AUTHOR=Qu Hongling , Wu Cuiyun , Ye Peiji , Lv Weibiao TITLE=Development of Prediction Model to Estimate the Risk of Heart Failure in Diabetes Mellitus JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.900267 DOI=10.3389/fcvm.2022.900267 ISSN=2297-055X ABSTRACT=Background

Heart failure (HF) is a leading cause of mortality and disability in patients with diabetes mellitus (DM). The aim of the study is to predict the risk of HF incidence in patients with DM by developing a risk prediction model.

Methods

We constructed a regression model based on 270 inpatients with DM between February 2018 and January 2019. Binary logistic regression was applied to develop the final model incorporating the predictors selected by least absolute shrinkage and selection operator regression. The nomogram was estimated with an area under the receiver operator characteristic curve and calibration diagram and validated with the bootstrap method.

Results

Risk factors including age, coronary heart disease (CHD), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were incorporated in the final model as predictors. Age ≥ 61 years old, LDL, and CHD were risk factors for DM with HF, with odds ratios (ORs) of 32.84 (95% CI: 6.74, 253.99), 1.33 (95% CI: 1.06, 1.72), and 3.94 (95% CI: 1.43, 13.43), respectively. HDL was a protective factor with an OR of 0.11 (95% CI: 0.04, 0.28). The area under curve of the model was 0.863 (95% confidence interval, 0.812∼0.913). The plot of the calibration showed that there was a good consistency between predicted probability and actual probability. Harrell’s C-index of the nomogram was 0.845, and the model showed satisfactory calibration in the internal validation cohort.

Conclusion

The prediction nomogram we developed can estimate the possibility of HF in patients with DM according the predictor items.