the

occurrence of atrial remodeling may be related to acute atrial

ischemia, abnormal activation of the local renin-angiotensin-

aldosterone system (RAAS) in myocardial tissue, inflammatory

mediators (TNF, IL-2, CD36, HSP27, CRP), immune cell

infiltration, cardiomyocyte apoptosis, etc. (21–28) , and these

mechanisms will provide theoretical support for the treatment

of AF based on the nano drug delivery system described later.

The main traditional treatment
strategies for AF

Classic antiarrhythmic drugs

The treatment of AF is still based on long-term oral or

intravenous drugs, with the goal of restoring normal sinus

rhythm, controlling ventricular rate, and preventing and treating

related complications (11, 29). Several classic antiarrhythmic
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drugs such as sodium channel blockers or so-called polygon

channel blockers (e.g., amiodarone) can be used to restore sinus

rhythm, and β blockers and calcium channel blockers (e.g.,

verapamil) can slow down atrioventricular nodal conduction to

achieve physiological ventricular rate.

Catheter and surgical ablation

Catheter ablation, surgical ablation, and hybrid therapy have

all been proposed as treatments for AF, but they vary in efficacy

and accessibility. In recent years, transvenous catheter ablation

of pulmonary vein isolation (PVI) has been the treatment of

choice for symptomatic patients who require rhythm control

and fail antiarrhythmic drug therapy (30–33).

Surgical ablation (SA) is often performed concurrently

with other cardiac procedures by creating an electrically silent

lesion group, passing electrical impulses through a narrow

organized pathway or maze, interruption of major reentry,

and restoration of sinus depolarization initiation (34–36). Since

then, to further simplify the surgical procedure, shorten the

operation time, improve the treatment efficiency, and reduce

surgical complications, new surgical energy sources, such as

radio frequency, cryo-balloon, ultrasound, and microwave, have

been introduced (33, 37). Currently, hybrid therapy appears to

be an optimal solution combining the respective advantages of

catheter and surgical ablation, such as reliable conduction block

effect, elimination of ablation gaps that can lead to long-term

recurrence, and reducing the risk of potential surgical injury to

hard-to-reach tissues (35).

The limitation of traditional treatments

Classic antiarrhythmic drug treatment not only has poor

curative effects and a high recurrence rate, but will also

inevitably produce toxic side effects after long-term use (38, 39).

Although there are various ablation strategies in the clinical

practice of AF treatment, in general, neither endocardial catheter

ablation nor surgical ablation has achieved satisfactory results

in the success rate of AF elimination (3, 40–45), and there is a

significant learning curve; experienced medical centers are far

more effective than those with fewer deployments (46, 47). The

CABANA trial showed that 36.4% of catheter ablation patients

experienced recurrence of AF within 12 months after surgery,

and 18.4% of catheter ablation patients developed symptomatic

AF throughout follow-up (48). In terms of safety, although

catheter ablation is recognized as a relatively safe treatment,

its risks cannot be ignored. Based on prospective data from

multiple registries, the overall incidence of complications in

patients with AF undergoing catheter ablation is approximately

3–9%. The incidence of vascular injury and neurological

complications is 0.2–5%, and the incidence of esophageal

injury is less than 1% (49, 50). SA combined with other

cardiac procedures significantly increased the requirement for

pacemaker implantation (51), reported from 6.8 to 21.5% (3, 52).

To find a treatment strategy with a high AF elimination rate, low

recurrence rate, and high safety, various improvement methods

have been explored in the field of heart disease treatment.

Among them, the combination of nanotechnology and medical

treatment has provided a new idea for the treatment of AF.

Nano drug delivery system

Traditional systemic drug delivery methods are insufficient

in terms of stability, solubility, and bioavailability, and have

various adverse side effects. Amiodarone (AMD) is commonly

used as a class III antiarrhythmic drug for the conversion of

AF (53–55), but due to its accumulation in untreated tissues,

especially the lung, spleen, and liver, it can cause serious adverse

reactions, and can also lead to hypothyroidism or a risk of

hyperactivity (56–58).These problems can be well-addressed by

using nanotechnology-based methods.

