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Objective: The present study aimed to explore the pathological mechanisms

of chronic thromboembolic pulmonary hypertension (CTEPH) using a gene

chip array and single-cell RNA-sequencing (scRNA-seq).

Materials and methods: The mRNA expression profile GSE130391 was

downloaded from the Gene Expression Omnibus database. The peripheral

blood samples of five CTEPH patients and five healthy controls were used to

prepare the Affymetrix microRNA (miRNA) chip and the Agilent circular RNA

(circRNA) chip. The pulmonary endarterectomized tissues from five CTEPH

patients were analyzed by scRNA-seq. Cells were clustered and annotated,

followed by the identification of highly expressed genes. The gene chip data

were used to identify disease-related mRNAs and differentially expressed

miRNAs and circRNAs. The protein–protein interaction (PPI) network and the

circRNA–miRNA–mRNA network were constructed for each cell type.

Results: A total of 11 cell types were identified. Intersection analysis of highly

expressed genes in each cell type and differentially expressed mRNAs were

performed to obtain disease-related genes in each cell type. TP53, ICAM1,

APP, ITGB2, MYC, and ZYX showed the highest degree of connectivity in the

PPI network of different types of cells. In addition, the circRNA–miRNA–mRNA

network for each cell type was constructed.

Frontiers in Cardiovascular Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.900353
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.900353&domain=pdf&date_stamp=2022-11-10
https://doi.org/10.3389/fcvm.2022.900353
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.900353/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-900353 November 5, 2022 Time: 15:10 # 2

Miao et al. 10.3389/fcvm.2022.900353

Conclusion: For the first time, the key mRNAs, miRNAs, and circRNAs, as

well as their possible regulatory relationships, during the progression of

CTEPH were analyzed using both gene chip and scRNA-seq data. These

findings may contribute to a better understanding of the pathological

mechanisms of CTEPH.

KEYWORDS

chronic thromboembolic pulmonary hypertension, single-cell RNA-sequencing,
microarray, circRNA, miRNA, mRNA

Introduction

Chronic thromboembolic pulmonary hypertension
(CTEPH) is a rare small-vessel arteriopathy characterized
by persistent pulmonary arterial obstruction that is caused
by organized fibrotic thrombi with secondary microvascular
remodeling, which may lead to increased vascular resistance,
pulmonary hypertension, and heart failure (1). Pulmonary
endarterectomy is currently the standard therapy and the only
curative treatment for CTEPH, which is associated with a 5-year
survival rate of 83% for operable patients (2). However, not all
patients with CTEPH are eligible for surgery. Moreover, CTEPH
is often diagnosed at an advanced stage due to misdiagnosis
or delayed symptoms, resulting in a poor prognosis; the
5-year survival rate of CTEPH patients is less than 40% (3).
Therefore, it is of great clinical significance to further explore
the pathophysiological mechanisms of CTEPH.

Various genes, cell types, and signal transduction systems
are involved in the occurrence and development of CTEPH
(4). Gene microarray and sequencing technology have been
widely used to analyze intracellular transcription and signaling
pathways (5). In addition, several dysregulated mRNAs,
microRNAs (miRNAs), and circular RNAs (circRNAs) in
CTEPH have been identified by bulk RNA sequencing (RNA-
seq) and chip array analyses (6, 7). For example, Gu et al. (6)
analyzed pulmonary artery endothelial cells from five CTEPH
patients and five donors for lung transplantation (controls)
using Affymetrix gene chip analysis and identified 1,614
differentially expressed (DE) genes in CTEPH. Meanwhile,
Halliday et al. (8) characterized the molecular and functional
features associated with CTEPH using multiple methods,

Abbreviations: CTEPH, chronic thromboembolic pulmonary
hypertension; scRNA-seq, single-cell RNA-sequencing; miRNAs,
microRNAs; circRNAs, circular RNAs; PPI, protein–protein interaction;
RNA-seq, RNA sequencing; DE, differentially expressed; GEO, gene
expression omnibus; GO, gene ontology; BP, biological process; KEGG,
Kyoto Encyclopedia of genes and genomes; NK, natural killer; ICAM1,
intercellular adhesion molecule-1; APP, amyloid beta precursor protein;
ITGB2, integrin subunit beta 2; MYC, MYC proto-oncogene, bHLH
transcription factor; ZYX, Zyxin; PTGS2, prostaglandin-endoperoxide
synthase 2; TGFB1, transforming growth factor beta 1; PASMCs,
pulmonary artery smooth muscle cells.

