AUTHOR=Zheng Jianwei , Abudayyeh Islam , Mladenov Georgi , Struppa Daniele , Fu Guohua , Chu Huimin , Rakovski Cyril TITLE=An artificial intelligence-based noninvasive solution to estimate pulmonary artery pressure JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.855356 DOI=10.3389/fcvm.2022.855356 ISSN=2297-055X ABSTRACT=Aims

Design to develop an artificial intelligence (AI) algorithm to accurately predict the pulmonary artery pressure (PAP) waveform using non-invasive signal inputs.

Methods and results

We randomly sampled training, validation, and testing datasets from a waveform database containing 180 patients with pulmonary atrial catheters (PACs) placed for PAP waves collection. The waveform database consisted of six hemodynamic parameters from bedside monitoring machines, including PAP, artery blood pressure (ABP), central venous pressure (CVP), respiration waveform (RESP), photoplethysmogram (PPG), and electrocardiogram (ECG). We trained a Residual Convolutional Network using a training dataset containing 144 (80%) patients, tuned learning parameters using a validation set including 18 (10%) patients, and tested the performance of the method using 18 (10%) patients, respectively. After comparing all multi-stage algorithms on the testing cohort, the combination of the residual neural network model and wavelet scattering transform data preprocessing method attained the highest coefficient of determination R2 of 90.78% as well as the following other performance metrics and corresponding 95% confidence intervals (CIs): mean square error of 11.55 (10.22–13.5), mean absolute error of 2.42 (2.06–2.85), mean absolute percentage error of 0.91 (0.76–1.13), and explained variance score of 90.87 (85.32–93.31).

Conclusion

The proposed analytical approach that combines data preprocessing, sampling method, and AI algorithm can precisely predict PAP waveform using three input signals obtained by noninvasive approaches.