Nano drug delivery systems refer to a family of

nanomaterials with extremely small sizes, unique shapes

and surface properties. Due to its special physicochemical

properties and biological properties, it has received extensive

attention in the medical field.

The basic structure of nanoparticles (NPs) used in

drug delivery systems usually consists of a particle core, a

biocompatible protective layer, and linking molecules. The drug

to be delivered can be encapsulated in the particle core or bound

to the particle core surface. The biocompatibility protective

layer is used to improve the biocompatibility of the drug

delivery system and plays the role of avoiding the inflammatory

response, reducing immunogenicity, and preventing the drug

from being destroyed prematurely. Linking molecules are a class

of compounds with active ends, whose role is to link NPs with

biologically active molecules.

The definition and classification of NPs has changed as

the field continues to evolve. Generally, the size of NPs is

between 1 and 100 nm. The US National Nanotechnology

Program and the European Commission believe that the upper

limit of nanoparticles cannot be limited to 100 nanometers. In

the medical field, nanoparticles range in size from 5 to 250

nanometers. There are also nanosystems that may exceed a few

microns in size, such as liposomes (59–61).

Particles commonly used to carry drugs mainly include the

following: nanoparticles (NPs), liposomes (liposomes), solid

lipid nanoparticles (SLNs), nanocells (NMs), microemulsions,

nanosuspensions, etc. (62). Nano drug delivery systems

have some unique advantages over traditional drugs due

to their physical, chemical, and biological properties

(extremely small size, large specific surface area, ability
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to achieve special biological functions through multiple

chemical modifications).

Drug protective e�ects

For oral drugs to enter the blood, they must first be

dissolved in the gastrointestinal fluid. The protective layer

on the surface of the carrier can prevent the drug from

being destroyed by the physical and chemical environment

of the body’s digestive system and the action of various

enzymes or recognized and destroyed by the immune system

before reaching the point of action, at the same time, it

can also prevent the unstable drug from being converted

into active ingredients prematurely in the body, and avoid

toxic reactions due to excessive active drug doses (63, 64).

Taking advantage of this property can reconsider unstable

and easily disrupted drugs for treatment, and can also

enhance the bioavailability of those drugs that are greatly

affected by presystemic metabolism in the gastrointestinal

tract (65).

Sustained release

In the sustained-release system, the protective layer of the

drug carrier is designed in various release modes: shell that

can be eroded/degraded, swelling and dissolving matrix, organic

membrane permeation or inorganic porous hollow particles, etc.

(57). It is released at a slow rather than constant rate over an

extended period of time, prolonging the duration of action of

the drug in the body (66). Reduce the frequency of medication,

improve patient compliance, ensure that the drug stays at the

effective concentration stably, avoid toxic and side effects caused

by exceeding the therapeutic concentration, and improve the

effectiveness and safety of the drug (63, 64).

Controlled release

In a broad sense, controlled release refers to controlling

the release rate, release location and release time of the drug.

In a narrow sense, controlled release refers to a controlled

release formulation that releases a drug at a zero-order or

near-zero-order rate within a predetermined time (66). The

triggering conditions for drug release can be artificially designed

so that the drug is released in a desired form under the desired

conditions. According to whether the triggering condition is

inside or outside the human body, it can be divided into internal

stimulation and external stimulation. Internal stimuli such as

body temperature, pH value, enzymes, etc.; external stimuli such

as externally applied magnetic fields, electric fields, ultrasonic

waves, heating, light, etc. (67–69).

Targeted drug delivery

Targeting can be divided into active targeting and passive

targeting (70). By changing the distribution of drugs in the body,

reducing the concentration of non-acting targets and increasing

the concentration of active targets, the efficacy is improved

while reducing toxicity and side effects. After the nano drugs

delivery system enters the human body, most of it is captured

by the reticuloendothelial system due to its extremely small size.