including bulk RNA-seq. Furthermore, Wang et al. (9)
performed miRNA microarray analysis and found that the
miRNA let-7d plays a crucial role in CTEPH progression.
Additionally, our previous analysis using an Agilent
circRNA chip showed that hsa_circ_0046159 was significantly
upregulated in CTEPH compared with that in normal blood
samples (10). Importantly, single-cell RNA-seq (scRNA-seq) is
an emerging technique that can reveal the expression profile
of individual cells, making it possible to provide an atlas of the
single-cell landscape of pulmonary endarterectomized tissues in
CTEPH (11, 12). Taken together, bulk RNA-seq and chip array
analyses are mainly used to detect the overall gene expression
changes in CTEPH, while scRNA-seq can identify different cell
clusters and provide the expression profiles of individual cells.

The present study aimed to obtain a more comprehensive
understanding of the pathological mechanisms of CTEPH using
gene chip array and scRNA-seq analyses. The mRNA expression
profile GSE130391 was downloaded from the Gene Expression
Omnibus (GEO) database, and the Affymetrix miRNA chip and
the Agilent circRNA chip were prepared using the peripheral
blood samples from CTEPH patients and healthy controls. In
addition, the pulmonary endarterectomized tissues of CTEPH
patients were analyzed by scRNA-seq. Then, the circRNA–
miRNA–mRNA network was constructed for each cell type.
Our data may provide some insights for the development of
CTEPH treatment.

Materials and methods

Tissue collection and scRNA-seq

Pulmonary endarterectomized tissues were collected from
five patients who were diagnosed with CTEPH (13) and
underwent a pulmonary endarterectomy between October 2019
and June 2020 at the Beijing Chao-Yang Hospital, Capital
Medical University. The baseline characteristics of these patients
are shown in Table 1. The patients were treated with one of
the following anticoagulants for at least 3 months: warfarin,
rivaroxaban, and low-molecular-weight heparin. All treatments
were carried out in accordance with the guidelines.
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TABLE 1 Baseline characteristics of patients with CTEPH.

Characteristic Value
(number of patients)

Female:Male 1:4

Age (years, mean± SD) 45.00± 13.34

BMI (kg/m2 , mean± SD) 25.18± 1.18

mPAP (mmHg, mean± SD) 54.40± 3.21

PAWP (mmHg, mean± SD) 9.60± 2.51

PVR (dyn.sec/cm5 , mean± SD) 1098.60± 103.70

WHO FC I–II:WHO FC III–IV 1:4

CI [L/(min·m2), mean± SD] 1.78± 0.13

Family history of venous thromboembolism 0

Smoking 2

Bed rest over 24 h 0

Other CTEPH risk factors

Pulmonary embolism 3

Venous thromboembolism 2

Inflammatory bowel disease 0

Splenectomy 0

CTEPH, chronic thromboembolic pulmonary hypertension; BMI, body mass index;
mPAP, mean pulmonary arterial pressure; PAWP, pulmonary artery wedge pressure;
PVR, pulmonary vascular resistance; WHO FC, World Health Organization function
classification; CI, cardiac index; SD, standard deviation.

Tissues samples were then stored in MACS Tissue Storage
Solution (Miltenyi Biotec, Bergisch Gladbach, Germany). This
study was approved by the Ethics Committee of Beijing
Chao-Yang Hospital, Capital Medical University (Approval
number: 2019-K-28) and conformed to the principles outlined

in the Declaration of Helsinki. The requirement for written
informed consent was waived because discarded pulmonary
endarterectomized tissues were used in this study. The tissue
samples were dissociated to a single-cell suspension and
subjected to 10 × Genomics scRNA-seq using the Illumina
NovaSeq platform (Illumina Inc., USA).

Cell clustering

The scRNA-seq data of five pulmonary endarterectomized
tissue samples were integrated by Cell Ranger and then filtered
by the R package Seurat (14) with the following filtering
conditions: gene number > 200; at least one gene expressed
in three cells, and mitochondrial gene expression ratio ≤ 20%.
Then, all cells were clustered by the Seurat package, and a two-
dimensional scatter diagram was displayed using the UMAP
method. Marker genes corresponding to each cell cluster were
identified using the FindMarkers function in the Seurat package
based on differential analysis. The clusters were then annotated
with the marker genes to identify the cell type.

