Atrial fibrillation (AF) is one of the most prevalent arrhythmias, characterized by a high risk of heart failure and embolic stroke. Competing endogenous RNA network has been reported to play an important role in cardiovascular diseases. The main objective of the present study was to construct a circRNA–miRNA–mRNA-mediated network and explore the potential function in AF.
The microarray data of circRNA, miRNA, and mRNA in AF were downloaded from the Gene Expression Omnibus database. The RobustRankAggreg method was used to screen the different expression circRNAs(DECs). Then the circRNA–miRNA–mRNA-mediated network was constructed by using the CircInteractome database and the miRWalk online tool. A quantitative real-time polymerase chain reaction was used to detect the circRNA expression level in plasma. The left atrial fibrosis was evaluated with the left atrial low voltage area (LVA) by using left atrial voltage matrix mapping.
Three DECs (hsa_circRNA_102461, hsa_circRNA_103693, and hsa_circRNA_059880) and 4 miRNAs were screened. Then a circRNA–miRNA–mRNA-mediated network was constructed, which included 2 circRNAs, 4 miRNAs, and 83 genes. Furthermore, the plasma’s hsa_circ_0070391 expression level was confirmed to be upregulated and positively correlated with left atrial fibrosis in AF (
This study provides a novel insight to further understand the AF pathogenesis from the perspective of the circRNA–miRNA–mRNA network, suggesting that plasma circRNAs could serve as a novel atrial fibrosis and prognosis biomarker for AF.