Passive targeting methods, such as adjusting the shape, size,

surface charge, and increasing hydrophilicity of nanoparticles,

can allow them to enter long circulation, avoid aggregation

in the reticuloendothelial system and non-specifically increase

nanoparticles in diseased organ areas. In addition, nanoparticles

can also achieve active targeting in programmed forms, such

as using receptor-ligand binding, antigen-antibody binding,

chemical affinity differences, and other mechanisms to achieve

targeted delivery specifically to the intended tissue (61, 71–

74). Nanocapsules have been widely used for their targeted

delivery (75).

Practical application of AF treatment
method based on nano drug delivery
system

Many studies have reported the application of nano-drug

delivery systems in the treatment of AF (Table 1). This chapter

will combine these practical applications to illustrate how nano-

drug delivery systems can play a role in the treatment of AF.

Improving drug stability, solubility, and
bioavailability using a nano drugs delivery
system

Spontaneous Ca2+ waves occur when calcium overload

occurs in the sarcoplasmic reticulum and some pathological

changes are combined. Such spontaneous Ca2+ waves induce

cell membrane depolarization through the mechanism of

Na+/Ca2+ exchange, causing arrhythmias and systolic

dysfunction (82). Carvedilol (CRV) inhibits the production

of spontaneous Ca2+ waves and thus inhibits the occurrence

of arrhythmias and has been approved by the FDA for the

treatment of arrhythmias, including AF (83). Due to the

poor water solubility of CRV and the great influence of the

presystemic metabolism of the gastrointestinal tract, only

approximately 25% can eventually be absorbed. Previous studies

have shown that positively charged nanoparticles are more likely

to be ingested by negatively charged cell membranes, and bile

salts can enhance the osmotic effect of niosomes on biological

barriers. The charged modified bile salt niosomal carrier
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TABLE 1 Studies of nano drug delivery system for the treatment of atrial fibrillation.

Types of nanoparticles

Drugs used

in the

treatment

of AF

Mechanism of

therapeutic action

Characteristics of

the delivery system
References

Chitosan nanoparticles
Botulinum

toxin

Reduces vagus-induced

shortening of the ERP

Increases solubility

and bioavailability;

Drug protective effects;

Sustained release

(76)

Poly-(lactide-co

-glycolide)(PLGA)

polymeric

nanoparticles

CaCl2 ;

L-glutamate

Suppresses GPs function;

Increases neuron apoptosis in GP
Controlled release (77)

Polylactic-co-glycolic

acid nanoparticles
Budesonide Inhibits the inflammatory response

Increases solubility

and bioavailability
(78)

Niosomal carriers Carvedilol
Inhibits INa and ICa in a

concentration-dependent manner

Increases solubility

and bioavailability
(65)

Poly(lactic-co-glycolic

acid)(PLGA)-magnetite

nanoparticles

CaCl2
Suppresses GPs function;

Increases neuron apoptosis in GP

Targeted drug delivery;

Controlled release
(79)

Poly-N-

isopropylacrylamide-

co-acrylamide coated

magnetite nanoparticles

N-isopropyl

acrylamide

monomer

Inhibition of glycolytic

enzymes leading to

toxic effects on both

neurons and axons

Targeted drug delivery;

Controlled release
(80)

Poly(lactic-co-glycolic

acid)

(PLGA) polymeric

nanoparticles

Amiodarone

Non-competitive adrenergic

blocking effect of

the inactivated Na+ channels;

Reduces the Ca2+ current,

outward and inward rectifier

K+ current

Controlled release;

Sustained release
(63, 64)

N-isopropyl acrylamide

coated magnetite

nanoparticles

N-isopropyl

acrylamide

monomer

Reduce the activity

of ganglion cells

Targeted drug delivery;

Controlled release
(81)

constructed by Gelareh et al. greatly improves the bioavailability

of CRV, reduces drug toxicity, and improves efficacy and patient

compliance (65).