Identification of highly expressed
genes

Significantly highly expressed genes in each cell type were
identified using the Seurat package (14). The default threshold
parameters were set as follows: min.pct = 0.1; only.pos = TRUE;
and logfc.threshold = 0.25. Each time, one cell type was assigned

FIGURE 1

The UMAP plot of 11 cell subtypes in all samples. Different colors indicate different cell types.
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FIGURE 2

The heatmaps of differentially expressed mRNAs, miRNAs, and circRNAs.

FIGURE 3

The intersection Venn diagram of differentially expressed mRNAs and highly expressed genes in each cell type.

as the comparison group to the other cell types. Genes that met
all of the following criteria were screened: (1) expressed in 10%
of cells in at least one of the two groups; (2) highly expressed in
the comparison group; (3) logFC was greater than 0.25.

Preparation and preprocessing of
miRNA and circRNA expression data

Peripheral blood samples were collected from five CTEPH
patients who were admitted to the Beijing Chao-Yang Hospital,

Capital Medical University, and from five healthy subjects who
underwent a routine physical examination at the same hospital
between March 2016 and April 2016. This study was approved
by the Ethics Committee of Beijing Chao-Yang Hospital,
Capital Medical University (Approval number: 2015-7-24-8)
and performed in accordance with the principles outlined in the
Declaration of Helsinki. The requirement for written informed
consent was waived because discarded blood samples were
used in this study, while the research involved no risk to the
subjects and the waiver did not adversely affect the rights and
welfare of the subjects. The total RNA was extracted from the
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FIGURE 4

The PPI networks are associated with disease-related genes in each cell type. Red squares represent upregulated mRNAs; green circles
represent downregulated mRNAs; gray lines represent protein interactions.

TABLE 2 The numbers of nodes and relation pairs (edges) in the PPI
network of each cell type.

Cell type Nodes Edges

Macrophages 61 112

Undefined cells 21 21

Endothelial cells 39 62

Mast cells 33 53

Cancer stem cells 60 91

CRISPLD2+ cells 48 96

Fibroblasts 15 15

Myofibroblasts 11 10

Smooth muscle cells 9 6

T cells 52 82

NK cells 45 78

peripheral blood samples using an RNAprep Pure Blood Kit
(Tiangen Biotech Co., Ltd., Beijing, China) and prepared for the
Affymetrix miRNA chip and Agilent circRNA chip analyses (10).

The miRNA expression profile in the CEL format was
preprocessed by Expression Console (version 1.4), including
RMA normalization, distinguishing probe signals from
background signals, and integrating probe signals into probe

set signals. The circRNA expression profile was preprocessed
using the Feature Extraction package, and the chip data
were normalized by GeneSpring GX. Two probes (CBC1 and
CBC2) with different lengths were used to detect one circRNA;
therefore, the detection data of the two probes were mutually
verified, and the accuracy of the results was improved.

Identification and preprocessing of the
gene expression profile

The gene expression profiles of both patients and
healthy controls were searched in the GEO database, with
‘chronic thromboembolic pulmonary hypertension’ as the
keyword. The GSE130391 dataset (8), consisting of 14
CTEPH pulmonary artery samples and 4 control pulmonary
artery samples, was finally included in this study. The
GPL10558 Illumina HumanHT-12 V4.0 Expression Beadchip
platform was used.

The Series Matrix File was downloaded from the
GEO database, and the corresponding expression data
of CTEPH and control samples were extracted. After
processing of the log(2) signal intensity with the Affymetrix
Microarray Suite (version MAS 5.0) (15), the probe ID
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1 was converted into the gene symbol. Probes that did
not correspond to the gene symbol were removed. For
different probes mapped to the same gene, the mean
value of the probes was taken as the final gene expression
value.

Identification of differentially
expressed mRNAs, miRNAs, and
circRNAs

Differentially expressed mRNAs, miRNAs, and circRNAs
between the CTEPH and control groups were identified using
the empirical Bayes t-test provided by the R package limma
(version 3.40.6) (16). The thresholds were set at p < 0.05
and |log fold change (FC)| > 0.5. CircRNAs that were
identified as DE circRNAs by both probes were used for
further analysis.

Identification of disease-related genes

A Venn diagram of gene intersection was developed using
significantly highly expressed genes in each cell type and DE
mRNAs to obtain disease-related mRNAs in single cells.

Construction of the protein–protein
interaction network

The STRING database (17) was used to predict the
interactions between DE genes. The input gene sets were
disease-related genes in each cell type, and the species was Homo
sapiens. The PPI score was set to 0.4 (medium confidence).
After obtaining the PPI pairs, Cytoscape software (version
3.4.0) (18) was used to construct the network. The CytoNCA
plug-in (version 2.1.6) (19) was used to analyze the degree of
connectivity of the node, and the parameter was set without
weight. The proteins with a higher degree of connectivity were
obtained and named hub proteins.

Prediction of drugs for disease-related
mRNAs in single cells

Based on the disease-related mRNAs in each cell type,
drug-gene interactions were predicted using the online drug-
gene interaction database (20). The default parameters were
set as follows: Source Databases, 22; Gene Categories, 43; and
Interaction Types, 31. Meanwhile, approved antineoplastic or
immunotherapeutic drugs were screened. We mainly focused
on the relation pairs with reference support. The drug–gene
network was then constructed by Cytoscape software.
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FIGURE 5

The drug–gene network in undefined cells, mast cells, macrophages, NK cells, and T cells. Red squares represent upregulated mRNAs; green
circles represent downregulated mRNAs; purple lines represent the drug as an antagonist or inhibitor; green lines represent the drug as a
promoter or adjuvant; gray lines represent an unknown effect.

Construction of the single-cell,
disease-related
circRNA–miRNA–mRNA network

Based on the disease-related mRNAs in each cell type,
miRNAs were predicted using the online database mirwalk3.0
(21). The thresholds were set as follows: binding probability,
0.95; and binding site position, 3′-UTR. The miRNAs should

appear in either the miRDB or the TargetScan database. After
the miRNA–mRNA relation pairs were obtained, intersection
analysis with DE miRNAs identified by a previous analysis
was performed. Then, the DE miRNA–DE mRNA relation
pairs were obtained.

Based on the disease-related miRNAs and circRNAs
identified by a previous analysis, the miRNA–circRNA relation
pairs were predicted using miranda software (22). A score
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FIGURE 6

The drug–gene network in cancer stem cells, CRISPLD2+ cells, endothelial cells, fibroblasts, myofibroblasts, and smooth muscle cells. Red
squares represent upregulated mRNAs; green circles represent downregulated mRNAs; purple lines represent the drug as an antagonist or
inhibitor; green lines represent the drug as a promoter or adjuvant; gray lines represent an unknown effect.

of > 140 was used as the threshold. The relation pairs with an
opposite expression direction of miRNAs and circRNAs were
screened as the final circRNA–miRNA relation pairs.

The circRNA–miRNA–mRNA relation regulated
by the same miRNA was screened using the miRNA–
mRNA relation pairs and the circRNA–miRNA relation

pairs. As circRNAs competitively bind to miRNAs to
regulate mRNAs, the circRNA–miRNA–mRNA relation
with a consistent expression direction of the circRNAs
and mRNAs was screened. Finally, the network was
constructed, and the degree of connectivity of each node
in the network was analyzed.
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FIGURE 7

The circRNA–miRNA–mRNA regulatory network in macrophages, mast cells, NK cells, T cells, and undefined cells. Red squares represent
upregulated mRNAs; green circles represent downregulated mRNAs; yellow triangles represent upregulated miRNAs; purple arrows represent
downregulated miRNAs; pink hexagons represent upregulated circRNAs; blue rhombuses represent downregulated circRNAs; dotted lines
indicate competitive binding of circRNAs to miRNA; solid lines indicate regulation of mRNAs by miRNAs. The node size represents the degree of
connectivity.

Function analysis of the
circRNA–miRNA–mRNA network in
each cell type

In the circRNA–miRNA–mRNA network of each cell
type, the mRNAs were analyzed by Gene Ontology (GO)
(23) biological process (BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (24) pathway enrichment
analyses using the R package clusterProfiler (version
3.8.1) (25). The BP or pathway with an adjusted

p-value of less than 0.05 was considered statistically
significant.