Ganglion plexus (GPs) act as integrative centers for afferent

information and efferent outflows of perceptual stimuli and

are capable of modulating cardiac electrophysiological function

through cardio-cardiac reflexes. The need for targeted ablation

of the atrial GP emerged as GP stimulation resulted in increased

triggering activity in the PV as well as increased dispersion

of action potentials, which are considered factors in the

maintenance of AF. Ablation of the GP results in changes in

cardiac autonomic control, which multiple studies have linked

to a reduced risk of AF recurrence (74).

Botulinum toxin (BoTN) is a neurotoxin that acts on

neural synapses, blocking the release of acetylcholine-containing

synaptic vesicles from the presynaptic membrane, reducing

vagus-induced shortening of the atrial effective refractory period

and preventing autonomic remodeling (84, 85). The use of

BoNT to block GPs is temporary, and there is no permanent

structural damage; such an effect is favorable.

Both animal experiments and human studies have shown

that injection of botulinum toxin into the atrial fat pad can

temporarily reduce the susceptibility of atrial tissue to AF

induction and the effect of the vagus nerve on the atrial

effective refractory period, potentially inhibiting the progression

of autonomic remodeling. This effect can break the so-called

“AF-induced AF” vicious cycle, preventing AF from progressing

to persistent or even permanent AF (86, 87). Furthermore,

therapeutic doses of botulinum toxin are safe with relatively few

side effects (88). In a study of human epicardial fat pad injections

of BoTN for the prevention of AF, no serious adverse effects were

observed during 1 or even 3 years of follow-up (62).

There is a certain time delay in the effect of BoNT-blocking

nerve effects, and the blocking effect is temporary (89); therefore,

a method to accelerate the effect of BoNT and increase its

duration is highly desired.
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Animal studies have demonstrated that chitosan

nanoparticles prolong the time of BoTN nerve block (71).

Chitosan is a of the good candidate for drug delivery systems.

As a non-toxic cationic polymer that can be degraded in the

human body, it not only has high biocompatibility but also

exhibits a high degree of resistance to cell membranes.

Affinity. Chitosan has free amino groups and can be

combined with various biologically active components,

such as antigens, antibodies, and enzymes, which enables it

to achieve various biological functions after processing. In

the course of treatment, whether it is intravenous injection

or in situ release, the drug is inseparable from the form

of solution, while traditional linear chitosan is insoluble

at physiological pH, but chitosan nanoparticles can be

suspended in aqueous solution, and the resulting suspension

can be assimilated into a solution (76), using chitosan as a

component of the nano drugs delivery system can effectively

protect the BoTN loaded into it while improving solubility,

enhancing effect, prolonging effect time and reducing toxic

side effects.

Targeted therapy for AF using a nano
drug delivery system

Studies have found that hyperactivity of the cardiac

autonomic nervous system can induce AF, AF not only

causes electrical remodeling, but also further enhances

the activity of the cardiac autonomic nervous system,

forming a vicious cycle of “AF promoting AF” (90).

Therefore, interventions in the autonomic nervous system

activity of the heart become a potential target for atrial

fibrillation therapy.

Studies have shown that CaCl2 inhibits the autonomic

nervous activity of the heart because under the action of

various mechanisms, the concentration of calcium ions in nerve

cells remains basically stable, which is of great significance for

maintaining the integrity of the cell structure. If the intracellular

calcium ions accumulate excessively, neurotoxicity will occur

and induce neuronal apoptosis (91). Similarly, studies have also

shown that N-isopropylacrylamide monomers can inhibit the

neurons of the cardiac autonomic nervous system by inhibiting

glycolytic enzymes such as enolase (80, 81).