Results

Eleven cell types were identified

The expression matrix of 22,333 genes in 27,140 cells was
obtained after scRNA-seq analysis. The cells were then clustered
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into 17 clusters, with 11 cell types: macrophages, undefined
cells, endothelial cells, mast cells, cancer stem cells, CRISPLD2+

cells, fibroblasts, myofibroblasts, smooth muscle cells, T cells,
and natural killer (NK) cells. The two-dimensional distribution
scatter plot of the 11 cell types in all samples is shown in
Figure 1.

Significantly highly expressed genes in
each cell type

The genes highly expressed in the 11 cell types were
identified using the FindMarkers function in the Seurat
package. There were 813, 506, 997, 563, 972, 870, 491,
530, 333, 799, and 726 highly expressed genes in the
macrophages, undefined cells, endothelial cells, mast
cells, cancer stem cells, CRISPLD2+ cells, fibroblasts,
myofibroblasts, smooth muscle cells, T cells, and NK cells,
respectively.

Identification of differentially
expressed mRNAs, miRNAs, and
circRNAs

After preprocessing, the expression matrixes of 20,169
mRNAs, 2,578 miRNAs, and 87,935 circRNAs were obtained.
Differential expression analysis identified 1,436 DE (670
upregulated and 766 downregulated) mRNAs, 294 DE (88
upregulated and 206 downregulated) miRNAs, and 233 DE (89
upregulated and 144 downregulated) circRNAs. The heatmaps
of these DE RNAs are shown in Figure 2.

Identification of disease-related genes
in single cells

The intersection analysis of the highly expressed genes in
the 11 cell types and DE mRNAs showed that there were
95, 41, 69, 62, 94, 77, 32, 31, 23, 81, and 71 disease-related
genes in the macrophages, undefined cells, endothelial cells,
mast cells, cancer stem cells, CRISPLD2+ cells, fibroblasts,
myofibroblasts, smooth muscle cells, T cells, and NK cells,
respectively (Figure 3).

Construction of protein–protein
interaction networks based on
disease-related genes in single cells

A total of 11 networks were constructed based on the
disease-related mRNAs in single cells (Figure 4). The numbers

of nodes and relation pairs in each cell type are shown
in Table 2. The top 10 genes with a high degree of
connectivity are shown in Table 3. TP53 had the highest
degree of connectivity in the PPI networks of the cancer
stem cells, CRISPLD2+ cells, and undefined cells. Intercellular
adhesion molecule-1 (ICAM1) had the highest degree in the
PPI networks of the macrophages and mast cells. Amyloid
beta precursor protein (APP) had the highest degree in the
PPI networks of the fibroblasts and smooth muscle cells.
Integrin subunit beta 2 (ITGB2) had the highest degree in
the PPI networks of the T cells and NK cells. MYC proto-
oncogene and bHLH transcription factor (MYC) had the highest
degrees in the PPI network of the endothelial cells. Zyxin
(ZYX) had the highest degree in the PPI network of the
myofibroblasts.

Prediction of drugs for disease-related
genes in single cells

As shown in Figures 5, 6, prostaglandin-endoperoxide
synthase 2 (PTGS2), TP53, APP, transforming growth factor
beta 1 (TGFB1), and MYC were regulated by multiple drugs,
suggesting that they may serve as potential drug targets.

Construction of the disease-related
circRNA–miRNA–mRNA network in
single cells

A total of 291, 318, 262, 145, 530, 563, 21, 52, 59, 313,
and 276 circRNA–miRNA–mRNA relations were identified in
the macrophages, undefined cells, endothelial cells, mast cells,
cancer stem cells, CRISPLD2+ cells, fibroblasts, myofibroblasts,
smooth muscle cells, T cells, and NK cells, respectively. The
constructed networks are shown in Figures 7, 8. The numbers
of circRNA–miRNA–mRNA network nodes and relation pairs
in each cell type are shown in Table 4.