Based on the above mechanism, an atrial fibrillation

treatment strategy was developed (79–81), which encapsulated

drugs (CaCl2,N-isopropylacrylamide monomer) in magnetic

nanoparticles, and a piece of permanent magnet was placed on

the surface of the epicardium. After the drug was released to

the coronary artery through catheter intervention, the external

magnetic field generated by the permanent magnet pulled the

magnetic nanoparticles loaded with drugs to the prepositioned

GPs (77) to achieve the function of targeted drug delivery.

Controlled and sustained release of drugs

AMD has poor water solubility, and low bioavailability.

The active metabolite of AMD (deethylamiodarone) formed

after absorption enters the transintestinal hepatic circulation

and can extend the elimination half-life to approximately 60

days. As a result, active metabolites tend to accumulate in

vivo, which can cause damage to non-therapeutic target organs

such as the lungs, liver, and thyroid, causing serious adverse

effects such as chronic interstitial pneumonia or pulmonary

fibrosis (53, 56, 57). Amira et al. encapsulated AMD into PLGA

nanoparticles prepared from polylactic acid-hydroxyacetic acid,

which have good bioavailability. These nanocarriers can allow

the AMD encapsulated in the carriers to be slowly released in

vivo, avoiding toxicity to non-therapeutic organs (63, 64).

Polymer hydrogels are a good medium commonly used

for controlled drug release. Nanoparticle outer coatings based

on polymer hydrogels can provide stable protection and can

degrade under certain triggering conditions (specific pH and

temperature).

Poly-N-isopropylacrylamide-co-acrylamide is a

temperature-sensitive polymer gel that hydrates at ambient

temperatures below body temperature and becomes

hydrophobic at body temperature (79), according to which

the nanocontrolled release system is designed, disintegrates

the outer coating after entering the human body environment,

and releases the drug carried inside. In addition, this critical

temperature for disintegration can be altered by adding residues.

If the critical temperature is designed to be high so that it does

not naturally disintegrate, the disintegration of the outer layer

can only be triggered when the local high temperature can

be reached instantaneously, such as radiofrequency ablation.

Encapsulating the aforementioned drugs acting on GP inside

the drug carrier can provide a better ablation effect for

radiofrequency ablation and reduce the recurrence rate of AF.

During radiofrequency ablation, due to the local high

temperature, the myocardial tissue at the ablation site will be

inflamed, and the perioperative inflammatory response will

increase the risk of early postoperative recurrence of atrial

fibrillation. The budesonide is encapsulated with polylactic-

co-glycolic acid (PLGA) nanoparticles. In the process of

radiofrequency ablation, the nano drugs delivery system is

triggered at high temperature to release the budesonide carried

inside and inhibit the inflammatory response at the ablation

site. In addition, some untriggered nanoparticles can provide a

sustained anti-inflammatory effect on the ablation site through

the sustained release effect, effectively enhance the effect of

radiofrequency ablation, and reduce the risk of postoperative

atrial fibrillation recurrence (78).

Similarly, there is a nano drugs delivery system designed as

a chain, with a liposomal drug carrier and a tail composed of

three magnetic nanoparticles (67). Magnetic particle tails can

convert electromagnetic energy applied by an external magnetic
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field (radio frequency) into mechanical energy and transfer

it to the liposome membrane through a chain-like structure.

Subsequently, the membrane structure of the liposome is

broken, and the drug inside is released. This drug-controlled

release strategy can also be used for adjunctive drug ablation in

radiofrequency ablation.

Hyperthermia-based treatment of AF

Magnetic nanoparticles have a hysteresis effect. When the

ferrous core of the magnetic nanoparticles is exposed to the

alternatingmagnetic field of the positive and negative electrodes,

magnetic hysteresis loss will occur repeatedly, and a part

of the electromagnetic energy will be irreversibly converted

into heat energy (92). Thermal energy deposition occurs due

to continuous hysteresis loss. However, superparamagnetic

nanoparticles have no hysteresis effect and generate thermal

energy through Neel relaxation and Brownian motion in

an alternating magnetic field. Using this thermal effect of

magnetic nanoparticles to treat diseases is called magnetofluidic

hyperthermia (MFH). The earliest reported clinical application

of MFH was the ablation of sentinel lymph nodes in metastatic

tumors.