Function analysis of
circRNA–miRNA–mRNA networks

The function of the circRNA–miRNA–mRNA network in
each cell type was analyzed based on the mRNAs in the
network. As shown in Figure 9, the endothelial cells, fibroblasts,
macrophages, smooth muscle cells, and undefined cells were
significantly enriched in 11, 21, 5, 20, and 53 GO BP pathways,
respectively. Meanwhile, the CRISPLD2+ cells, endothelial
cells, macrophages, myofibroblasts, and undefined cells were
significantly enriched in 2, 3, 9, 2, and 12 KEGG pathways,
respectively.
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FIGURE 8

The circRNA–miRNA–mRNA regulatory network in cancer stem cells, fibroblasts, CRISPLD2+ cells, myofibroblasts, endothelial cells, and
smooth muscle cells. Red squares represent upregulated mRNAs; green circles represent downregulated mRNAs; yellow triangles represent
upregulated miRNAs; purple arrows represent downregulated miRNAs; pink hexagons represent upregulated circRNAs; blue rhombuses
represent downregulated circRNAs; dotted lines indicate competitive binding of circRNAs to miRNA; solid lines indicate regulation of mRNAs by
miRNAs. The node size represents the degree of connectivity.

Discussion

Chronic thromboembolic pulmonary hypertension is a
major cause of severe pulmonary hypertension (1), but
the underlying molecular mechanisms remain incompletely
understood. In this study, we performed both gene chip array
and scRNA-seq analyses to explore the pathogenic mechanisms

of CTEPH. We identified highly expressed genes in 11 cell types,
and then intersection analysis with DE mRNAs was performed
to obtain disease-related genes in each cell type. TP53, ICAM1,
APP, ITGB2, MYC, and ZYX had the highest degrees of
connectivity in the PPI networks of different cell types,
suggesting that they may play important roles in the progression
of CTEPH. The circRNA–miRNA–mRNA regulatory network
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TABLE 4 The numbers of nodes and relation pairs (edges) in the circRNA–miRNA–mRNA network of each cell type.

Cell type Node Edge

circRNA miRNA mRNA Total circRNA–miRNA miRNA–mRNA Total

Macrophages 61 57 43 161 213 78 291

Undefined cells 59 62 24 145 258 79 337

Endothelial cells 52 62 37 151 216 78 294

Mast cells 45 35 21 101 120 39 159

Cancer stem cells 66 88 58 212 322 151 473

CRISPLD2+ cells 68 99 48 215 375 161 536

Fibroblasts 15 9 9 33 21 9 30

Myofibroblasts 32 14 10 56 52 14 66

Smooth muscle cells 29 18 10 57 57 20 77

T cells 59 58 33 150 236 76 312

NK cells 56 51 30 137 201 69 270

in each cell type was then constructed to further elucidate the
molecular mechanisms underlying the progression of CTEPH.

Chronic thromboembolic pulmonary hypertension is
characterized by pulmonary vascular remodeling resulting from
increased pulmonary arterial pressures. Fibroblasts, smooth
muscle cells, endothelial cells, and myofibroblasts all play
important roles in vascular remodeling (26, 27). In addition,
hypertrophy caused by the increased proliferation or reduced
apoptosis of vascular smooth muscle cells as well as the excessive
proliferation of endothelial cells eventually results in lumen
obliteration (27). APP is a type I single-pass transmembrane
glycoprotein with receptor-like structural characteristics;
however, its cellular function remains unclear (28, 29).
A previous study has shown that the serum levels of amyloid-
beta, which is produced by proteolysis of APP, are significantly
increased in patients with chronic obstructive pulmonary
disease with poor pulmonary function (30). Here, we found
that APP was a hub node in the PPI networks of fibroblasts,
smooth muscle cells, endothelial cells, and myofibroblasts. As
APP can be regulated by a variety of drugs, it may serve as a
potential drug target for CTEPH. APP was also involved in the
circ_0026692-miR-20b-5p-APP and circ_0021630-miR-20b-
5p-APP regulatory axes in all four cell types. Moreover, recent
evidence has revealed that chronic obstructive pulmonary
disease increases the risk of complications and mortality in
patients with CTEPH during the early postoperative period after
a pulmonary endarterectomy (31). Taken together, the above
data imply that fibroblasts, smooth muscle cells, endothelial
cells, and myofibroblasts may be involved in the development of
CTEPH via the circ_0026692/circ_0021630–miR-20b-5p–APP
regulatory axis.

Accumulating evidence has suggested that the immune
system plays a key role in the pathogenesis of CTEPH (32).
Moreover, increased systemic inflammation is related to local
inflammatory cell infiltration in major pulmonary arteries at

the advanced stage of CTEPH (7). In this study, four types of
immune cells were identified. ICAM1 had the highest degree
of connectivity in macrophages and mast cells, while ITGB2
had the highest degree of connectivity in T cells and NK cells.
Soluble ICAM1 is present in the normal circulation, and its
level is elevated in patients with endothelial activation-related
disorders. Furthermore, the upregulation of ICAM1 affects
the adhesion of circulating immune cells to the pulmonary
endothelium, thereby promoting immune cell migration and
perivascular infiltration (33). Blair et al. (34) also have reported
that ICAM1 is essential for inflammatory cell recruitment in
pulmonary vascular lesions in pulmonary arterial hypertension.
ITGB2 encodes an integrin beta chain involved in cell adhesion.
A recent study has reported that inhibition of broad-spectrum
integrin improves distal pulmonary artery remodeling,
suggesting that integrin may contribute to the pathogenesis
of pulmonary arterial hypertension (35). Collectively, we
speculated that these immune cells might be associated with
inflammatory cell recruitment in CTEPH by regulating the
expression of ICAM1 and ITGB2. In addition, circ_0021630
had the highest degree of connectivity in the circRNA–miRNA–
mRNA regulatory networks of the four types of immune
cells, indicating the regulatory potential of circ_0021630 in
CTEPH-related immune responses.

TP53 had the highest degree of connectivity in the PPI
networks of cancer stem cells, CRISPLD2+ cells, and undefined
cells. CRISPLD2 is an endogenous anti-inflammatory gene in
lung fibroblasts, which can inhibit proinflammatory signaling
in pulmonary epithelial cells (36). GO analysis showed that
undefined cells were associated with the positive regulation
of striated muscle cell apoptosis. Striated muscles, which are
affected in pulmonary arterial hypertension, are associated
with exercise intolerance in these patients (37). The TP53
encoding protein (p53) is a transcription factor involved in
DNA repair, cell cycle arrest, and apoptosis (38). Dysregulation
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FIGURE 9

GO BP and KEGG pathways are enriched by mRNAs in the circRNA–miRNA–mRNA regulatory network of each cell type. The bubble size
indicates the number of enriched genes. The color shows the enrichment significance and red is the most significant.

of p53 in pulmonary artery smooth muscle cells (PASMCs)
plays an important role in vascular remodeling, a key process
contributing to the progression of CTEPH (39, 40). Meanwhile,
inhibition of TP53 suppresses mitochondrial respiration and
induces glycolysis in PASMCs, which show a proliferative
phenotype similar to that of cancer cells. Hence, CTEPH is
considered a cancer-like disease in terms of PASMC remodeling
(41). TP53 is also involved in a circRNA–miRNA–mRNA
regulatory network (e.g., circ_0007400–miR-6812-5p–TP53) in
cancer stem cells and CRISPLD2+ cells. These data suggest
that circ_0007400 may act as a competing endogenous RNA

in cancer stem cells and CRISPLD2+ cells to promote the
progression of CTEPH by regulating TP53.

There are some limitations in this study that must be
addressed. First, we only performed bioinformatics analysis
without verification experiments. Second, the sample size
was relatively small. The measurement of the key circRNA
and miRNA expression in tissues and studies with a large
sample size are needed to validate the current findings.
Thirdly, tissue samples were collected from patients undergoing
pulmonary endarterectomy because it is currently the only
curative treatment for CTEPH. However, it should be noted
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that pulmonary endarterectomy samples were derived from
large vessels, while CTEPH is also related to a small
vessel arteriopathy.

In conclusion, fibroblasts, smooth muscle cells, endothelial
cells, and myofibroblasts may be involved in the development
of CTEPH via the circ_0026692/circ_0021630–miR-20b-5p–
APP regulatory axis. Additionally, macrophages, mast cells, T
cells, and NK cells may be associated with inflammatory cell
recruitment in CTEPH by regulating the expression of ICAM1
and ITGB2. Moreover, circ_0007400 may contribute to the
progression of CTEPH by acting as a competing endogenous
RNA to regulateTP53 in cancer stem cells and CRISPLD2+ cells.
Our study, for the first time, identified the key mRNAs, miRNAs,
and circRNAs, as well as their possible regulatory relations, in
CTEPH using both gene chip array and scRNA-seq analyses.
These data may contribute to a better understanding of the
pathological mechanisms of CTEPH.
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