Clinically, radiofrequency, ultrasound and other

technologies are used to increase tissue temperature through

thermal effects, thereby causing irreversible damage to the

target, and are used to treat arrhythmias such as AF. MFH

can also be used for ablation of AF. MFH guided by the

magnetic particle imaging (MPI) technique for imaging using

the properties of superparamagnetic nanoparticles is currently

being investigated (93, 94). The combination of these two

technologies can not only monitor the scope of ablation, but

also display the temperature of the ablated tissue and the degree

of tissue damage (95), which can estimate the effect of ablation,

improve the ablation effect of AF and reduce the recurrence rate

while ensuring safety.

In addition, if hyperthermic heating of cells is insufficient,

polymer coatings with higher critical temperatures can also be

designed to release endotoxins by heating the particles with an

alternating magnetic field, thereby providing additional targeted

killing for drug delivery (96, 97).

Nano drugs delivery systems control
substance distribution in the body

In addition to carrying synthetic exogenous substances,

nano drugs delivery systems can also be used to change the

distribution of endogenous substances in the human body.

Exosomes are a type of extracellular vesicles, usually 40–

200 nm in size, that can carry various signaling biomolecules

[including proteins, nucleic acids, and especially non-coding

RNAs (ncRNAs)] inside and have the ability to mediate cell-to-

cell interactions and exchange information between cells over

long distances (98, 99).

In recent years, studies have shown that exosomes are

involved in some important links in the pathogenesis of AF, and

some ncRNAs have also been proven to be important factors in

regulating cardiac function and participating in the occurrence

and development of the disease, which has the potential to be

used in the treatment of cardiovascular diseases (100–102).

Studies have shown that myocardial fibrosis in AF is

associated with macrophages infiltrating into cardiac tissue, and

macrophages lead to myocardial fibrosis through interactions

with cardiomyocytes or fibroblasts, which in turn provide the

basis for the development and maintenance of AF. Inhibition

of “canonical” activated macrophage (M1) polarization and

enhancement of “alternate” activated macrophage (M2)

polarization improves myocardial fibrosis and alleviates

myocardial remodeling (103).

Several studies (104) found reduced levels of miR-23a in

exosomes derived from Ang II-treated atrial myocytes. The

mechanism is the inhibition of nuclear translocation of NFATc3

through the non-coding repressor of NFAT (NRON), which

in turn inhibits the expression of miR-23a (105). After these

miR-23a-deficient exosomes are taken up by macrophages, they

promote M2 macrophage polarization and can inhibit atrial

myocyte fibrosis and have potential for AF therapy (103, 104,

106). MiR-126, miR-425, and miR-744-enriched exosomes are

captured by cardiac cells and can act on pathways related to

TGF-β and type I collagen (107–110) to inhibit fibrosis. MiR-17-

and miR-210-enriched exosomes from cardiac progenitor cells

are taken up by cardiac cells and act on TGF-β-related pathways

to enhance tolerance to fibrosis under oxidative stress (111).

Cardiomyocyte-derived exosomes enriched in miR-378, miR-

29a, miR-29b, and miR-455 exert antifibrotic effects by reducing

collagen and MMP9 by inhibiting MAPK and Smad pathways

(112).

Cardiomyocyte apoptosis can occur before atrial

remodeling, and AF can aggravate apoptosis. It can be

seen that cardiomyocyte apoptosis and AF are mutually

aggravating processes. Exosomes enriched in miR-210,

miR-133a, and miR-19a reduce apoptosis by enhancing

cardiomyocyte resistance to oxidative stress (113), and

cardiomyocyte-derived miR-146a-enriched exosomes reduce

scarring after myocardial infarction in rats (114), inhibit

cardiomyocyte apoptosis and prevent cardiac remodeling.

Exosomal miR-320d from adipose tissue-derived mesenchymal

stem cells (MSCs) was shown to inhibit AF-induced

cardiomyocyte apoptosis in a STAT3-dependent manner

(115). Overexpression of miR-520d participates in the ability

to regulate cell survival and apoptosis by targeting ADAM10

(116), ultimately leading to inhibition of apoptosis and

induction of atrial myocyte survival, thereby ameliorating

the vicious cycle in which cardiomyocyte apoptosis and AF

mutually promote.
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Acute atrial ischemia can aggravate the vulnerability of AF,

and exosomal miR-19a from MSCs can reduce the expression

of inflammatory cytokines. The immune response has also been

shown to be involved in the pathogenesis of AF, and exosomal

miR-19a fromMSCs can reduce the expression of inflammatory

cytokines, inhibit the inflammatory response and prevent the

progression of AF (117).

Mechanisms based on these specific ncRNA-rich exosomes

that inhibit fibrosis, resist apoptosis, suppress immune

inflammatory responses, and promote angiogenesis are

promising in the prevention and treatment of AF. However,

insufficient retention of exosomes in the myocardium and

the mechanism of endogenous manipulation of exosome

biodistribution are still unclear, which are the main challenges

in the clinical application of exosomes.

Nano drugs delivery systems for exosome binding have

been developed to enhance the enrichment and retention of

exosomes in tissues of interest, which can be applied for targeted

delivery of exosomes to myocardial tissue. Studies (118) found

that exosomes (myocardial infarction exosomes) present in the

circulating blood after myocardial infarction have a protective

effect on ischemic myocardium, and this protective effect is

mediated by HSP70 on the surface of the exosome membrane

and depends on the biodistribution of endogenous exosomes.

However, another study (119) used magnetic nanoparticles to

capture myocardial infarction exosomes in peripheral blood and

targeted delivery to ischemic myocardium under the guidance

of an external magnetic field, inhibiting ischemic myocardium

fibrosis. This means that the use of magnetic nanoparticle

targeting technology provides the possibility for exosomes in the

treatment of AF.

Conclusions and future direction

The application of nano drugs delivery system provides a

new idea for the treatment of AF. Nonetheless, there are still

some important limitations and challenges in the use of nano

drugs delivery systems in the clinical treatment of AF.

From the point of view of AF treatment, because important

structures in the heart, such as blood vessels, nerves, valves,

and cardiac conduction systems, are adjacent to each other,

off-target effects during the treatment process will result in a

serious adverse prognosis. Future research needs to take into

account the potential off-target risk of the treatment process

and screen for methods with high accuracy and efficiency. In

the application of MFH ablation of AF, there are symptoms

such as pain and muscle twitching caused by external magnetic

field stimulation of peripheral nerves (120), which puts forward

further requirements for the safety of this technology.

Furthermore, due to the heterogeneity of nanodrug delivery

systems in humans, some nanoparticles undergoing preclinical

development have been retrospectively found to be cytotoxic

or immunogenic (121, 122). With the application of magnetic

nanoparticles, the iron core of magnetic nanoparticles was

initially thought to be able to enter the normal iron cycle of the

human body, but it is not clear whether excessive accumulation

of iron occurs after long-term use. Studies have shown that

excessive accumulation of iron can cause iron overload-induced

apoptosis (123), which cannot be ignored. More research is

needed to provide evidence for optimizing biocompatibility

and antifouling, reducing exposure to disturbances in biological

systems, and exploring safety for long-term use.

From the perspective of nano drugs delivery system

production, how to maintain a certain degree of stability in

the physical and chemical properties, encapsulation rate, release

rate, etc., of the nano drug drugs delivery system in the process

of large-scale repeated production, that is, to ensure that the

entire production process has a high degree of repeatability and

reliability, how to reduce the loss of the produced nano drugs

delivery system during storage and transportation, and how to

reduce the economic cost and time cost of production. These

questions all relate to the possibility of applying this technology

to the clinic.
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